algebraic inequalities in math olympiads

Upload: ryszardlubicz

Post on 06-Jan-2016

547 views

Category:

Documents


30 download

DESCRIPTION

ineqs

TRANSCRIPT

  • Algebraic Inequalities in Mathematical

    Olympiads: Problems and Solutions

    Mohammad Mahdi Taheri

    July 20, 2015

    Abstract

    This is a collection of recent algebraic inequalities proposed in mathOlympiads from around the world.

    [email protected]

    1 Problems

    1. (Azerbaijan JBMO TST 2015) With the conditions a, b, c R+ and a +b+ c = 1, prove that

    7 + 2b

    1 + a+

    7 + 2c

    1 + b+

    7 + 2a

    1 + c 69

    4

    2. (Azerbaijan JBMO TST 2015) a, b, c R+ and a2 + b2 + c2 = 48. Provethat

    a2

    2b3 + 16 + b2

    2c3 + 16 + c2

    2a3 + 16 242

    3. (Azerbaijan JBMO TST 2015) a, b, c R+ prove that

    [(3a2+1)2+2(1+3

    b)2][(3b2+1)2+2(1+

    3

    c)2][(3c2+1)2+2(1+

    3

    a)2] 483

    4. (AKMO 2015) Let a, b, c be positive real numbers such that abc = 1. Provethe following inequality:

    a3 + b3 + c3 +ab

    a2 + b2+

    bc

    b2 + c2+

    ca

    c2 + a2 9

    2

    5. (Balkan MO 2015) If a, b and c are positive real numbers, prove that

    a3b6 + b3c6 + c3a6 + 3a3b3c3 abc (a3b3 + b3c3 + c3a3)+ a2b2c2 (a3 + b3 + c3).6. (Bosnia Herzegovina TST 2015) Determine minimum value of the follow-

    ing expression:a+ 1

    a(a+ 2)+

    b+ 1

    b(b+ 2)+

    c+ 1

    c(c+ 2)

    for positive real numbers such that a+ b+ c 3

    1

  • 7. (China 2015) Let z1, z2, ..., zn be complex numbers satisfying |zi 1| rfor some r (0, 1). Show that

    ni=1

    zi

    ni=1

    1

    zi

    n2(1 r2).8. (China TST 2015) Let a1, a2, a3, , an be positive real numbers. For the

    integers n 2, prove thatn

    j=1

    (jk=1 ak

    ) 1jn

    j=1 aj

    1n

    +(ni=1 ai)

    1nn

    j=1

    (jk=1 ak

    ) 1j

    n+ 1n

    9. (China TST 2015) Let x1, x2, , xn (n 2) be a non-decreasing monotonoussequence of positive numbers such that x1,

    x22 , , xnn is a non-increasing

    monotonous sequence .Prove thatni=1 xi

    n (ni=1 xi)

    1n

    n+ 12 nn!

    10. (Junior Balkan 2015) Let a, b, c be positive real numbers such that a+ b+c = 3. Find the minimum value of the expression

    A =2 a3a

    +2 b3b

    +2 c3c

    .

    11. (Romania JBMO TST 2015) Let x,y,z > 0 . Show that :

    x3

    z3 + x2y+

    y3

    x3 + y2z+

    z3

    y3 + z2x 3

    2

    12. (Romania JBMO TST 2015) Let a, b, c > 0 such that a bc2 , b ca2and c ab2 . Find the maximum value that the expression :

    E = abc(a bc2)(b ca2)(c ab2)

    can acheive.

    13. (Romania JBMO TST 2015) Prove that if a, b, c > 0 and a + b + c = 1,then

    bc+ a+ 1

    a2 + 1+ca+ b+ 1

    b2 + 1+ab+ c+ 1

    c2 + 1 39

    10

    14. (Kazakhstan 2015 ) Prove that

    1

    22+

    1

    32+ + 1

    (n+ 1)2< n

    (1 1

    n

    2

    ).

    2

  • 15. (Moldova TST 2015) Let c (

    0,pi

    2

    ),

    a =( 1sin(c)

    ) 1cos2(c) , b =

    ( 1cos(c)

    ) 1sin2(c)

    . Prove that at least one of a, b is bigger than 11

    2015.

    16. (Moldova TST 2015) Let a, b, c be positive real numbers such that abc = 1.Prove the following inequality:

    a3 + b3 + c3 +ab

    a2 + b2+

    bc

    b2 + c2+

    ca

    c2 + a2 9

    2

    17. (All-Russian MO 2014) Does there exist positive a R, such that| cosx|+ | cos ax| > sinx+ sin ax

    for all x R?18. (Balkan 2014) Let x, y and z be positive real numbers such that xy+yz+

    xz = 3xyz. Prove that

    x2y + y2z + z2x 2(x+ y + z) 3and determine when equality holds.

    19. (Baltic Way 2014) Positive real numbers a, b, c satisfy 1a +1b +

    1c = 3. Prove

    the inequality

    1a3 + b

    +1b3 + c

    +1c3 + a

    32.

    20. (Benelux 2014) Find the smallest possible value of the expressiona+ b+ c

    d

    +

    b+ c+ d

    a

    +

    c+ d+ a

    b

    +

    d+ a+ b

    c

    in which a, b, c, and d vary over the set of positive integers.

    (Here bxc denotes the biggest integer which is smaller than or equal to x.)21. (Britain 2014) Prove that for n 2 the following inequality holds:

    1

    n+ 1

    (1 +

    1

    3+ . . .+

    1

    2n 1)>

    1

    n

    (1

    2+ . . .+

    1

    2n

    ).

    22. (Bosnia Herzegovina TST 2014) Let a,b and c be distinct real numbers.a) Determine value of

    1 + ab

    a b 1 + bc

    b c +1 + bc

    b c 1 + ca

    c a +1 + ca

    c a 1 + ab

    a bb) Determine value of

    1 aba b

    1 bcb c +

    1 bcb c

    1 cac a +

    1 cac a

    1 aba b

    3

  • c) Prove the following ineqaulity

    1 + a2b2

    (a b)2 +1 + b2c2

    (b c)2 +1 + c2a2

    (c a)2 3

    2

    When does quality holds?

    23. (Canada 2014) Let a1, a2, . . . , an be positive real numbers whose productis 1. Show that the sum

    a11+a1

    + a2(1+a1)(1+a2) +a3

    (1+a1)(1+a2)(1+a3)+ + an(1+a1)(1+a2)(1+an)

    is greater than or equal to 2n12n .

    24. (CentroAmerican 2014) Let a, b, c and d be real numbers such that notwo of them are equal,

    a

    b+b

    c+c

    d+d

    a= 4

    and ac = bd. Find the maximum possible value of

    a

    c+b

    d+c

    a+d

    b.

    25. (China Girls Math Olympiad 2014) Let x1, x2, . . . , xn be real numbers,where n 2 is a given integer, and let bx1c, bx2c, . . . , bxnc be a permuta-tion of 1, 2, . . . , n. Find the maximum and minimum of

    n1i=1

    bxi+1 xic

    (here bxc is the largest integer not greater than x).26. (China Northern MO 2014) Define a positive number sequence sequence{an} by

    a1 = 1, (n2 + 1)a2n1 = (n 1)2a2n.

    Prove that

    1

    a21+

    1

    a22+ + 1

    a2n 1 +

    1 1

    a2n.

    27. (China Northern MO 2014) Let x, y, z, w be real numbers such that x +2y + 3z + 4w = 1. Find the minimum of

    x2 + y2 + z2 + w2 + (x+ y + z + w)2

    28. (China TST 2014) For any real numbers sequence {xn} ,suppose that {yn}is a sequence such that: y1 = x1, yn+1 = xn+1 (

    ni=1

    x2i )12 (n 1) . Find

    the smallest positive number such that for any real numbers sequence{xn} and all positive integers m ,we have

    1

    m

    mi=1

    x2i mi=1

    miy2i .

    4

  • 29. (China TST 2014) Let n be a given integer which is greater than 1. Findthe greatest constant (n) such that for any non-zero complex z1, z2, , zn,we have

    nk=1

    |zk|2 (n) min1kn

    {|zk+1 zk|2},

    where zn+1 = z1.

    30. (China Western MO 2014) Let x, y be positive real numbers .Find theminimum of

    x+ y +|x 1|y

    +|y 1|x

    .

    31. (District Olympiad 2014) Prove that for any real numbers a and b thefollowing inequality holds:(

    a2 + 1) (b2 + 1

    )+ 50 2 (2a+ 1) (3b+ 1)

    32. (ELMO Shortlist 2014) Given positive reals a, b, c, p, q satisfying abc = 1and p q, prove that

    p(a2 + b2 + c2

    )+ q

    (1

    a+

    1

    b+

    1

    c

    ) (p+ q)(a+ b+ c).

    33. (ELMO Shortlist 2014) Let a, b, c, d, e, f be positive real numbers. Giventhat def + de+ ef + fd = 4, show that

    ((a+ b)de+ (b+ c)ef + (c+ a)fd)2 12(abde+ bcef + cafd).

    34. (ELMO Shortlist 2014) Let a, b, c be positive reals such that a + b + c =ab+ bc+ ca. Prove that

    (a+ b)abbc(b+ c)bcca(c+ a)caab acababcbc.

    35. (ELMO Shortlist 2014) Let a, b, c be positive reals with a2014 + b2014 +c2014 + abc = 4. Prove that

    a2013 + b2013 cc2013

    +b2013 + c2013 a

    a2013+c2013 + a2013 b

    b2013 a2012+b2012+c2012.

    36. (ELMO Shortlist 2014) Let a, b, c be positive reals. Prove thata2(bc+ a2)

    b2 + c2+

    b2(ca+ b2)

    c2 + a2+

    c2(ab+ c2)

    a2 + b2 a+ b+ c.

    37. (Korea 2014) Suppose x, y, z are positive numbers such that x+y+z = 1.Prove that

    (1 + xy + yz + zx)(1 + 3x3 + 3y3 + 3z3)

    9(x+ y)(y + z)(z + x)(x

    1 + x4

    3 + 9x2+

    y

    1 + y4

    3 + 9y2+

    z

    1 + z4

    3 + 9z2

    )2.

    5

  • 38. (France TST 2014) Let n be a positive integer and x1, x2, . . . , xn be posi-tive reals. Show that there are numbers a1, a2, . . . , an {1, 1} such thatthe following holds:

    a1x21 + a2x

    22 + + anx2n (a1x1 + a2x2 + + anxn)2

    39. (Harvard-MIT Mathematics Tournament 2014) Find the largest real num-ber c such that

    101i=1

    x2i cM2

    whenever x1, . . . , x101 are real numbers such that x1 + + x101 = 0 andM is the median of x1, . . . , x101.

    40. (India Regional MO 2014) Let a, b, c be positive real numbers such that

    1

    1 + a+

    1

    1 + b+

    1

    1 + c 1.

    Prove that (1 + a2)(1 + b2)(1 + c2) 125. When does equality hold?41. (India Regional MO 2014) Let x1, x2, x3 . . . x2014 be positive real numbers

    such that2014

    j=1 xj = 1. Determine with proof the smallest constant Ksuch that

    K

    2014j=1

    x2j1 xj 1

    42. (IMO Training Camp 2014) Let a, b be positive real numbers.Prove that

    (1 + a)8 + (1 + b)8 128ab(a+ b)2

    43. (Iran 2014) Let x, y, z be three non-negative real numbers such that

    x2 + y2 + z2 = 2(xy + yz + zx).

    Prove thatx+ y + z

    3 3

    2xyz.

    44. (Iran 2014) For any a, b, c > 0 satisfying a+ b+ c+ab+ac+ bc = 3, provethat

    2 a+ b+ c+ abc 3

    45. (Iran TST 2014) n is a natural number. for every positive real numbersx1, x2, ..., xn+1 such that x1x2...xn+1 = 1 prove that:

    x1n+ ...+ xn+1

    n n n

    x1 + ...+ n

    nxn+1

    46. (Iran TST 2014) if x, y, z > 0 are postive real numbers such that x2+y2+z2 = x2y2 + y2z2 + z2x2 prove that

    ((x y)(y z)(z x))2 2((x2 y2)2 + (y2 z2)2 + (z2 x2)2)

    6

  • 47. (Japan 2014) Suppose there exist 2m integers i1, i2, . . . , im and j1, j2, . . . , jm,of values in {1, 2, . . . , 1000}. These integers are not necessarily distinct.For any non-negative real numbers a1, a2, . . . , a1000 satisfying a1+a2+ +a1000 = 1, find the maximum positive integer m for which the followinginequality holds

    ai1aj1 + ai2aj2 + + aimajm 1

    2.014.

    48. (Japan MO Finals 2014) Find the maximum value of real number k suchthat

    a

    1 + 9bc+ k(b c)2 +b

    1 + 9ca+ k(c a)2 +c

    1 + 9ab+ k(a b)2 1

    2

    holds for all non-negative real numbers a, b, c satisfying a+ b+ c = 1.

    49. (Turkey JBMO TST 2014) Determine the smallest value of

    (a+ 5)2 + (b 2)2 + (c 9)2

    for all real numbers a, b, c satisfying a2 + b2 + c2 ab bc ca = 350. (JBMO 2014) For positive real numbers a, b, c with abc = 1 prove that(

    a+1

    b

    )2+

    (b+

    1

    c

    )2+

    (c+

    1

    a

    )2 3(a+ b+ c+ 1)

    51. (Korea 2014) Let x, y, z be the real numbers that satisfies the following.

    (x y)2 + (y z)2 + (z x)2 = 8, x3 + y3 + z3 = 1Find the minimum value of

    x4 + y4 + z4

    52. (Macedonia 2014) Let a, b, c be real numbers such that a+ b+ c = 4 anda, b, c > 1. Prove that:

    1

    a 1 +1

    b 1 +1

    c 1 8

    a+ b+

    8

    b+ c+

    8

    c+ a

    53. (Mediterranean MO 2014) Let a1, . . . , an and b1 . . . , bn be 2n real numbers.Prove that there exists an integer k with 1 k n such that

    ni=1

    |ai ak| ni=1

    |bi ak|.

    54. (Mexico 2014) Let a, b, c be positive reals such that a+ b+ c = 3. Prove:

    a2

    a+ 3bc

    +b2

    b+ 3ca

    +c2

    c+ 3ab 3

    2

    And determine when equality holds.

    7

  • 55. (Middle European MO 2014) Determine the lowest possible value of theexpression

    1

    a+ x+

    1

    a+ y+

    1

    b+ x+

    1

    b+ y

    where a, b, x, and y are positive real numbers satisfying the inequalities

    1

    a+ x 1

    2

    1

    a+ y 1

    2

    1

    b+ x 1

    2

    1

    b+ y 1.

    56. (Moldova TST 2014) Let a, b R+ such that a+b = 1. Find the minimumvalue of the following expression:

    E(a, b) = 3

    1 + 2a2 + 2

    40 + 9b2.

    57. (Moldova TST 2014) Consider n 2 positive numbers 0 < x1 x2 ... xn, such that x1 +x2 + ...+xn = 1. Prove that if xn 2

    3, then there

    exists a positive integer 1 k n such that1

    3 x1 + x2 + ...+ xk < 2

    3

    58. (Moldova TST 2014) Let a, b, c be positive real numbers such that abc = 1.Determine the minimum value of

    E(a, b, c) = a3 + 5

    a3(b+ c)

    59. (Romania TST 2014) Let a be a real number in the open interval (0, 1).Let n 2 be a positive integer and let fn : R R be defined by fn(x) =x+ x

    2

    n . Show that

    a(1 a)n2 + 2a2n+ a3(1 a)2n2 + a(2 a)n+ a2 < (fn fn)(a) tdholds for all (not necessarily distinct) x, y, z X, all real numbers a andall positive real numbers d.

    78. (China Northern MO 2013) If a1, a2, , a2013 [2, 2] anda1 + a2 + + a2013 = 0

    , find the maximum of

    a31 + a32 + + a32013

    .

    79. (China TST 2013) Let n and k be two integers which are greater than 1.Let a1, a2, . . . , an, c1, c2, . . . , cm be non-negative real numbers such thati) a1 a2 . . . an and a1 + a2 + . . . + an = 1; ii) For any integerm {1, 2, . . . , n}, we have that c1 + c2 + . . . + cm mk. Find themaximum of c1a

    k1 + c2a

    k2 + . . .+ cna

    kn.

    80. (China TST 2013) Let n > 1 be an integer and let a0, a1, . . . , an be non-

    negative real numbers. Definite Sk =k

    i=0

    (ki

    )ai for k = 0, 1, . . . , n. Prove

    that

    1

    n

    n1k=0

    S2k 1

    n2

    (nk=0

    Sk

    )2 4

    45(Sn S0)2.

    81. (China TST 2013) Let k 2 be an integer and let a1, a2, , an, b1, b2, , bnbe non-negative real numbers. Prove that(

    n

    n 1)n1(

    1

    n

    ni=1

    a2i

    )+

    (1

    n

    ni=1

    bi

    )2

    ni=1

    (a2i + b2i )

    1n .

    11

  • 82. (China Western MO 2013) Let the integer n 2, and the real numbersx1, x2, , xn [0, 1].Prove that

    1k

  • 91. (ELMO Shortlist 2013) Let a, b, c be positive reals, and let

    2013

    3

    a2013 + b2013 + c2013= P

    Prove thatcyc

    ((2P + 12a+b )(2P +

    1a+2b )

    (2P + 1a+b+c )2

    )cyc

    ((P + 14a+b+c )(P +

    13b+3c )

    (P + 13a+2b+c )(P +1

    3a+b+2c )

    ).

    92. (Federal Competition for Advanced students 2013) For a positive integern, let a1, a2, . . . , an be nonnegative real numbers such that for all realnumbers x1 > x2 > . . . > xn > 0 with x1 + x2 + . . . + xn < 1, theinequality

    nk=1

    akx3k < 1

    holds. Show that

    na1 + (n 1)a2 + . . .+ (n j + 1)aj + . . .+ an n2(n+ 1)2

    4.

    93. (Korea 2013) For a positive integer n 2, define set T = {(i, j)|1 i 2. Prove thatz3 + 1 > 1.

    96. (India Regional MO 2013) Given real numbers a, b, c, d, e > 1. Prove that

    a2

    c 1 +b2

    d 1 +c2

    e 1 +d2

    a 1 +e2

    b 1 20

    97. (Iran TST 2013) Let a, b, c be sides of a triangle such that a b c.prove that:

    a(a+ b

    ab) +

    b(a+ cac) +

    c(b+ c

    bc) a+ b+ c

    13

  • 98. (Macedonia JBMO TST 2013) a, b, c > 0 and abc = 1. Prove that

    1

    2(a +

    b +c ) +

    1

    1 + a+

    1

    1 + b+

    1

    1 + c 3

    .

    99. (Turkey JBMO TST 2013) For all positive real numbers a, b, c satisfyinga+ b+ c = 1, prove that

    a4 + 5b4

    a(a+ 2b)+b4 + 5c4

    b(b+ 2c)+c4 + 5a4

    c(c+ 2a) 1 ab bc ca

    100. (Turkey JBMO TST 2013) Let a, b, c, d be real numbers greater than 1and x, y be real numbers such that

    ax + by = (a2 + b2)x and cx + dy = 2y(cd)y/2

    Prove that x < y.

    101. (JBMO 2013) Show that(a+ 2b+

    2

    a+ 1

    )(b+ 2a+

    2

    b+ 1

    ) 16

    for all positive real numbers a and b such that ab 1.102. (Kazakhstan 2013) Find maximum value of

    |a2 bc+ 1|+ |b2 ac+ 1|+ |c2 ba+ 1|when a, b, c are reals in [2; 2].

    103. (Kazakhstan 2013) Consider the following sequence a1 = 1; an =a[n2]

    2 +a[n3]

    3 + . . .+a[n

    n]

    n Prove that n Na2n < 2an

    104. (Korea 2013) Let a, b, c > 0 such that ab+ bc+ ca = 3. Prove thatcyc

    (a+ b)3

    (2(a+ b)(a2 + b2))13

    12

    105. (Kosovo 2013) For all real numbers a prove that

    3(a4 + a2 + 1) (a2 + a+ 1)2

    106. (Kosovo 2013) Which number is bigger 2012

    2012! or 2013

    2013!?

    107. (Macedonia 2013) Let a, b, c be positive real numbers such that a4 + b4 +c4 = 3. Prove that

    9

    a2 + b4 + c6+

    9

    a4 + b6 + c2+

    9

    a6 + b2 + c4 a6 + b6 + c6 + 6

    14

  • 108. (Mediterranean MO 2013) Let x, y, z be positive reals for which:(xy)2 = 6xyz

    Prove that: xx+ yz

    3

    .

    109. (Middle European MO 2013) Let a, b, c be positive real numbers such that

    a+ b+ c =1

    a2+

    1

    b2+

    1

    c2.

    Prove that

    2(a+ b+ c) 3

    7a2b+ 1 +3

    7b2c+ 1 +3

    7c2a+ 1.

    Find all triples (a, b, c) for which equality holds.

    110. (Middle European MO 2013) Let x, y, z, w be nonzero real numbers suchthat x+ y 6= 0, z + w 6= 0, and xy + zw 0. Prove that(

    x+ y

    z + w+z + w

    x+ y

    )1+

    1

    2(xz

    +z

    x

    )1+

    (y

    w+w

    y

    )1111. (Moldova TST 2013) For any positive real numbers x, y, z, prove that

    x

    y+y

    z+z

    x z(x+ y)y(y + z)

    +x(z + y)

    z(x+ z)+y(x+ z)

    x(x+ y)

    112. (Moldova TST 2013) Prove that for any positive real numbers ai, bi, ciwith i = 1, 2, 3,

    (a31+b31+c

    31+1)(a

    32+b

    32+c

    32+1)(a

    33+b

    33+c

    33+1)

    3

    4(a1+b1+c1)(a2+b2+c2)(a3+b3+c3)

    113. (Moldova TST 2013) Consider real numbers x, y, z such that x, y, z > 0.Prove that

    (xy + yz + xz)

    (1

    x2 + y2+

    1

    x2 + z2+

    1

    y2 + z2

    )>

    5

    2.

    114. (Olympic Revenge 2013) Let a, b, c, d to be non negative real numberssatisfying ab+ ac+ ad+ bc+ bd+ cd = 6. Prove that

    1

    a2 + 1+

    1

    b2 + 1+

    1

    c2 + 1+

    1

    d2 + 1 2

    115. (Philippines 2013) Let r and s be positive real numbers such that

    (r + s rs)(r + s+ rs) = rs. Find the minimum value of r + s rs and r + s+ rs

    15

  • 116. (Poland 2013) Let k,m and n be three different positive integers. Provethat (

    k 1k

    )(m 1

    m

    )(n 1

    n

    ) kmn (k +m+ n).

    117. (Rioplatense 2013) Let a, b, c, d be real positive numbers such that

    a2 + b2 + c2 + d2 = 1

    Prove that(1 a)(1 b)(1 c)(1 d) abcd

    118. (Romania 2013) To be considered the following complex and distincta, b, c, d. Prove that the following affirmations are equivalent:

    i) For every z C this inequality takes place :

    |z a|+ |z b| |z c|+ |z d|

    ii) There is t (0, 1) so that c = ta+ (1 t) b si d = (1 t) a+ tb119. (Romania 2013)

    a)Prove that1

    2+

    1

    3+ ...+

    1

    2m< m

    for any m N.b)Let p1, p2, ..., pn be the prime numbers less than 2

    100. Prove that

    1

    p1+

    1

    p2+ ...+

    1

    pn< 10

    120. (Romania TST 2013) Let n be a positive integer and let x1, . . ., xn bepositive real numbers. Show that:

    min

    (x1,

    1

    x1+ x2, , 1

    xn1+ xn,

    1

    xn

    ) 2 cos pi

    n+ 2 max

    (x1,

    1

    x1+ x2, , 1

    xn1+ xn,

    1

    xn

    ).

    121. (Serbia 2013) Find the largest constant K R with the following prop-erty: if a1, a2, a3, a4 > 0 are numbers satisfying

    a2i + a2j + a

    2k 2(aiaj + ajak + akai)

    for every 1 i < j < k 4, then

    a21 + a22 + a

    23 + a

    24 K(a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4).

    122. (Southeast MO 2013) Let a, b be real numbers such that the equationx3 ax2 + bx a = 0 has three positive real roots . Find the minimum of

    2a3 3ab+ 3ab+ 1

    16

  • 123. (Southeast MO 2013) n 3 is a integer. , , (0, 1). For everyak, bk, ck 0(k = 1, 2, . . . , n) with

    nk=1

    (k + )ak ,nk=1

    (k + )bk ,nk=1

    (k + )ck

    we always havenk=1

    (k + )akbkck

    Find the minimum of

    124. (Todays Calculation of Integrals 2013) Let m, n be positive integer suchthat 2 m < n.(1) Prove the inequality as follows.

    n+ 1mm(n+ 1)

    0.

    Given any spooky sequence a1, a2, a3, . . . , prove that

    20133a1 + 20123a2 + 2011

    3a3 + + 23a2012 + a2013 < 12345.

    132. (Uzbekistan 2013) Let real numbers a, b such that a b 0. Prove thata2 + b2 +

    3a3 + b3 +

    4a4 + b4 3a+ b.

    133. (Uzbekistan 2013) Let x and y are real numbers such that x2y2+2yx2+1 =0. If

    S =2

    x2+ 1 +

    1

    x+ y(y + 2 +

    1

    x)

    find

    (a)maxS

    (b) minS.

    134. (Albania TST 2012) Find the greatest value of the expression

    1

    x2 4x+ 9 +1

    y2 4y + 9 +1

    z2 4z + 9where x, y, z are nonnegative real numbers such that x+ y + z = 1.

    135. (All-Russian MO 2012) The positive real numbers a1, . . . , an and k aresuch that

    a1 + + an = 3ka21 + + a2n = 3k2

    anda31 + + a3n > 3k3 + k

    Prove that the difference between some two of a1, . . . , an is greater than1.

    18

  • 136. (All-Russian MO 2012) Any two of the real numbers a1, a2, a3, a4, a5 differby no less than 1. There exists some real number k satisfying

    a1 + a2 + a3 + a4 + a5 = 2k

    a21 + a22 + a

    23 + a

    24 + a

    25 = 2k

    2

    Prove that k2 253 .137. (APMO 2012) Let n be an integer greater than or equal to 2. Prove that

    if the real numbers a1, a2, , an satisfy a21 + a22 + + a2n = n, then1i 0.

    Show that

    a+ b+ c abcab+ bc+ ac

    4

    143. (China Girls Math Olympiad 2012) Let a1, a2, . . . , an be non-negative realnumbers. Prove that

    1

    1 + a1+

    a1(1 + a1)(1 + a2)

    +a1a2

    (1 + a1)(1 + a2)(1 + a3)+ + a1a2 an1

    (1 + a1)(1 + a2) (1 + an) 1.

    144. (China 2012) Let f(x) = (x + a)(x + b) where a, b > 0. For any realsx1, x2, . . . , xn 0 satisfying x1 + x2 + . . .+ xn = 1, find the maximum of

    F =

    1i

  • 145. (China 2012) Suppose that x, y, z [0, 1]. Find the maximal value of theexpression

    |x y|+|y z|+

    |z x|.

    146. (china TST 2012) Complex numbers xi, yi satisfy |xi| = |yi| = 1 for i =1, 2, . . . , n. Let x = 1n

    ni=1

    xi, y =1n

    ni=1

    yi and zi = xyi + yxi xiyi. Provethat

    ni=1

    |zi| n.

    147. (China TST 2012) Given two integers m,n which are greater than 1. r, sare two given positive real numbers such that r < s. For all aij 0 whichare not all zeroes,find the maximal value of the expression

    f =(n

    j=1(m

    i=1 asij)

    rs )

    1r

    (m

    i=1)n

    j=1 arij)

    sr )

    1s

    .

    148. (China TST 2012) Given an integer k 2. Prove that there exist kpairwise distinct positive integers a1, a2, . . . , ak such that for any non-negative integers b1, b2, . . . , bk, c1, c2, . . . , ck satisfying a1 bi 2ai, i =1, 2, . . . , k and

    ki=1 b

    cii 0 : abc = 1 prove that

    a3 + b3 + c3 + 6 (a+ b+ c)2

    180. (Puerto rico TST 2012) Let x, y and z be consecutive integers such that

    1

    x+

    1

    y+

    1

    z>

    1

    45.

    Find the maximum value of

    x+ y + z

    181. (Regional competition for advanced students 2012) Prove that the inequal-ity

    a+ a3 a4 a6 < 1holds for all real numbers a.

    182. (Romania 2012) Prove that if n 2 is a natural number and x1, x2, . . . , xnare positive real numbers, then:

    4

    (x31 x32x1 + x2

    +x32 x33x2 + x3

    + . . .+x3n1 x3nxn1 + xn

    +x3n x31xn + x1

    )

    (x1 x2)2 + (x2 x3)2 + . . .+ (xn1 xn)2 + (xn x1)2

    183. (Romania 2012) Let a , b and c be three complex numbers such thata+ b+ c = 0 and |a| = |b| = |c| = 1 . Prove that:

    3 |z a|+ |z b|+ |z c| 4,for any z C , |z| 1 .

    184. (Romania 2012) Let a, b R with 0 < a < b . Prove that:a)

    2ab x+ y + z

    3+

    ab3xyz

    a+ b

    for x, y, z [a, b] .b)

    {x+ y + z3

    +ab

    3xyz|x, y, z [a, b]} = [2

    ab, a+ b] .

    185. (Romania TST 2012) Let k be a positive integer. Find the maximumvalue of

    a3k1b+ b3k1c+ c3k1a+ k2akbkck,

    where a, b, c are non-negative reals such that a+ b+ c = 3k.

    24

  • 186. (Romania TST 2012) Let f, g : Z [0,) be two functions such thatf(n) = g(n) = 0 with the exception of finitely many integers n. Defineh : Z [0,) by

    h(n) = max{f(n k)g(k) : k Z}.Let p and q be two positive reals such that 1/p+ 1/q = 1. Prove that

    nZ

    h(n) (nZ

    f(n)p

    )1/p(nZ

    g(n)q

    )1/q.

    187. (South East MO 2012) Let a, b, c, d be real numbers satisfying inequality

    a cosx+ b cos 2x+ c cos 3x+ d cos 4x 1holds for any real number x. Find the maximal value of

    a+ b c+ dand determine the values of a, b, c, d when that maximum is attained.

    188. (South East MO 2012) Find the least natural number n, such that thefollowing inequality holds:

    n 20112012

    n 2012

    2011