alkyl halides react with nucleophiles and bases · 12/3/15 1 chapter 11- reactions of alkyl...

26
12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Ashley Piekarski, Ph.D. Alkyl Halides React with Nucleophiles and Bases Alkyl halides are polarized at the carbonhalide bond, making the carbon electrophilic Nucleophiles will replace the halide in CX bonds of many alkyl halides(reacGon as Lewis base) Nucleophiles that are Brønsted bases produce eliminaGon

Upload: others

Post on 02-Mar-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

1  

Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

Ashley  Piekarski,  Ph.D.  

Alkyl Halides React with Nucleophiles and Bases

•  Alkyl  halides  are  polarized  at  the  carbon-­‐halide  bond,  making  the  carbon  electrophilic  

•  Nucleophiles  will  replace  the  halide  in  C-­‐X  bonds  of  many  alkyl  halides(reacGon  as  Lewis  base)  

•  Nucleophiles  that  are  Brønsted  bases  produce  eliminaGon  

Page 2: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

2  

Why do I care, Dr. P?

•  Nucleophilic  subsGtuGon,  base  induced  eliminaGon  are  among  most  widely  occurring  and  versaGle  reacGon  types  in  organic  chemistry  

•  ReacGons  will  be  examined  closely  to  see:  -­‐  How  they  occur  -­‐  What  their  characterisGcs  are  -­‐  How  they  can  be  used  

11.1 The Discovery of Nucleophilic Substitution Reactions

•  In  1896,  Walden  showed  that  (-­‐)-­‐malic  acid  could  be  converted  to  (+)-­‐malic  acid  by  a  series  of  chemical  steps  with  achiral  reagents  

•  This  established  that  op#cal  rota#on  was  directly  related  to  chirality  and  that  it  changes  with  chemical  altera#on  •  Reaction of (-)-malic acid with PCl5 gives (+)-

chlorosuccinic acid •  Further reaction with wet silver oxide gives

(+)-malic acid •  The reaction series starting with (+) malic acid

gives (-) acid

Page 3: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

3  

Reactions of the Walden Inversion

What  sort  of  observaGons  can  we  make  about  the  reacGons  

Walden  performed?  

Significance of the Walden Inversion

•  The  reacGons  alter  the  array  at  the  chirality  center  

•  The  reacGons  involve  subsGtuGon  at  that  center  

•  Therefore,  nucleophilic  subsGtuGon  can  invert  the  configuraGon  at  a  chirality  center  

Page 4: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

4  

11.2 The SN2 Reaction

•  ReacGon  is  with  inversion  at  reacGng  center  •  Follows  second  order  reacGon  kineGcs  

•  the rate is linearly dependent on the concentrations of two species

•  Ingold  nomenclature  to  describe  characterisGc  step:  •  S=substitution •  N (subscript) = nucleophilic •  2 = both nucleophile and substrate in

characteristic step (bimolecular)

The SN2 Reaction-Mechanism

Page 5: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

5  

Kinetics of Nucleophilic Substitution

•  Rate  (R)  is  change  in  concentraGon  with  Gme  •  Depends  on  concentraGon(s),  temperature,  inherent  

nature  of  reacGon  (barrier  on  energy  surface)  •  A  rate  law  describes  relaGonship  between  the  

concentraGon  of  reactants  and  conversion  to  products  

•  A  rate  constant  (k)  is  the  proporGonality  factor  between  concentraGon  and  rate  

 

Example:  for  S  converGng  to  P  

R  =  d[S]/dt  =  k  [S]  

Reaction Kinetics

•  The  study  of  rates  of  reacGons  is  called  kine#cs  

•  Rates  decrease  as  concentraGons  decrease  but  the  rate  constant  does  not  

•  Rate  units:  [concentraGon]/Gme  such  as  mol/(L  x  s)  

•  The  rate  law  is  a  result  of  the  mechanism  •  The  order  of  a  reacGon  is  sum  of  the  exponents  of  the  concentraGons  in  the  rate  law  –  the  example  is  second  order  

Page 6: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

6  

SN2 Process

•  The  reacGon  involves  a  transiGon  state  in  which  both  reactants  are  together  

SN2 Transition State

•  The  transiGon  state  of  an  SN2  reacGon  has  a  planar  arrangement  of  the  carbon  atom  and  the  remaining  three  groups  

Page 7: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

7  

11.3 Characteristics of the SN2 Reaction

•  SensiGve  to  steric  effects  •  Why do you think that is?

•  Methyl  halides  are  most  reacGve  •  Primary  are  next  most  reacGve  •  Secondary  might  react  •  TerGary  are  unreacGve  by  this  path  •  No  reacGon  at  C=C  (vinyl  halides)  

13  

Reactant and Transition State Energy Levels Affect Rate

14  

Higher  reactant  energy  level  (red  curve)  =  faster  reacGon  (smaller  ΔG‡).  

Higher  transiGon  state  energy  level  (red  curve)  =  slower  reacGon  (larger  ΔG‡).  

Page 8: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

8  

Steric Effects on SN2 Reactions

What  are  the  subsGtuGons  of  these  substrates?  How  would  you  order  the  reacGvity?  

Order of Reactivity in SN2

•  The  more  alkyl  groups  connected  to  the  reacGng  carbon,  the  slower  the  reacGon  

Page 9: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

9  

The Nucleophile

•  Neutral  or  negaGvely  charged  Lewis  base  •  ReacGon  increases  coordinaGon  at  nucleophile  

•  Neutral nucleophile acquires positive charge •  Anionic nucleophile becomes neutral

List of Nucleophiles

What  causes  difference  in  Nucleophilicity?    depends  on  substrate,  solvent,  and  reactant  concentra#ons  

Page 10: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

10  

Relative Reactivity of Nucleophiles

•  More  basic  nucleophiles  react  faster    

•  Beher  nucleophiles  are  lower  in  a  column  of  the  periodic  table  •  Why do you think that is?

•  Anions  are  usually  more  reacGve  than  neutrals  •  These types of reactions are generally ran

under basic conditions

The Leaving Group

•  A  good  leaving  group  reduces  the  barrier  to  a  reacGon  •  Stable  anions  that  are  weak  bases  are  usually  excellent  

leaving  groups  and  can  delocalize  charge  

Page 11: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

11  

The Solvent

•  Solvents  that  can  donate  hydrogen  bonds  (-­‐OH  or  –NH)  slow  SN2  reacGons  by  associaGng  with  reactants  

•  Energy  is  required  to  break  interacGons  between  reactant  and  solvent  

•  Polar  aproGc  solvents  (no  NH,  OH,  SH)  form  weaker  interacGons  with  substrate  and  permit  faster  reacGon  

Summary SN2

•  What  are  good  substrates?  

•  What  are  good  nucleophiles?  

•  What  makes  a  good  leaving  group?  

•  What  is  a  good  solvent?  

Page 12: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

12  

11.4 The SN1 Reaction

•  TerGary  alkyl  halides  react  rapidly  in  proGc  solvents  by  a  mechanism  that  involves  departure  of  the  leaving  group  prior  to  addiGon  of  the  nucleophile  

•  Called  an  SN1  reacGon  –  occurs  in  two  disGnct  steps  while  SN2  occurs  with  both  events  in  same  step  

•  If  nucleophile  is  present  in  reasonable  concentraGon  (or  it  is  the  solvent),  then  ionizaGon  is  the  slowest  step    

The SN1 Reaction-Mechanism

Page 13: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

13  

SN1 Energy Diagram

•  Rate-­‐determining  step  is  formaGon  of  carbocaGon  

R  =  k[RX]  

What  is  missing  from  the  rate  law?  

Rate-Limiting Step

•  The  overall  rate  of  a  reacGon  is  controlled  by  the  rate  of  the  slowest  step  

•  The  rate  depends  on  the  concentraGon  of  the  species  and  the  rate  constant  of  the  step  

•  The  highest  energy  transiGon  state  point  on  the  diagram  is  that  for  the  rate  determining  step  (which  is  not  always  the  highest  barrier)  

Page 14: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

14  

Stereochemistry of SN1 Reaction

•  The  planar  intermediate  leads  to  loss  of  chirality  •  A free carbocation is achiral

•  Product  is  racemic  

SN1 in Reality

•  CarbocaGon  is  biased  to  react  on  side  opposite  leaving  group  

•  Suggests  reacGon  occurs  with  carbocaGon  loosely  associated  with  leaving  group  during  nucleophilic  addiGon  

•  AlternaGve  that  SN2  is  also  occurring  is  unlikely  

Page 15: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

15  

Not completely racemic products

11.5 Characteristics of the SN1 Reaction

Substrate  •  TerGary  alkyl  halide  is  most  reacGve  by  this  mechanism  

•  Controlled by stability of “Any factor that stabilizes a high-energy intermediate stabilizes transition state leading to that intermediate”

Page 16: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

16  

Allylic and Benzylic Halides

•  Allylic  and  benzylic  intermediates  stabilized  by  delocalizaGon  of  charge  (Draw  the  resonance  structures  for  the  allyl  carbocaGon  and  the  benzyl  carbocaGon)  •  Primary allylic and benzylic are also more reactive in

the SN2 mechanism

Effect of Leaving Group on SN1

•  CriGcally  dependent  on  leaving  group  •  Reactivity: the larger halides ions are

better leaving groups •  Under  acidic  condiGons,  OH  of  an  alcohol  is  protonated  and  leaving  group  is  H2O,  which  is  sGll  less  reacGve  than  halide  

•  p-­‐Toluenesulfonate  (TosO-­‐)  is  excellent  leaving  group  

Page 17: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

17  

Nucleophiles in SN1

•  Since  nucleophilic  addiGon  occurs  a9er  formaGon  of  carbocaGon,  reacGon  rate  is  not  normally  affected  by  nature  or  concentraGon  of  nucleophile  

Solvent in SN1

•  How  do  you  think  solvent  plays  a  role  in  SN1  reacGons?  •  Stabilizing  carbocaGon  also  stabilizes  associated  transiGon  

state  and  controls  rate  •  Solvent  effects  in  the  SN1  reacGon  are  due  largely  to  

stabilizaGon  or  destabilizaGon  of  the  transiGon  state  

Page 18: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

18  

Polar Solvents Promote Ionization

•  Polar,  proGc  and  unreacGve  Lewis  base  solvents  facilitate  formaGon  of  R+      

•  Solvent  polarity  is  measured  as  dielectric  polariza7on  (P)    •  Nonpolar solvents have low P •  Polar solvents have high P values

Summary SN1

•  What  are  good  substrates?  

•  What  are  good  nucleophiles?  

•  What  makes  a  good  leaving  group?  

•  What  is  a  good  solvent?  

Page 19: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

19  

11.7 Elimination Reactions of Alkyl Halides: Zaitsev’s Rule

•  EliminaGon  is  an  alternaGve  pathway  to  subsGtuGon  •  Opposite  of  addiGon  •  Generates  an  alkene  •  Can  compete  with  subsGtuGon  and  decrease  yield,  

especially  for  SN1  processes  

Zaitsev’s Rule for Elimination Reactions

•  In  the  eliminaGon  of  HX  from  an  alkyl  halide,  the  more  highly  subsGtuted  alkene  product  predominates    

Page 20: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

20  

Mechanisms of Elimination Reactions

•  Ingold  nomenclature:  E  –  “eliminaGon”  •  E1:  X-­‐  leaves  first  to  generate  a  carbocaGon  

•  a base abstracts a proton from the carbocation •  E2:  Concerted  transfer  of  a  proton  to  a  base  and  

departure  of  leaving  group  

E1 Mechanism

Page 21: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

21  

E2 Mechanism

11.8 The E2 Reaction and the Deuterium Isotope Effect

•  What  is  the  rate  law  for  the  E2  reacGon?  

•  How  does  the  rate  of  the  reacGon  change  between  hydrogen  and  deuterium?  

Page 22: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

22  

Geometry of Elimination – E2

•  AnGperiplanar  allows  orbital  overlap  and  minimizes  steric  interacGons  

Periplanar-­‐  all  four  reacGng  atoms  (the  hydrogen,  the  two  carbons,  and  the  leaving  group)  lie  in  the  same  plane  

E2 Stereochemistry

•  Overlap  of  the  developing  sp3  σ  orbital  in  the  transiGon  state  requires  periplanar  geometry,  anG  arrangement  

Page 23: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

23  

Predicting Product

•  E2  is  stereospecific  •  Meso-­‐1,2-­‐dibromo-­‐1,2-­‐diphenylethane  with  base  gives  cis  

1,2-­‐diphenyl  •  RR  or  SS  1,2-­‐dibromo-­‐1,2-­‐diphenylethane  gives  trans  1,2-­‐

diphenyl  

11.9 The E2 Reaction and Cyclohexane Formation

•  Abstracted  proton  and  leaving  group  should  align  trans-­‐diaxial  to  be  anG  periplanar  (app)  in  approaching  transiGon  state    

•  Equatorial  groups  are  not  in  proper  alignment  

Page 24: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

24  

E2 and cyclohexanes

11.10 The E1and E1cB Reactions

•  Competes  with  SN1  and  E2  at  3°  centers  •  V  =  k  [RX],  same  as  SN1  

Page 25: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

25  

E1 Mechanism

shows  no  deuterium  isotope  effect!  

Comparing E1 and E2

•  Strong  base  is  needed  for  E2  but  not  for  E1  •  E2  is  stereospecifc,  E1  is  not  •  E1  gives  Zaitsev  orientaGon  

Page 26: Alkyl Halides React with Nucleophiles and Bases · 12/3/15 1 Chapter 11- Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations AshleyPiekarski,Ph.D.& Alkyl Halides

12/3/15  

26  

11.12 Summary of Reactivity: SN1, SN1, E1,E1cB, E2

• Primary  alkyl  halides:  SN2  subsGtuGon  occurs  if  a  good  nucleophile  is  used,  E2  

eliminaGon  occurs  if  a  strong  base  is  used,  E1cB  eliminaGon  occurs  if  the  leaving  

group  is  two  carbons  away  from  a  carbonyl  group  

• Secondary  alkyl  halides:  SN2  subsGtuGon  occurs  if  a  weakly  basic  nucelophile  is  used  in  a  polar  aproGc  solvent,  E2  eliminaGon  predominates  if  a  strong  base  is  

used,  E1cB  eliminaGon  occurs  if  the  leaving  group  is  two  carbons  away  from  a  

carbonyl  group.    Secondary  allylic  and  benzylic  alkyl  halides  can  also  undergo  SN1  

and  E1  reacGons  if  a  weakly  basic  nucleophile  is  used  in  a  proGc  solvent  

• Ter7ary  alkyl  halides:  E2  eliminaGon  occurs  when  a  base  is  used,  but  SN1  and  E1  

occur  together  under  neutral  condiGons.  ,  E1cB  eliminaGon  occurs  if  the  leaving  

group  is  two  carbons  away  from  a  carbonyl  group