all bats are special, but stenodermatines are more special than others

1
All bats are special, but stenoderma3nes are more special than others Ecological and taxonomic diversity of bats suggest classical adap7ve radia7on But specia7on analyses reveal only one node in en7re radia7on shi:s to higher specia7on: the base of Stenoderma7nae Rise in specia7on is not linked to abio7c drivers of specia7on such as glacial cycles Instead mul7ple bio7c adapta7ons of Stenoderma7nae, including: Increases in rela7ve frequency of olfactory receptor gene subfamilies 1/3/7 and 2/13 Presence of blue-light opsin genes and cones New skull architecture enabling high bite force despite small size Liliana M. Dávalos 1 *, Elizabeth R. Dumont 2 , Danny Rojas 3 , Karen E. Sears 4 , Laurel R. Yohe 1 1 Department of Ecology and Evolu7on, SUNY Stony Brook, NY, USA; 2 University of MassachuseYs, Amherst, USA; 3 Universidad Javeriana, Cali, Colombia; 4 University of Illinois, Urbana-Champaign, USA § Stenoderma7nes eat at lower trophic level § Many adapta7ons to frugivorous, fig-based niche § Sensory, skull, bite force Figure 2. Summary phylogeny of 150 species of phyllostomid bats illustra7ng diversity in lineages and morphology among subfamilies. Branch lengths are propor7onal to 7me and grey bars indicate 95% confidence intervals (CI) around node dates. The yellow arrow indicates the node where the largest shi: in species diversifica7on rate was found. Clockwise from top species are: Lonchorhina aurita, Lonchophylla robusta, Musonycteris harrisoni, Glyphonycteris silvestris, Carollia castanea, Sturnira lilium, Sphaeronycteris toxophyllum, Ar<beus jamaicensis, Uroderma bilobatum Vampyressa pusilla, Platyrrhinus umbratus, Noc<lio albiventris (outgroup), Micronycteris hirsuta, Desmodus rotundus, Lophostoma silvicolum. Figure 3. Lineage through 7me (LTT) plot for the posterior sample of 7me- calibrated trees (gray). The LTT plot of the MCC tree is in black. The tree is shown in the background along with es7mated specia7on rates along its branches, note jump for Stenoderma7nae. Figure 1. Heat map illustra7ng the normalized level of OR genes in each OR gene family within the Phyllostomidae. Blue represents a low frequency of OR genes, whereas red represents a high level. Data shown for both func7onal and pseudogenes, Stenoderma7nae are shown at the boYom. Figure 5. Cones and opsins detected in adult bats in superfamily noc7lionoidea. Detec7ng the short-wave opsin does not guarantee making short-wave cones. The phylogeny suggests convergent loss of short-wave vision. The two stenoderma7nes (le:) show both short-wave opsins and cones. Figure 7. PC1 as a predictor of ln trophic level (a, mean coefficient = 0.193 ± 0.015) and ln bite force (b, mean coefficient = −0.327 ± 0.007). Symbols represent species means, and the size of the symbols indicates the magnitude of the significant and independent contribu7ons of PC2 to ln trophic level (a, mean coefficient = −0.081 ± 0.015) and ln head height to ln bite force (b, mean coefficient = 2.826 ± 0.034). The rela7onships were modelled using GLS fiYed with ML and phylogeny-based correla7on structures of the errors. The rela7onship between skull morphology and PC1 scores are illustrated from le: to right by: Centurio senex, Carollia perspicillata, Phyllostomus elongatus, Micronycteris hirsuta, Choeronycteris mexicana. Stenoderma7nes fall toward lower PC1 scores. Figure 6. Visual comparison of the shapes of the STL (light blue) and engineering (dark blue) models for the base model Carollia perspcillata (A) and the morphed models for Glossophaga soricina (B), and Centurio senex (C). Stenoderma7nes fall between B and C. Figure 4. Best-fit models of specia7on as a func7on of trophic level evolu7on for 100 phylogenies. The nonlinear model is shown (mean highest specia7on rate: 0.409 ± 0.028 aYained at −0.030 ± 0.011 on the ln trophic level axis; mean lowest specia7on rate: 0.118 ± 0.008), stenoderma7nes have the lowest trophic levels. References: Dumont, E. R. et al. Proc R Soc B 279, 1797-1805, doi:10.1098/rspb. 2011.2005 (2012). Dumont, E. R. et al. Evolu7on 68, 1436-1449, doi:10.1111/evo.12358 (2014). Hayden, S. et al. Mol Biol Evol 31, 917-927, doi:10.1093/molbev/msu043 (2014). Rojas, D., Warsi, O. M. & Dávalos, L. M. Syst Biol 65, 432–448, doi:10.1093/ sysbio/syw011 (2016).

Upload: liliana-davalos

Post on 21-Mar-2017

9 views

Category:

Science


2 download

TRANSCRIPT

Page 1: All bats are special, but stenodermatines are more special than others

Allbatsarespecial,butstenoderma3nesaremorespecialthanothers

•  Ecologicalandtaxonomicdiversityofbatssuggestclassicaladap7veradia7on•  Butspecia7onanalysesrevealonlyonenodeinen7reradia7onshi:stohigherspecia7on:thebaseof

Stenoderma7nae•  Riseinspecia7onisnotlinkedtoabio7cdriversofspecia7onsuchasglacialcycles•  Insteadmul7plebio7cadapta7onsofStenoderma7nae,including:

•  Increasesinrela7vefrequencyofolfactoryreceptorgenesubfamilies1/3/7and2/13•  Presenceofblue-lightopsingenesandcones•  Newskullarchitectureenablinghighbiteforcedespitesmallsize

LilianaM.Dávalos1*,ElizabethR.Dumont2,DannyRojas3,KarenE.Sears4,LaurelR.Yohe11DepartmentofEcologyandEvolu7on,SUNYStonyBrook,NY,USA;2UniversityofMassachuseYs,Amherst,USA;3UniversidadJaveriana,Cali,Colombia;4UniversityofIllinois,Urbana-Champaign,USA

§  Stenoderma7neseatatlowertrophiclevel

§  Manyadapta7onstofrugivorous,fig-basedniche

§  Sensory,skull,biteforce

Figure2.Summaryphylogenyof150speciesofphyllostomidbatsillustra7ngdiversityinlineagesandmorphologyamongsubfamilies.Branchlengthsarepropor7onalto7meandgreybarsindicate95%confidenceintervals(CI)aroundnodedates.Theyellowarrowindicatesthenodewherethelargestshi:inspeciesdiversifica7onratewasfound.Clockwisefromtopspeciesare:Lonchorhinaaurita,Lonchophyllarobusta,Musonycterisharrisoni,Glyphonycterissilvestris,Carolliacastanea,Sturniralilium,Sphaeronycteristoxophyllum,Ar<beusjamaicensis,UrodermabilobatumVampyressapusilla,Platyrrhinusumbratus,Noc<lioalbiventris(outgroup),Micronycterishirsuta,Desmodusrotundus,Lophostomasilvicolum.

Figure3.Lineagethrough7me(LTT)plotfortheposteriorsampleof7me-calibratedtrees(gray).TheLTTplotoftheMCCtreeisinblack.Thetreeisshowninthebackgroundalongwithes7matedspecia7onratesalongitsbranches,notejumpforStenoderma7nae.

Figure1.Heatmapillustra7ngthenormalizedlevelofORgenesineachORgenefamilywithinthePhyllostomidae.BluerepresentsalowfrequencyofORgenes,whereasredrepresentsahighlevel.Datashownforbothfunc7onalandpseudogenes,Stenoderma7naeareshownattheboYom.

Figure5.Conesandopsinsdetectedinadultbatsinsuperfamilynoc7lionoidea.Detec7ngtheshort-waveopsindoesnotguaranteemakingshort-wavecones.Thephylogenysuggestsconvergentlossofshort-wavevision.Thetwostenoderma7nes(le:)showbothshort-waveopsinsandcones.

Figure7.PC1asapredictoroflntrophiclevel(a,meancoefficient=0.193±0.015)andlnbiteforce(b,meancoefficient=−0.327±0.007).Symbolsrepresentspeciesmeans,andthesizeofthesymbolsindicatesthemagnitudeofthesignificantandindependentcontribu7onsofPC2tolntrophiclevel(a,meancoefficient=−0.081±0.015)andlnheadheighttolnbiteforce(b,meancoefficient=2.826±0.034).Therela7onshipsweremodelledusingGLSfiYedwithMLandphylogeny-basedcorrela7onstructuresoftheerrors.Therela7onshipbetweenskullmorphologyandPC1scoresareillustratedfromle:torightby:Centuriosenex,Carolliaperspicillata,Phyllostomuselongatus,Micronycterishirsuta,Choeronycterismexicana.Stenoderma7nesfalltowardlowerPC1scores.

Figure6.VisualcomparisonoftheshapesoftheSTL(lightblue)andengineering(darkblue)modelsforthebasemodelCarolliaperspcillata(A)andthemorphedmodelsforGlossophagasoricina(B),andCenturiosenex(C).Stenoderma7nesfallbetweenBandC.

Figure4.Best-fitmodelsofspecia7onasafunc7onoftrophiclevelevolu7onfor100phylogenies.Thenonlinearmodelisshown(meanhighestspecia7onrate:0.409±0.028aYainedat−0.030±0.011onthelntrophiclevelaxis;meanlowestspecia7onrate:0.118±0.008),stenoderma7neshavethelowesttrophiclevels.

References:Dumont,E.R.etal.ProcRSocB279,1797-1805,doi:10.1098/rspb.2011.2005(2012).Dumont,E.R.etal.Evolu7on68,1436-1449,doi:10.1111/evo.12358(2014).Hayden,S.etal.MolBiolEvol31,917-927,doi:10.1093/molbev/msu043(2014).Rojas,D.,Warsi,O.M.&Dávalos,L.M.SystBiol65,432–448,doi:10.1093/sysbio/syw011(2016).