alternativas de rigidizacion de pórticos de acero

76
UNIVERSIDAD DEL VALLE Santiago de Cali – 14 de febrero de 2002 – 3:00 PM Auditorio – Edificio 350 P P Ó Ó RTICOS ESPACIALES DE RTICOS ESPACIALES DE ACERO ACERO ESTRUCTURAL SOMETIDOS A CARGA ESTRUCTURAL SOMETIDOS A CARGA S S Í Í SMICA SMICA Julián Alberto Toro Arzayús Candidato a Grado Ing. Gilberto Areiza Palma, M.Sc. Director Ing. Patricia Guerrero Zúñiga, Ph.D Ing. Peter Thomson, Ph.D Jurados

Upload: marioestructura

Post on 16-Feb-2015

31 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Alternativas de  Rigidizacion de Pórticos de Acero

UNIVERSIDAD DEL VALLESantiago de Cali – 14 de febrero de 2002 – 3:00 PM

Auditorio – Edificio 350

PPÓÓRTICOS ESPACIALES DERTICOS ESPACIALES DE ACERO ESTRUCTURAL ACERO ESTRUCTURAL

SOMETIDOS A CARGA SSOMETIDOS A CARGA SÍÍSMICASMICA

Julián Alberto Toro ArzayúsCandidato a Grado

Ing. Gilberto Areiza Palma, M.Sc.Director

Ing. Patricia Guerrero Zúñiga, Ph.DIng. Peter Thomson, Ph.D

Jurados

Page 2: Alternativas de  Rigidizacion de Pórticos de Acero

INTRODUCCIÓNINTRODUCCIÓN Reciente desarrollo de las construcciones metálicas para edificios en nuestro país.

Interés de los profesionales afines con el tema, por conocer más sobre los sistemas estructurales comúnmente utilizados.

Los temas que acaparan el mayor interés son:

Comportamiento Estructural.

Implicaciones económicas que conlleva satisfacer los requisitos de la Norma NSR98.

Page 3: Alternativas de  Rigidizacion de Pórticos de Acero

INTRODUCCIÓN

A lo largo del presente trabajo de grado se tocaron dos temáticas referentes a estructuras de acero:

1. Alternativas de Rigidización de Pórticos sometidos a Carga Sísmica

2. Metodologías de Análisis Sísmico

Revisión de los sistemas estructurales.Resultados de un estudio comparativo entre diferentes metodologías de rigidización.

Principios fundamentales.

Resultados de un estudio comparativo de dos de las técnicas más utilizadas para la determinación del efecto sísmico.

Page 4: Alternativas de  Rigidizacion de Pórticos de Acero

OBJETIVOSOBJETIVOS Orientar al diseñador en la selección del sistema estructural que le permita satisfacer los requisitos de rigidez con COSTOS razonablemente bajos a partir de un estudio comparativo entre diversas alternativas de rigidización para pórticos de acero estructural.

Realizar un estudio comparativo entre dos de las metodologías más utilizadas en el medio para la determinación de las fuerzas sísmicas de diseño, mostrando sus diferencias y las implicaciones a que conlleva su uso en el diseño.

Page 5: Alternativas de  Rigidizacion de Pórticos de Acero

ALTERNATIVAS DE ALTERNATIVAS DE RIGIDIZACIÓN DE PÓRTICOS RIGIDIZACIÓN DE PÓRTICOS

ESPACIALES DE ACERO ESPACIALES DE ACERO ESTRUCTURAL SOMETIDOS ESTRUCTURAL SOMETIDOS

A CARGA SÍSMICA A CARGA SÍSMICA

PRIMERA PARTE

Page 6: Alternativas de  Rigidizacion de Pórticos de Acero

ANTECEDENTESANTECEDENTESEl reciente desarrollo de edificaciones construidas con acero estructural en el país se ve enmarcado por la herencia recibida de los diseños tradicionales de concreto reforzado: Pórticos Resistentes a Momento

Universidad Nacional de Manizales

Page 7: Alternativas de  Rigidizacion de Pórticos de Acero

Límites bajos de DERIVAS de piso.

Diseños controlados por RIGIDEZ del sistema estructural en vez de RESISTENCIA de los elementos estructurales.

Alternativas diferentes a Pórticos Resistentes a Momento.

ANTECEDENTES

Page 8: Alternativas de  Rigidizacion de Pórticos de Acero

Luces de 8200mm en el sentido longitudinal; una luz central de 3800mm y luces de 7600mm en el sentido transversal de la edificación. 

Se trabajó con edificios de 5, 10 y 15 pisos, con una altura estructural de entrepisos de 3000mm.

METODOLOGÍAMETODOLOGÍA

Page 9: Alternativas de  Rigidizacion de Pórticos de Acero

CARGAS DE ENTREPISOS

CARGA MUERTA 4.5 KN/m2

Steel Deck 2.1 KN/m2

Dry Wall 1.0 KN/m2

Acabados e instalaciones 1.4 KN/m2

CARGA VIVA (NSR98-B.4.2) 1.8 KN/m2

CARGAS DE CUBIERTA CARGA MUERTA 3.4 KN/m2

Steel Deck 2.1 KN/m2

Acabados e instalaciones 1.3 KN/m2

CARGA VIVA (NSR98-B.4.2) 1.8 KN/m2

El avaluó de cargas corresponde al caso típico de un edificio de apartamentos: Entrepiso y Cubierta tipo Steel Deck, Muros y Particiones livianas tipo Dry Wall, Acabados y Carga Viva de vivienda.

El uso de estas edificaciones se consideró de tipo RESIDENCIAL.

METODOLOGÍA

Page 10: Alternativas de  Rigidizacion de Pórticos de Acero

METODOLOGÍA

En este estudio se trabajó con perfiles americanos de alma llena tipo W de acero estructural A36 y con concreto de resistencia a la compresión de 21MPa.

Acero estructural calidad NTC 1920 (ASTM A36)

Densidad volumétrica s = 7850.0 Kg/m3

Módulo de Elasticidad E = 200000.0 MPa

Módulo de Poisson = 0.27

Esfuerzo de fluencia mínimo especificado

Fy = 253.0 MPa

Resistencia a tensión mínima especificada

Fu = 408.0 MPa

Concreto de 21.0 MPa.

Densidad volumétrica c = 2400.0 Kg/m3

Módulo de Elasticidad E = 18000.0 MPa

Módulo de Poisson = 0.20

Resistencia nominal a compresión f’c = 21.0 MPa

Page 11: Alternativas de  Rigidizacion de Pórticos de Acero

Las estructuras base, se PREDIMENSIONARON para carga vertical teniendo en cuenta las provisiones básicas para pórticos resistentes a momento con capacidad especial de disipación de energía que contemplan el Capitulo F.3.de la NSR98 y la publicación de Instituto Americano de Construcción en Acero (AISC) “Seismic Provisions for Structural Steel Buildings”

METODOLOGÍA

Page 12: Alternativas de  Rigidizacion de Pórticos de Acero

Se construyeron 1620 modelos matemáticos para ocho alternativas de rigidización aplicando el Método de los Elementos Finitos (FEM) utilizando el programa comercial SAP2000.

METODOLOGÍA

Page 13: Alternativas de  Rigidizacion de Pórticos de Acero

Se le realizó un Análisis Dinámico Espectral, aplicando el método CQC para la combinación de la respuesta modal, sometiendo a las estructuras al Espectro Elástico de Diseño construido para la ciudad de Cali.

ESPECTRO ELÁSTICO DE DISEÑO

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Periodo de Vibración T (s)

Ac

ele

rac

ión

pic

o e

fec

tiv

a

Sa

(%

g)

METODOLOGÍA

Page 14: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativas de Rigidización

Columnas

Vigas Perimetrales y Columnas

Muros Perimetrales de Concreto Reforzado

Vigas yColumnas

Muros de Concreto

Reforzado en el punto fijo

Muros Estructurales en el punto fijo y

Vigas Perimetrales Altas

Arriostramientos Excéntricos

Arriostramientos Concéntricos METODOLOGÍA

Page 15: Alternativas de  Rigidizacion de Pórticos de Acero

CONCEPTOS BASICOS

Page 16: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALESSISTEMAS ESTRUCTURALES La Norma NSR98 reconoce cuatro tipos generales de sistemas estructurales de Resistencia Sísmica, los cuales están definidos de la Tabla A.3-1 a la A.3-4:

Sistema de Muros de Carga.

Sistema Combinado.

Sistema de Pórtico.

Sistema Dual.

Page 17: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALES

Sistema de Muros de Carga.

Valor

de Alta Intermedia Baja

I. Sísmica II. Cargas Verticales R0

I. Pórticos con diagonales concéntricas con DES

II. Idem (Las diagonales toman carga vertical)5.0 24 30 Sin Limite

RESISTENCIA

Altura máxima permitida (m)

ZONAS DE AMENAZA SISMICASISTEMA DE

Page 18: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALES

Sistema Combinado:Valor

de Alta Intermedia Baja

I. Sísmica II. Cargas Verticales R0

1. I. Pórticos con diagonales excéntricas

II. Pórticos resistentes a momento con DMI

2. I. Pórticos con diagonales excéntricas

II. Pórticos no resistentes a momento

RESISTENCIA

Altura máxima permitida (m)

ZONAS DE AMENAZA SISMICASISTEMA DE

7.0 45 60 Sin Limite

6.0 30 45 Sin Limite

1.

2.

Page 19: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALES

Sistema Combinado:

Valor

de Alta Intermedia Baja

I. Sísmica II. Cargas Verticales R0

I. Pórticos con diagonales concéntricas con DES

II. Pórticos no resistentes a momento5.0 30 45 60

RESISTENCIA

Altura máxima permitida (m)

ZONAS DE AMENAZA SISMICASISTEMA DE

Page 20: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALES

Sistema de Pórtico:Valor

de Alta Intermedia Baja

I. Sísmica II. Cargas Verticales R0

1. I. Pórticos resistentes a momento con DES

II. Idem

2. I. Pórticos resistentes a momentos con DMO

II. Idem

3. I. Pórticos resistentes a momentos con DMI

II. Idem

0.9 x 5.0

No se pemite Sin Limite Sin Limite

0.9 x 7.0

Sin Limite Sin Limite Sin Limite

RESISTENCIA

Altura máxima permitida (m)

ZONAS DE AMENAZA SISMICASISTEMA DE

0.9 x 3.5

No se pemite No se pemite Sin Limite

Page 21: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALES

Sistema Dual:Valor

de Alta Intermedia Baja

I. Sísmica II. Cargas Verticales R0

1. I. Muros de Concreto con DES

II. Pórticos resistentes a momento con DES

2. I. Muros de Concreto con DMO

II. Pórticos resistentes a momento con DMO6.0 No se permite Sin Limite Sin Limite

8.0 Sin Limite Sin Limite Sin Limite

RESISTENCIA

Altura máxima permitida (m)

ZONAS DE AMENAZA SISMICASISTEMA DE

Page 22: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALES

Sistema Dual:Valor

de Alta Intermedia Baja

I. Sísmica II. Cargas Verticales R0

1. I. Muros de mamposteria reforzada con DES con todas las celdas rellenas II. Pórticos resistentes a momentos con DES

2. I. Muros de mamposteria reforzada con DMO

II. Pórticos resistentes a momentos con DES

3. I. Muros de mamposteria reforzada con DMO

II. Pórticos resistentes a momentos con DMO3.5 No se pemite 30 30

RESISTENCIA

Altura máxima permitida (m)

ZONAS DE AMENAZA SISMICASISTEMA DE

5.5 45 45 45

4.5 35 35 35

Page 23: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALES

Sistema Dual:Valor

de Alta Intermedia Baja

I. Sísmica II. Cargas Verticales R0

1. I. Pórticos con diagonales excéntricas

II. Pórticos resistentes a momento con DES

2. I. Pórticos con diagonales excéntricas

II. Pórticos resistentes a momento con DMO

RESISTENCIA

Altura máxima permitida (m)

ZONAS DE AMENAZA SISMICASISTEMA DE

8.0 Sin Limite Sin Limite Sin Limite

6.0 No se permite 60 Sin Limite

Page 24: Alternativas de  Rigidizacion de Pórticos de Acero

SISTEMAS ESTRUCTURALES

Sistema Dual:Valor

de Alta Intermedia Baja

I. Sísmica II. Cargas Verticales R0

1. I. Pórticos con diagonales concéntricas DES

II. Pórticos resistentes a momento con DES

2. I. Pórticos con diagonales concéntricas DMI

II. Pórticos resistentes a momento con DMO5.0 No se permite 60 Sin Limite

6.0 Sin Limite Sin Limite Sin Limite

RESISTENCIA

Altura máxima permitida (m)

ZONAS DE AMENAZA SISMICASISTEMA DE

Page 25: Alternativas de  Rigidizacion de Pórticos de Acero

Comúnmente los anteriores sistemas suelen clasificarse solo como:

Pórticos Resistentes a Momento - PRMPórticos Arriostrados - PAC & PAEPórticos interactuando con muros estructurales de concreto reforzado

Page 26: Alternativas de  Rigidizacion de Pórticos de Acero

PORTICOS RESISTENTES A MOMENTO - PRM

Tienen un gran número de zonas de posible disipación de energía (en los extremos de los miembros) donde podrán aparecer articulaciones plásticas.

Zona del Panel

Viga

Columna

Page 27: Alternativas de  Rigidizacion de Pórticos de Acero

PORTICOS RESISTENTES A MOMENTO - PRM

La disipación de energía que tiene lugar en las articulaciones plásticas se debe al comportamiento CICLICO DE FLEXION.

Page 28: Alternativas de  Rigidizacion de Pórticos de Acero

PORTICOS RESISTENTES A MOMENTO - PRM

Para maximizar la disipación de energía, las articulaciones plásticas deben desarrollarse en las vigas antes que las columnas.

Lo cual implica que las columnas y las conexiones deben diseñarse para resistir las fuerzas que generan el momento de plastificación en la viga incrementado en un porcentaje.

Page 29: Alternativas de  Rigidizacion de Pórticos de Acero

PORTICOS CON ARRIOSTRAMIENTOSCONCENTRICOS - PAC

Los arriostramientos están principalmente solicitados por carga axial.

Sus líneas de acción se interceptan en puntos:

Riostras Diagonales

Riostras en X

Riostras en V

Riostras en

Riostras en K

Page 30: Alternativas de  Rigidizacion de Pórticos de Acero

Las zonas disipadoras son principalmente las diagonales a tensión. Las riostras a compresión pandean.

El comportamiento inelástico cíclico no es satisfactorio debido al pandeo repetido de las diagonales:

PORTICOS CON ARRIOSTRAMIENTOS CONCENTRICOS - PAC

Page 31: Alternativas de  Rigidizacion de Pórticos de Acero

PORTICOS CON ARRIOSTRAMIENTOSEXCENTRICOS - PAE

Configuraciones para PAE:

Vínculos

Los vínculos en los PAE representan el Elemento Disipador, ya que la energía Sísmica inducida se disipa por medio de su deformación inelástica.

Page 32: Alternativas de  Rigidizacion de Pórticos de Acero

PORTICOS CON ARRIOSTRAMIENTOS EXCENTRICOS - PAE

La deformación inelástica del vínculo puede ser por Cortante y/o por Flexión. El mecanismo de falla depende directamente de su longitud.

Para garantizar fluencia por cortante:

Para falla por flexión:

Entre 1.6 y 5.0 habrá predominancia de fluencia por flexión o por cortante de acuerdo con:V predominante:

M predominante:

Page 33: Alternativas de  Rigidizacion de Pórticos de Acero

PORTICOS CON ARRIOSTRAMIENTOS EXCENTRICOS - PAE

Sin embargo, no existe unanimidad respecto a si es mejor que el vínculo falle por flexión o por cortante.

La fluencia del vínculo por cortante ha sido el mecanismo de falla más investigado.

Preferiblemente no deben usarse vínculos ligados a las columnas.

Page 34: Alternativas de  Rigidizacion de Pórticos de Acero

RESUMEN

SISTEMA RESISTENCIA RIGIDEZ DUCTILIDAD

PRM Buena Pobre Buena

PAC Buena Buena Pobre

PAE Buena Buena Buena

DESEMPEÑO SISMICO

El comportamiento inelástico de los PRM conduce a:

- Un mejor desempeño sísmico que los PAC ante terremotos severos debido al gran número de zonas disipadoras (El comportamiento de los PAE es similar)

- No puede ser totalmente explotado debido a la pobre rigidez lateral del sistema, la cual es menor que las de los PAC y los PAE.

Page 35: Alternativas de  Rigidizacion de Pórticos de Acero

PORTICOS INTERACTUANDO CON MUROS ESTRUCTURALES DE CONCRETO

REFORZADO

El pórtico tiende a restringir las deflexiones laterales del muro en la parte superior de la estructura, mientras el muro le restringe las deformaciones laterales al pórtico cerca de la base.

Page 36: Alternativas de  Rigidizacion de Pórticos de Acero

INTERACCIÓN DE PÓRTICOS CON MUROS DE CONCRETO REFORZADO

El comportamiento estructural de los muros de cortante difiere de forma importante dependiendo de su esbeltez.

En muros bajos rigen principalmente los efectos de cortante. Los muros esbeltos actúan esencialmente como vigas en voladizo donde dominan los efectos de flexión.

Page 37: Alternativas de  Rigidizacion de Pórticos de Acero

ESTUDIO COMPARATIVO

Page 38: Alternativas de  Rigidizacion de Pórticos de Acero

ESTUDIO DE LAS ESTUDIO DE LAS ALTERNATIVASALTERNATIVAS

El estudio se realizó a partir de pórticos con todas sus conexiones resistentes a momento.

La gran ventaja que presentan estos sistemas es su alto grado de ductilidad, reflejados en el coeficiente de capacidad de disipación de energía “Ro”.

Se determinaron las cuantías de acero estructural y de concreto.

De los resultados del programa de análisis se obtuvo la información de desplazamientos, y de periodos y modos de vibración.

Page 39: Alternativas de  Rigidizacion de Pórticos de Acero

ESTUDIO DE LAS ALTERNATIVAS

El estudio de los resultados de los diferentes modelos realizados se orienta principalmente a cuantificar el nivel de rigidización que se puede alcanzar con cada una de las alternativas en estudio, teniendo en cuenta las implicaciones económicas que esto conlleva. El punto de partida del estudio son los edificios predimensionados para carga vertical. Se observa el alto nivel de flexibilidad que una estructura concebida para carga gravitacional tiene ante carga lateral.

EdificioÍndice de derivas (%)

Sentido longitudinal

Sentido transversal

5 pisos 1.486% 2.792%

10 pisos

1.461% 2.568%

15 pisos

1.404% 3.452%

Page 40: Alternativas de  Rigidizacion de Pórticos de Acero

ESTUDIO DE LAS ALTERNATIVAS

Se muestran las implicaciones económicas que tiene el rigidizar una estructura para hacerla cumplir los requisitos de rigidez que exige la norma.

Los parámetros utilizados para medir dichas implicaciones son los índices de acero y de concreto, que corresponden a la relación entre las cantidades de materiales y el área construida (en este estudio solo se cuantificaron los materiales de los elementos componentes del sistema de resistencia sísmica).

Edificio

Acero estructura

l

5 pisos

23.73 Kg/m2

10 pisos

31.29 Kg/m2

15 pisos

38.28 Kg/m2

Los índices de acero obtenidos para los modelos predimensionados son:

Page 41: Alternativas de  Rigidizacion de Pórticos de Acero

ESTUDIO DE LAS ALTERNATIVAS

Además del impacto económico, el estudio presenta algunas características del comportamiento dinámico y estructural observado en las diferentes alternativas estudiadas.

Con respecto al comportamiento dinámico, se propone una metodología alterna para la determinación del periodo fundamental de vibración en estructuras de acero, independiente del sistema estructural utilizado. De otro lado, se presentan algunos parámetros, en cuanto al comportamiento estructural se refiere, de las estructuras analizadas: desplazamientos máximos, perfiles de deformación y pautas para su rigidización.

Page 42: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 1:INCREMENTO EN DIMENSIONES DE

COLUMNAS

Page 43: Alternativas de  Rigidizacion de Pórticos de Acero

La concepción de algunos diseñadores estructurales, especialmente aquellos que están familiarizados con las estructuras de concreto reforzado, es la de pensar que solo con el incremento en las dimensiones de las columnas, las estructuras pueden satisfacer los requisitos de rigidez que exigen los códigos.

Los resultados del análisis a esta alternativa muestran, sin embargo, que esta idea en estructuras de acero no funciona.

Page 44: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 1: Incremento en dimensiones de Columnas

DERIVAS vs. PESO DE LA ESTRUCTURA

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Peso de la Estructura (Kg/m2)

Indic

e d

e D

eri

va (%

)

5 Pisos10 Pisos15 Pisos

Alternativa no viable técnica y económicamente.

Page 45: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 2:INCREMENTO EN

DIMENSIONES DE VIGAS Y COLUMNAS

Page 46: Alternativas de  Rigidizacion de Pórticos de Acero

Durante muchos años, esta ha sido la alternativa de rigidización mas difundida en el medio; alternativa de gran aceptación especialmente cuando las limitaciones de tipo arquitectónico no permiten al ingeniero diseñador trabajar con un sistema estructural diferente.

Page 47: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 2: Incremento en dimensiones de Vigas y Columnas

DERIVAS vs. PESO DE LA ESTRUCTURA

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

0 25 50 75 100 125 150 175 200 225 250

Peso de la Estructura (Kg/m2)

Indic

e d

e D

eri

va (

%)

5 Pisos

10 Pisos

15 Pisos

Se pueden satisfacer los requisitos de deriva que exige la Norma NSR98 con un índice de acero de 70 Kg/m2 en promedio.

Page 48: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 3:INCREMENTO EN

DIMENSIONES DE VIGAS PERIMETRALES

Page 49: Alternativas de  Rigidizacion de Pórticos de Acero

Una alternativa poco común en edificios de acero, pero de gran aceptación en estructuras de concreto reforzado, es el de vigas perimetrales altas. Los resultados encontrados del estudio de esta alternativa en estructuras de acero fueron inesperados.

Alternativa 3: Incremento en dimensiones de Vigas Perimetrales

Page 50: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 3: Incremento en dimensiones de Vigas Perimetrales

DERIVAS vs. PESO DE LA ESTRUCTURA

0.50%

1.00%

1.50%

2.00%

2.50%

20 30 40 50 60 70 80 90 100 110 120

Peso de la Estructura (Kg/m2)

Indic

e d

e D

eri

va (

%)

5 Pisos

10 Pisos

15 Pisos

El índice de acero para el cual se cumplió la deriva del edificio de 15 pisos es igual al índice obtenido para la alternativa anterior: 70 Kg/m2.

Page 51: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 4:MUROS ESTRUCTURALES

PERIMETRALES DE CONCRETO REFORZADO

“Los sistemas de muros híbridos”, como el programa de investigación cooperativo entre EE.UU. y Japón denomina a este sistema estructural consiste en un pórtico de acero estructural con muros estructurales de concreto reforzado que proveen el sistema de resistencia ante cargas laterales.

Page 52: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

El auge que ha tenido la incorporación de este sistema estructural en el sector de la construcción en los Estados Unidos, tanto en el reforzamiento de edificaciones existentes como en la proyección de edificios nuevos, condujo a la AISC a tratar el tema en sus “Provisiones Sísmicas” para su correcta utilización.

Page 53: Alternativas de  Rigidizacion de Pórticos de Acero

La principal VENTAJA con la que cuenta el sistema, desde el punto de vista de su comportamiento estructural, es que maneja las solicitaciones del cortante como lo que realmente son, a diferencia de alternativas como los arriostramientos con diagonales en donde el problema pasa a ser de Tracción-Compresión.

Ventajas y Desventajas del Sistema

El principal INCONVENIENTE del sistema es su proceso constructivo, ya que el proceso “industrializado” que presentan las construcciones de acero se ve en cierta medida opacado por el proceso “artesanal” que implica construir con Concreto. Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

Page 54: Alternativas de  Rigidizacion de Pórticos de Acero

Tomado de “Seismic Provisions for Structural Steel Buildings”

Elemento de Borde parcialmente embebido

Elemento de Borde totalmente embebido

Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

Page 55: Alternativas de  Rigidizacion de Pórticos de Acero

Se construyeron modelos con diferentes relaciones de esbeltez “H/L” para diversos espesores “t” de muros, jugando con diversas posiciones de las pantallas en el perímetro de las losas.

Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

Page 56: Alternativas de  Rigidizacion de Pórticos de Acero

La Relación de Esbeltez es el factor de mayor incidencia para determinar la cantidad necesaria de muros respecto al área de losa.

Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

Con respecto al tema existen diversas investigaciones, entre ellas se destaca la realizada por Sozen en la que propone una metodología para la determinación del índice de muros en función del índice de deriva requerido para la estructura.

Page 57: Alternativas de  Rigidizacion de Pórticos de Acero

El comportamiento observado muestra la misma tendencia presentada por Sozen. Se aprecia sin embargo que la influencia de los pórticos es importante.Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

Page 58: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

Es evidente que para estructuras en donde la rigidez en un sentido es superior a la del sentido ortogonal, la cantidad de muros necesaria por cada dirección es diferente.

Page 59: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

Con respecto a la posición adecuada de los muros, el estudio mostró que la posición de estos en los pórticos perimetrales no es un factor determinante en el comportamiento.

Page 60: Alternativas de  Rigidizacion de Pórticos de Acero

A continuación se exponen los valores encontrados para la incidencia de muros por unidad de área obtenidos de diversas combinaciones de muros estructurales para las relaciones de esbeltez manejadas comúnmente:

No. de Pisos

Incidencia de Muros

(%)

Volumen de Concreto (m3/m2)

5 0.275 0.00825

10 0.350 0.01050

15 0.400 0.01200

Alternativa 4: Muros Estructurales perimetrales de Concreto reforzado

Page 61: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 5:MUROS ESTRUCTURALES DE CONCRETO REFORZADO EN

PUNTO FIJO

Son tal vez la solución arquitectónica más deseada.

Page 62: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 5: Muros Estructurales de Concreto en el punto fijo.

DERIVAS vs. VOLUMEN DE CONCRETO

0.00%

0.50%

1.00%

1.50%

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014

Indice de Concreto (m3/m2)

Ind

ice

de

Der

iva

(%)

5 Pisos10 Pisos15 Pisos

Con volúmenes de concreto del orden de 0.0030 m3/m2 los edificios de 5 pisos logran satisfacer los requisitos de derivas de la Norma. En edificios de 10 pisos este valor se incrementa a 0.0085 m3/m2.

Page 63: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 5: Muros Estructurales de Concreto en el punto fijo.

Aunque esta alternativa resultó ser eficiente en edificios de 5 y 10 pisos para el control de derivas en las edificaciones, se debe tener especial cuidado en posibles problemas de tipo torsional en el comportamiento estructural que se puedan presentar debido a la distribución no uniforme de la rigidez en el sistema.

Page 64: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 6:MUROS ESTRUCTURALES DE CONCRETO REFORZADO EN

PUNTO FIJO Y VIGAS PERIMETRALES ALTAS

Se decidió complementar la alternativa anterior aumentando las dimensiones de las vigas perimetrales.

Page 65: Alternativas de  Rigidizacion de Pórticos de Acero

El índice de acero para el cual se alcanzo una deriva del 0.681% fue de 49.29 Kg/m2, con un volumen de concreto por unidad de área de 0.00385 m3/m2.

Alternativa 6: Muros Estructurales en el punto fijo y Vigas Perimetrales Altas.

El comportamiento al rigidizar con esta alternativa es similar al descrito en la Alternativa No.3: a partir de un punto la deriva no se logra disminuir a pesar de seguir incrementando las dimensiones de las vigas perimetrales, por el contrario, aumentan debido a que el aporte en masa de las vigas es mucho mayor al aporte de su rigidez.

Page 66: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativas 7 y 8:ARRIOSTRAMIENTOS PERIMETRALES CON

DIAGONALES EXCÉNTRICAS Y CONCÉNTRICAS

El sistema de arriostramiento que se manejo en los pórticos fue del tipo V invertida.

Page 67: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 7 y 8: Arriostramientos perimetrales

Se plantearon diversas configuraciones en el sistema; con el fin de obtener la configuración estructural de mejor desempeño.

Page 68: Alternativas de  Rigidizacion de Pórticos de Acero

Con el fin de no manejar otra variable en la comparación de costos con las alternativas de rigidización anteriormente mencionadas, las riostras se trabajaron en perfiles de alma llena y no con perfiles tubulares; a pesar de la gran eficiencia estructural que presentan estos últimos.

Alternativa 7 y 8: Arriostramientos perimetrales

Page 69: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 7 y 8: Arriostramientos perimetrales

Para la alternativa con arriostramientos excéntricos, la longitud del vínculo se proyecto de tal manera que se presentara plastificación por CORTANTE.

Page 70: Alternativas de  Rigidizacion de Pórticos de Acero

Entre las provisiones “mínimas” que se tomaron en cuenta para la realización de los modelos tenemos:

- Relaciones ancho-espesor (Riostras, Vigas con vínculos).- Relaciones de esbeltez.- Resistencias de diseño a compresión de las Riostras.

- Resistencias de diseño a compresión de los vínculos.

El estudio no contempla:

- Cartelas de unión (Gusset Plates) - Conexiones en general.

- Diseño de Vínculos.

Alternativa 7 y 8: Arriostramientos perimetrales

Page 71: Alternativas de  Rigidizacion de Pórticos de Acero

Con respecto a la ubicación más adecuada de las riostras se encontró, al igual que para la alternativa de muros estructurales perimetrales, que no tiene mayor incidencia en la eficiencia del sistema el vano en el cual se dispongan estos elementos, siempre y cuando la distribución global sea lo más simétrica posible.

Page 72: Alternativas de  Rigidizacion de Pórticos de Acero

Alternativa 7 y 8: Arriostramientos perimetrales

La Tabla presenta en resumen las cantidades de acero de las riostras por unidad de área y el índice de deriva que se alcanzó con estas alternativas:

ALTERNATIVANUMERO DE PISOS

5 10 15

PAEI (Kg/m2) 2.80 3.00 3.20

D/H (%) 0.90 0.86 0.86

PACI (Kg/m2) 2.80 3.00 3.20

D/H (%) 0.61 0.71 0.80

Page 73: Alternativas de  Rigidizacion de Pórticos de Acero

CONCLUSIONES DEL CONCLUSIONES DEL ESTUDIO COMPARATIVO DE ESTUDIO COMPARATIVO DE

LAS ALTERNATIVAS DE LAS ALTERNATIVAS DE RIGIDIZACIONRIGIDIZACION

A continuación se muestra un resumen de los resultados obtenidos del estudio realizado a las ocho alternativas de rigidización en términos de cantidades de obra y costos de las estructuras por unidad de área.

El análisis de costos se basa en precios unitarios que incluyen el material (acero estructural y/o concreto reforzado), el equipo y mano de obra para su construcción

Page 74: Alternativas de  Rigidizacion de Pórticos de Acero

CONCLUSIONES DEL ESTUDIO COMPARATIVO

Cuadro comparativo entre alternativasCONSUMO DE ACERO ESTRUCTURAL POR UNIDAD DE AREA

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Base Alternativa 1 Alternativa 2 Alternativa 3 Alternativa 4 Alternativa 5 Alternativa 6 Alternativa 7 Alternativa 8

ALTERNATIVA DE RIGIDIZACION

IN

DIC

E D

E A

CER

O (

Kg

/m

2)

5 Pisos10 Pisos15 Pisos1

.17

%

1.5

4%

2.0

0%

1.0

0%

1.0

0%

1.0

0%

1.7

2% 1.2

0%

1.0

0%

1.0

0%

1.0

0%

1.0

0%

1.0

0%

1.0

0%

1.0

8% 0.6

8%

0.9

0%

0.8

6%

0.8

6%

0.6

1% 0.7

1%

0.8

0%

2.7

9%

2.5

7%

3.4

5%

Page 75: Alternativas de  Rigidizacion de Pórticos de Acero

CONCLUSIONES DEL ESTUDIO COMPARATIVO

Cuadro comparativo entre alternativasCONSUMO DE CONCRETO REFORZADO POR UNIDAD DE AREA

0.000

0.002

0.005

0.007

0.009

0.012

0.014

Base Alternativa1

Alternativa2

Alternativa3

Alternativa4

Alternativa5

Alternativa6

Alternativa7

Alternativa8

ALTERNATIVA DE RIGIDIZACION

IN

DIC

E D

E C

ON

CR

ETO

(m

3/m

2)

5 Pisos10 Pisos15 Pisos

1.0

0%

1.0

0% 1

.00

%

1.0

0%

1.0

0%

1.0

8%

0.6

8%

Page 76: Alternativas de  Rigidizacion de Pórticos de Acero

JULIÁN ALBERTO TORO ARZAYÚSSUSTENTACIÓN PROYECTO DE GRADO

PPÓÓRTICOS ESPACIALES DERTICOS ESPACIALES DE ACERO ESTRUCTURAL ACERO ESTRUCTURAL

SOMETIDOS A CARGA SSOMETIDOS A CARGA SÍÍSMICASMICA

FINFIN