altitude (km) january global averagetemperature (k) pressure (hpa) with o( 3 p) cooling waccm-x the...

1
Altitude (km) January Global AverageTemperature (K) Pressure (hPa) With O( 3 P) Cooling WACCM-X The Whole Atmosphere Community Climate Model – eXtended (WACCM-X) is a comprehensive numerical global model of the Earth’s atmosphere spanning a vertical range from the surface to the upper thermosphere. See Liu et al., 2010 for full description Currently under development in the High Altitude Observatory (HAO), along with the Atmosphere Chemistry Observations and Modeling (ACOM) Laboratory and the Climate and Global Dynamics (CGD) Laboratory, at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. Atmospheric component option of the Community Earth System Model (CESM) and based on the Community Atmosphere Model (CAM) and the Whole Atmosphere Community Climate Model (WACCM). Standard resolution: Horizontal: 1.9 o x 2.5 o latitude x longitude, Vertical: ½ scale height, Temporal: 5 minute time step with ion transport and neutral dynamics sub-stepping at ~1 minute The Whole Atmosphere Community Climate Model – eXtended (WACCM-X): Current Development and Future Plans Joe McInerney, Ben Foster, Stan Solomon, Hanli Liu, Chris Fischer, Liying Qian, Wenbin Wang, Art Richmond, Astrid Maute, Gang Lu, Mike Wiltberger NCAR/HAO Dan Marsh NCAR/ACOM Summary Current ongoing improvements to WACCM-X: Energetics to produce electron and ion temperature and thermal electron heating Low latitude electrodynamics solver producing realistic vertical and horizontal ion drifts Ion transport producing realistic O+ density Higher vertical resolution and model top Planned future improvements to WACCM-X include: High latitude electrodynamics and aurora O+ transport on electrodynamics geomagnetic grid Couple to plasmasphere and magnetosphere resolution simulations References Liu, H.-L., et al. (2010), Thermosphere extension of the Whole Atmosphere Community Climate Model, J. Geophys. Res., 115, A12302, doi:10.1029/2010JA015586. Sherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res., 104(A4), 6829-6842, doi:10.1029/1999JA900025. Liu, H.-L., et al. (2014), Gravity waves simulated by high resolution Whole Atmosphere Community Climate Model, Geophys. Res. Lett., 41, 9106-9112, doi:10.1002/2014GL062468. Current Development – Ion-Electron Transport Current Development: Energetics With T e /T i Increase ~175- 200K Without T e /T i T I T e Thermal electron heating increases thermosphere neutral temperature Implement solver for electron and ion temperature O( 3 P) cooling gives ~30-50K decrease in thermosphere neutral temperature January 14 Global Average Temperature (K) Pressure (hPa) Altitude (km) January Global Average Temperature (K) Pressure (hPa) Future Plans Verification/validation of current developments Higher model top and increase vertical resolution Aurora and high latitude electrodynamics and coupling to lower latitudes Switch to the newer Spectral Element (SE) dynamical core with same ~1 o horizontal resolution Cubed sphere horizontal grid avoids pole problem Geomagnetic grid for ion transport and electrodynam o Upper boundary hydrogen flux and add helium Increase horizontal resolution using current Finite Volume (FV) dynamical core From ~2 o (~200km) to ~1 o (~100km) Increase WACCM-X SE horizontal/vertical resolution Started with running a higher resolution version of WACCM (GRL article, Liu et al., 2014) 0.25 o (~25km) horizontal resolution, 1/10 scale height vertical resolution – realistic gravity wave signatures in lower thermosphere GWs from deep convection GWs from stratospheric jet GWs from orography (or breaking OGWs) GW breaking Current Development – Low Latitude Electrodynamics Ion Drifts - Global Vertica l Zonal Ion Drifts - Equator WACCM-X TIE-GCM F-region Ionosphere, March Equinox WACCM-X Electric Dynamo Dynamics Column Physics d-p Coupler O + Transport magnetic coordinates r i v i r n r i v n T n T i T e E geographic coordinates n i , v i r n v n T n P i L i WACCM-X Electric Dynamo Dynamics Column Physics d-p Coupler Coordinate Transform Ionosphere- Plasmaspher e mag coords Coordinate Transform Next-Generation Coupling Structure Plasmasphere model coupling T n Without O( 3 P) Cooling Scherlies s & Fejer, 1999 T(DW1)(K) Jan WACCM - Max ~16-18 K SABER - Max ~12-15 K WACCM Temperature Migrating Diurnal Tide (DW1) January Longitud e Local Time Januar y Longitude L a t i t u d e

Upload: crystal-ray

Post on 13-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Altitude (km) January Global AverageTemperature (K) Pressure (hPa) With O( 3 P) Cooling WACCM-X The Whole Atmosphere Community Climate Model – eXtended

Alti

tud

e (

km)

January Global AverageTemperature (K)

Pre

ssu

re (

hP

a)

With O(3P) Cooling

WACCM-X• The Whole Atmosphere Community Climate Model – eXtended (WACCM-X) is a comprehensive numerical global model of the Earth’s atmosphere spanning a

vertical range from the surface to the upper thermosphere. See Liu et al., 2010 for full description

• Currently under development in the High Altitude Observatory (HAO), along with the Atmosphere Chemistry Observations and Modeling (ACOM) Laboratory and the Climate and Global Dynamics (CGD) Laboratory, at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado.

• Atmospheric component option of the Community Earth System Model (CESM) and based on the Community Atmosphere Model (CAM) and the Whole Atmosphere Community Climate Model (WACCM).

• Standard resolution: Horizontal: 1.9o x 2.5o latitude x longitude, Vertical: ½ scale height, Temporal: 5 minute time step with ion transport and neutral dynamics sub-stepping at ~1 minute

The Whole Atmosphere Community Climate Model – eXtended (WACCM-X): Current Development and Future Plans

Joe McInerney, Ben Foster, Stan Solomon, Hanli Liu, Chris Fischer, Liying Qian, Wenbin Wang, Art Richmond, Astrid Maute, Gang Lu, Mike Wiltberger NCAR/HAO Dan Marsh NCAR/ACOM

Summary Current ongoing improvements to WACCM-X:• Energetics to produce electron and ion

temperature and thermal electron heating • Low latitude electrodynamics solver producing

realistic vertical and horizontal ion drifts• Ion transport producing realistic O+ density• Higher vertical resolution and model topPlanned future improvements to WACCM-X include: • High latitude electrodynamics and aurora• O+ transport on electrodynamics geomagnetic

grid• Data assimilation with DART• Couple to plasmasphere and magnetosphere

models• Transition to new improved dynamical core• Higher horizontal and vertical resolution

simulations

References• Liu, H.-L., et al. (2010), Thermosphere extension of the Whole Atmosphere

Community Climate Model, J. Geophys. Res., 115, A12302, doi:10.1029/2010JA015586.

• Sherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res., 104(A4), 6829-6842, doi:10.1029/1999JA900025.

• Liu, H.-L., et al. (2014), Gravity waves simulated by high resolution Whole Atmosphere Community Climate Model, Geophys. Res. Lett., 41, 9106-9112, doi:10.1002/2014GL062468.

Current Development – Ion-Electron Transport

Current Development: Energetics

With Te/Ti

Increase ~175-200K

Without Te/Ti

TITe

• Thermal electron heating increases thermosphere neutral temperature

• Implement solver for electron and ion temperature

• O(3P) cooling gives ~30-50K decrease in thermosphere neutral temperature

January 14 Global Average Temperature (K)

Pre

ssu

re (

hP

a)

Alti

tud

e (

km)

January Global Average Temperature (K)

Pre

ssu

re (

hP

a)

Future Plans• Verification/validation of current developments• Higher model top and increase vertical resolution• Aurora and high latitude electrodynamics and

coupling to lower latitudes

• Switch to the newer Spectral Element (SE) dynamical core with same ~1o horizontal resolution

• Cubed sphere horizontal grid avoids pole problem

• Geomagnetic grid for ion transport and electrodynamo

• Upper boundary hydrogen flux and add helium

• Increase horizontal resolution using current Finite Volume (FV) dynamical core

• From ~2o (~200km) to ~1o (~100km)

• Increase WACCM-X SE horizontal/vertical resolution

• Started with running a higher resolution version of WACCM (GRL article, Liu et al., 2014)

• 0.25o (~25km) horizontal resolution, 1/10 scale height vertical resolution – realistic gravity wave signatures in lower thermosphere and improved tides

GWs from deep convection

GWs from stratospheric jetGWs from orography (or breaking OGWs)

GW breaking

Current Development – Low Latitude Electrodynamics

• Ion Drifts - Global

Vertical Zonal

• Ion Drifts - Equator

WACCM-X TIE-GCM

F-region Ionosphere, March Equinox

WACCM-X

Electric Dynamo

DynamicsColumn Physics

d-p Coupler

O+ Transport

magnetic coordinates

ri vi

rn ri vn Tn Ti Te

E

geographic coordinates

ni, virn vn Tn Pi Li

WACCM-X

Electric Dynamo

DynamicsColumn Physics

d-p Coupler

Coordinate Transform

Ionosphere-Plasmasphere

mag coords

Coordinate Transform

Next-Generation Coupling Structure

• Plasmasphere model coupling

Tn

Without O(3P) Cooling

• Scherliess & Fejer, 1999

T(DW1)(K) Jan

WACCM - Max ~16-18 KSABER - Max ~12-15 K

WACCM Temperature Migrating Diurnal Tide (DW1) January

Longitude

Local Time

January Longitude

Latitu

de