am 12 appendix a

66
A-1 ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved. April 28, 2009 Inventory #002645 Appendix A Mesh Quality ANSYS Meshing Application Introduction

Upload: waseemlar

Post on 26-Oct-2014

85 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AM 12 Appendix A

A-1ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Appendix A

Mesh Quality

ANSYS MeshingApplication Introduction

Page 2: AM 12 Appendix A

Appendix A: Mesh Quality

A-2ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualOverview• Mesh Quality Metrics in ANSYS Meshing

– Skewness– Aspect Ratio– Worst Element

• Mesh Quality Considerations for the FLUENT Solver– General Considerations– Impact of Mesh Quality on the Solution

• Mesh Quality Considerations for the CFX Solver• Factors Affecting Mesh Quality

– CAD Issues– Mesh Resolution and Distribution– Meshing Method– Inflation

• Strategies to Improve Mesh Quality– CAD Cleanup– Virtual Topology– Pinch Controls– Sensible Mesh Sizings and Inflation Settings– General Recommendations

• Workshop A.1 Virtual Topology for an Auto Manifold• Workshop A.2 FLUENT and CFX Mesh Quality Metrics

Page 3: AM 12 Appendix A

Appendix A: Mesh Quality

A-3ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Quality Metrics in ANSYS Meshing

• Mesh Metrics are available under Mesh Options to set and review mesh metric information and to evaluate mesh quality

• Different physics and different solvers have different requirements for mesh quality

• Mesh metrics available in ANSYS Meshing include:

– Element Quality– Aspect Ratio– Jacobian Ration– Warping Factor– Parallel Deviation– Maximum Corner Angle– Skewness

Page 4: AM 12 Appendix A

Appendix A: Mesh Quality

A-4ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

Skewness

Two methods for determining skewness:1. Based on the Equilateral Volume deviation:

• Skewness =

• Applies only to triangles and tetrahedra• Default method for tris and tets

2. Based on the deviation from a Normalized Angle deviation:

• Skewness =

Where is the equiangular face/cell (60 for tets and tris, and 90 for quads and hexas)• Applies to all cell and face shapes• Used for prisms and pyramids

e

mine

e

emax ,180

max

optimal (equilateral) cell

actual cell

circumsphere

Mesh Quality Metrics

e

0 1Perfect Worst

Page 5: AM 12 Appendix A

Appendix A: Mesh Quality

A-5ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

aspect ratio = 1 high-aspect-ratio quad

aspect ratio = 1 high-aspect-ratio triangle

Mesh Quality Metrics

Aspect Ratio

• Aspect for generic triangles and quads is a function of the ratio of longest side to the shortest side of the reconstructed quadrangles (see User Guide for details)

• Equal to 1 (ideal) for an equilateral triangle or a square

Page 6: AM 12 Appendix A

Appendix A: Mesh Quality

A-6ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Quality Statistics in ANSYS Meshing

• The min, max, averaged and standard deviation for the selected mesh metric are shown for the surface mesh (after Preview Surface Mesh generation) and for the volume mesh (after Preview Inflation layer or Generate Mesh generation)

• The worst elements can be highlighted using the Show Worst Elements under the Mesh object in the Tree Outline

Page 7: AM 12 Appendix A

Appendix A: Mesh Quality

A-7ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Quality Considerations for FLUENT

• FLUENT requires high quality mesh to avoid numerical diffusion• Several Mesh Quality Metrics are involved in order to quantify the

quality, however the skewness is the primary metric• The aspect ratio and cell size change mesh metrics are also very

important • In worst scenarios and depending on the solver used (density based or

pressure based) FLUENT can tolerate poor mesh quality. However some applications may require higher mesh quality, resolution and good mesh distribution

• The location of poor quality elements helps determine their effect• Some overall mesh quality metrics may be obtained in Ansys Meshing

under the Statistics object• Additional mesh quality metrics may be retrieved in FLUENT GUI under

Mesh/Info/Quality from the menu, or using the TUI commands ‘mesh/quality’

Page 8: AM 12 Appendix A

Appendix A: Mesh Quality

A-8ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Quality Requirements for FLUENT

• The most important mesh metrics for Fluent are:– Skewness– Aspect Ratio– Cell Size Change (not implemented in Ansys

Meshing)

For all/most applications:

• For Skewness:– For Hexa, Tri and Quad: it should be less than 0.8– For tetrahedra: it should be less than 0.9

• For Aspect Ratio:– It should be less than 40, but this depends on

the flow characteristics– More than 50 may be tolerated at the inflation layers

• For Cell Size Change:– It should be between 1 and 2.

• Poor mesh quality may lead to inaccurate solution and/or slow convergence

• Some applications may require even lower skewness than the suggested value

Page 9: AM 12 Appendix A

Appendix A: Mesh Quality

A-9ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualSkewness and the Fluent Solver

• High skewness values are not recommended• Generally try to keep maximum skewness of volume mesh < 0.95.

However this value is strongly related to type of physics and the location of the cell

• FLUENT reports negative cell volumes if volume mesh contains degenerate cells.

• Classification of the mesh quality metrics based on skewness:

* In some circumstances the pressure based solver in Fluent can handle meshes containing a small percentage of cells with skewness ~0.98.

0-0.25 0.25-0.50 0.50-0.80 0.80-0.95 0.95-0.98 0.98-1.00*

Excellent very good good acceptable bad Inacceptable*

Page 10: AM 12 Appendix A

Appendix A: Mesh Quality

A-10ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

(max,avg)CSKEW=(0.912,0.291) (max,avg)CAR=(62.731,7.402)

(max,avg)CSKEW=(0.801,0.287) (max,avg)CAR=(8.153,1.298)

VzMIN≈-100ft/min VzMAX≈400ft/min

VzMIN≈-90ft/min VzMAX≈600ft/min

Impact of the Mesh Quality on the Solution

Large cell size change

Example

Mes

h 2

Mes

h 1

Page 11: AM 12 Appendix A

Appendix A: Mesh Quality

A-11ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Quality Considerations for CFX

• Mesh quality requirements are somewhat different for the CFXsolver than for the FLUENT solver due to the difference in thesolver structure for the two codes

– Fluent uses a a cell-centered scheme, in which the fluid flow variables are allocated at the center of the computational cell, and the mesh-element is the same as the solver-element

– CFX employs a vertex-centered scheme for which the fluid flow variables are stored at the cell vertex, and the solver-element or control volume is a “dual” of the mesh-element. This means that the vertex of the mesh-element is the center of the solver-element

Page 12: AM 12 Appendix A

Appendix A: Mesh Quality

A-12ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Quality Considerations for CFX

• The CFX solver calculates 3 important measures of meshquality at the start of a run and updates them each time themesh is deformed

– Mesh Orthogonality– Aspect Ratio– Expansion Factor

+--------------------------------------------------------------------+ | Mesh Statistics | +--------------------------------------------------------------------+ Domain Name: Air Duct Minimum Orthogonality Angle [degrees] = 20.4 ok Maximum Aspect Ratio = 13.5 OK Maximum Mesh Expansion Factor = 700.4 ! Domain Name: Water Pipe Minimum Orthogonality Angle [degrees] = 32.8 ok Maximum Aspect Ratio = 6.4 OK Maximum Mesh Expansion Factor = 73.5 !Global Mesh Quality Statistics : Minimum Orthogonality Angle [degrees] = 20.4 ok Maximum Aspect Ratio = 13.5 OK Maximum Mesh Expansion Factor = 700.4 !

+--------------------------------------------------------------------+ | Mesh Statistics | +--------------------------------------------------------------------+ Domain Name: Air Duct Minimum Orthogonality Angle [degrees] = 20.4 ok Maximum Aspect Ratio = 13.5 OK Maximum Mesh Expansion Factor = 700.4 ! Domain Name: Water Pipe Minimum Orthogonality Angle [degrees] = 32.8 ok Maximum Aspect Ratio = 6.4 OK Maximum Mesh Expansion Factor = 73.5 !Global Mesh Quality Statistics : Minimum Orthogonality Angle [degrees] = 20.4 ok Maximum Aspect Ratio = 13.5 OK Maximum Mesh Expansion Factor = 700.4 !

Good(OK)

Acceptable(ok)

Questionable(!)

Page 13: AM 12 Appendix A

Appendix A: Mesh Quality

A-13ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

•Orthogonality measures alignment of:• ip-face normal vector, n, &• node-to-node vector, s.

• Orthogonality Factor = n·s, >1/3 desirable• Orthogonality Angle = 90º-acos(n·s), >20º desirable• Are these different than Max/Min Face Angles in CFD Post? YES!

– Face angles correspond to angles between edges– One can have an acceptable Face Angle and an unacceptable Orthogonality

Angle if an element is skewed in two directions…

Mesh Orthogonality in CFX

Page 14: AM 12 Appendix A

Appendix A: Mesh Quality

A-14ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Expansion Factor in CFX

Expansion factor measures how poorly the nodal position corresponds to the control volume centroid

• Mesh Expansion Factor ≈ ratio of largest to smallest element volumes surrounding a node, <20 is desirable

• The Mesh Expansion Factor is essentially identical to the Element Volume Ratio in CFD Post

Page 15: AM 12 Appendix A

Appendix A: Mesh Quality

A-15ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Aspect Ratio in CFX

Aspect ratio measures how stretched a control volume is

• Aspect Ratio = maximum of the ratio of largest to smallest ip-areas for each element surrounding a node, <100 is desirable

• The Aspect Ratio is very similar to the Edge Length Ratio in CFD Post

Page 16: AM 12 Appendix A

Appendix A: Mesh Quality

A-16ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualSignificance of Mesh Quality in CFX

• Sources of discretisation error– non-orthogonality introduces errors in flux approximations– large mesh expansion introduces errors in storage and source

approximations

• Amplification of discretisation error – corrections to reduce errors caused by non-orthogonality can create

unphysical influences

• Difficulties solving linearised equations– large aspect ratios require use of more significant digits

(i.e. use of double precision solver)

Why is geometrical mesh quality important?

Page 17: AM 12 Appendix A

Appendix A: Mesh Quality

A-17ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualFactors Affecting Mesh Quality

• CAD Issues– Small edges, sharp edges and faces– Small gaps/passages between edges and faces– Unconnected geometry entities

CAD issues need to be fixed to avoid this

Page 18: AM 12 Appendix A

Appendix A: Mesh Quality

A-18ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualFactors Affecting Mesh Quality

• Mesh Resolution and Distribution

– Geometry with abrupt changes, discontinuities and/or small gaps may require more resolution, and

– Mesh distribution where appropriate to be able to predict physical conditions

Inappropriate resolution and distribution may lead to large cell size change, aspect ratio and/or skewness

Page 19: AM 12 Appendix A

Appendix A: Mesh Quality

A-19ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualFactors Affecting Mesh Quality

• Type of Size Function– Inappropriate usage (or

no usage at all) of Advanced Size Functions (ASF) may lead to poor mesh quality

– Use Curvature ASF for geometries with dominant curvature features

– Use Proximity ASF for geometries with gaps or narrow components

– Use Curvature and Proximity ASF in geometries having a combination of these features ASF may be used to

avoid this !

Page 20: AM 12 Appendix A

Appendix A: Mesh Quality

A-20ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualFactors Affecting the Mesh Quality

• Meshing Method– Inappropriate usage of Meshing Method (Automatic, Tetrahedrons, Sweep, MultiZone

and CFX-Mesh) may lead to large skewness– The selection of the Meshing Method depends on the geometry and application– It is a good practice to use Show the Sweepable Bodies under the Mesh object in the

Tree Outline– Many applications may take advantage of Patch Conforming and Sweep Meshing Method

A relatively “good” mesh in terms of max skewness, however the average and standard deviation are large

Page 21: AM 12 Appendix A

Appendix A: Mesh Quality

A-21ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualFactors Affecting Mesh Quality

• InflationInappropriate:– Surface mesh

quality– Choice of the

inflation surfaces– Inflation Option– Inflation algorithm

(layer compression or stair-stepping)

– Inflation parameters

– Advanced Inflation Options

may lead to poor mesh quality!

Affected Inflation

Page 22: AM 12 Appendix A

Appendix A: Mesh Quality

A-22ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualStrategies to Improve Mesh Quality

• CAD cleanupUse CAD or DM to:

– Simplify the geometry– Merge small edges– Merge the faces in

order to reduce the number of faces

– Avoid narrow faces– Keep volume gaps only

where important– Decompose the

geometry– Remove unnecessary

geometries– Add geometries– Repair the geometry

After split edge/Project edge/merge face in DM

Page 23: AM 12 Appendix A

Appendix A: Mesh Quality

A-23ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualStrategies to Improve Mesh Quality

• Virtual topology

Use VT in order to simplify details at geometry level in AM

Can be added under Model object in the Tree Outline

Mesh may be improved by creating virtual edges/faces

If the resulting surface mesh is distorted consider fixing the geometry issue in DM or CAD

After virtual merging of narrow face with wide face

Page 24: AM 12 Appendix A

Appendix A: Mesh Quality

A-24ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualStrategies to Improve Mesh Quality

• Pinch Controls

– Allow to remove small features (small edges or narrow faces) at the mesh level

– Intended for Patch-Conforming Tetrahedral Method– When it is defined the small features are “pinched-

out” from the mesh when pinch criteria are met

Pinch locations are detected automatically with Pinch Controls under

Mesh object in the Tree Outline

Page 25: AM 12 Appendix A

Appendix A: Mesh Quality

A-25ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualStrategies to Improve Mesh Quality

• Sensible Mesh Sizings and Inflation Settings

The minimal size decreased 2X in order to fit the narrow geometry. As a result the mesh quality has been improved. Local face sizing may also be used

Page 26: AM 12 Appendix A

Appendix A: Mesh Quality

A-26ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

• General Recommendations

– A volume mesh may be considered inacceptable if it satisfies one or more the following conditions:

• Very high skewness for FLUENT meshes(> 0.98)• Degenerate cells (skewness ~ 1)• High aspect ratio cells • Negative volumes

– Cell Quality can be improved by:• Improving surface mesh quality• Moving mesh nodes• CAD to fix geometric problems such as sharp angles, small edges, merge faces unite

and/or decompose the geometries• Clean-up tools in DM to simplify the geometries and their entities• Different methods, global and local sizings and parameters in the ANSYS Meshing

Application• Pinch Controls in the ANSYS Meshing Application to avoid small features• Virtual topology in the ANSYS Meshing Application in order to simplify the geometry

Strategies to Improve Mesh Quality

Page 27: AM 12 Appendix A

Appendix A: Mesh Quality

A-27ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMiscellaneous

• If the model contains multiple parts or bodies the mesh metric information can be shown by highlighting them under the Geometry object in the Tree Outline

• The Body of Influence (BOI) technique may be used also to control the mesh quality and appropriate local resolution

• More advanced mesh statistics including histograms can be exhibited by FE Modeler Mesh Metrics in FEM

• Different mesh quality metricscan also be viewed in CFD Post

Page 28: AM 12 Appendix A

A-28ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Virtual Topology for anAuto Manifold

Workshop A.1

Page 29: AM 12 Appendix A

Appendix A: Mesh Quality

A-29ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualGoals

This workshop uses the manifold geometry from workshop 5.2. Recall that this geometry contains many problematic small faces and sharp angles.

In workshop 5.2, the Patch Independent method was used to produce a good quality mesh without modifying the geometry. In this workshop Virtual Topology will be used to “remove” the problematic geometry and then the default Patch Conforming meshing method will be used.

Page 30: AM 12 Appendix A

Appendix A: Mesh Quality

A-30ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualStarting the Project

1. Launch ANSYS 12.0 Workbench

2. Click on Component Systems in the Toolbox on the LHS of the main panel

3. Double click the Mesh option to add it to the Project Schematic

4. In the Project Schematic right-click on Geometry and select Import Geometry > Browse. Select the file Auto-Manifold.agdb

Page 31: AM 12 Appendix A

Appendix A: Mesh Quality

A-31ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualNamed Selections

5. Next, make sure that Named Selections will be brought into Meshing:

6. Right-click on cell A2 and then select Properties

7. Ensure Named Selections is checked, and the Named Selection Key is blank

8. Close the Properties window

Page 32: AM 12 Appendix A

Appendix A: Mesh Quality

A-32ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualEdit the Mesh

9. Edit the Mesh (cell A3)– The Meshing window will open

10.Start by suppressing the fluid region and meshing the solid:• Select the Body selection icon from the toolbar

• Select the inner fluid region, sothat it is highlighted in green, andthen right-click and selectSuppress Body

Page 33: AM 12 Appendix A

Appendix A: Mesh Quality

A-33ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualMesh Settings

11.Select Mesh from the Outline tree

12. In the Details view set the Physics Preference to CFD• The assumption here is that heat transfer will be solved in the solid region

using a CFD solver

13.Expand the Sizing section in the Details view and set:• Span Angle Center = Medium

• Min Size = 1.0 mm

• Max Face Size = 10.0 mm

• Max Tet Size = 10.0 mm

14.Right-click on Mesh in the Outline tree and select Preview Surface Mesh• Since the body is not sweepable, the

Patch Conforming method will be applied by default

Page 34: AM 12 Appendix A

Appendix A: Mesh Quality

A-34ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualExamine the Mesh

• The Patch Conforming method meshes each individual surface. This produces a poor quality mesh on some surfaces in this geometry. Examine the surface mesh and look for regions of poor mesh quality. By switching between Geometry and Mesh in the Outline tree relate regions of poor mesh quality to the underlying surface geometry. Some examples are shown here:

Page 35: AM 12 Appendix A

Appendix A: Mesh Quality

A-35ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualAdding Virtual Topology

• Virtual Topology allows you to merge adjacent surfaces, removing undesirable surface geometry feature and producing a higher quality mesh

15. Right-click on Model (A3) in the Outline tree and select Insert > Virtual Topology

• A Virtual Topology entry is added to the Outline tree

• In the Details view note that the Behaviour is set to Low

16.Right-click on Virtual Topology in the Outline tree and select Generate Virtual Cells• This automatically creates virtual cells using a “Low” merging strategy.

“Medium” and “High” strategies are likely to result in more faces being merged into virtual cells

Page 36: AM 12 Appendix A

Appendix A: Mesh Quality

A-36ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualVirtual Topology

• When Virtual Topology is selected in the Outline tree the viewer shows all virtual cells that have been created

• Examine the new surface geometry and note that most of the problematic faces have been merged to produce a cleaner surface geometry

17. In the Details view change the Behaviour to Medium• Right-click on Virtual Topology in the Outline tree and select Generate

Virtual Cells

• Note that more faces have been merged into virtual cells

18.Try generating virtual cells using the High option for Behaviour• This does not work as well for this

geometry as shown to the right

19.Switch back to the Medium option and generate the virtual cells again

Page 37: AM 12 Appendix A

Appendix A: Mesh Quality

A-37ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualExamine Improved Mesh

20.Re-create the surface mesh and examine the regions that previously showed poor mesh quality• You should find that the surface mesh has been greatly improved

21.There are still some regions where the mesh quality could be improved. The arrows below shows one of these locations.• If you zoom in and examine the geometry here you will find a kink at the

edge of the surface

Page 38: AM 12 Appendix A

Appendix A: Mesh Quality

A-38ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualAdding Virtual Cells Manually

22.You can manually add Virtual Cells to improve the mesh further

• Pick the Face selection icon from the toolbar

• Orient the view approximately as shown below (note the X-Y axes)

• Check that Virtual Topology is selected from the Outline tree

• Select the four faces shown below, then right-click and select Insert > Virtual Cell

1 2

4

3

Page 39: AM 12 Appendix A

Appendix A: Mesh Quality

A-39ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualExamining Improved Mesh

23.Re-create the surface mesh and examine the region again• You should find an improved surface mesh

• You can continue adding Virtual Cells as necessary• In some cases the automatic virtual cell creation may merge faces that

you do not want to merge. You can delete individual virtual cells by selecting the Virtual Face from below the Virtual Topology entry in the Outline tree and right-clicking to delete.

24.Right-click on Mesh and select Generate Mesh to create the final solid mesh

Page 40: AM 12 Appendix A

Appendix A: Mesh Quality

A-40ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualViewing the Fluid Body

• The next step is to create the mesh for the fluid region

25. In the Outline tree expand the Geometry > Part section

• Right-click on the first solid and select Hide Body to hide the solid region

• Right-click on the suppressed (second) solid and select Unsuppress Body

• With the second solid selected, in the Details view expand the Graphical Properties section and set the Transparency to 1

Page 41: AM 12 Appendix A

Appendix A: Mesh Quality

A-41ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualAdding Inflation

26.Select Virtual Topology from the Outline tree• Virtual Cells have already been created on the fluid region from earlier

27.Check that the automatic virtual cells look reasonable• There should be no small surfaces remaining in the model

28.The next step is to add inflation to the fluid walls• Right-click on Mesh and select Insert > Inflation

• In the Geometry field you need to select the solid body corresponding to the fluid region from the Viewer then click Apply

• Once this has been selected click on No Selection in the Boundary field so that the Apply / Cancel buttons appear

Page 42: AM 12 Appendix A

Appendix A: Mesh Quality

A-42ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualCreating the Fluid Mesh

• Now select one of the faces from the model that is not an inlet or outlet

• Select Extend to Limits from the toolbar as shown:

– All the fluid walls should now be selected

• Click Apply in the Boundary field in the Details view

29.To generate the final mesh right-click on Mesh and select Generate Mesh

Page 43: AM 12 Appendix A

Appendix A: Mesh Quality

A-43ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualChecking the Mesh Quality

30.Expand the Statistics entry and set theMesh Metric to Skewness. Note that theMax Skewness is within the acceptable rangefor the FLUENT solver.

31. If you had generate the mesh without VT, theMax Skewness would have been considerablyhigher

Without Virtual Cells

Page 44: AM 12 Appendix A

Appendix A: Mesh Quality

A-44ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualFluid Region Mesh

NO VT

VT

Page 45: AM 12 Appendix A

A-45ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

FLUENT and CFX Mesh Quality Metrics

Workshop A.2

Page 46: AM 12 Appendix A

Appendix A: Mesh Quality

A-46ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualGoals

• This hands on tutorial will demonstrate how the Meshing Application in ANSYS is used to generate a CFD mesh for an internal flow domain

• The geometry represents portions of an aerospace valve region, decomposed into 3 bodies

• The goal is to produce a conformal hybrid CFD mesh including hex, pyramid, prism and tetrahedral elements including pinch controls and to examine mesh quality metrics for the Fluent and CFX solver preferences

Page 47: AM 12 Appendix A

Appendix A: Mesh Quality

A-47ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualCreating a Meshing System

1. Launch ANSYS Workbench from the START menu

2. Click on Component Systems in the Toolbox on the LHS of the WB main panel

3. Double click the Mesh option

Page 48: AM 12 Appendix A

Appendix A: Mesh Quality

A-48ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

4. Right click (RMB) on the Geometry button and select Import Geometry (the question mark on the button goes away once a geometry file is imported)

5. Import the Aero-Valve.agdb file from the tutorial folder6. Double click on the Mesh button in the Project Schematic to launch the Meshing

Application

Importing the Geometry

Page 49: AM 12 Appendix A

Appendix A: Mesh Quality

A-49ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualGeometry

7. The original geometry is a Solid part and the Fluid region was extracted out in DesignModeler (DM). Other operations performed in DM;• A parameter was defined for the position of the valve• Some outlet ports were closed• One multi-body part was created and a given the name “Fluid” and the material “Fluid”• Individual bodies were re-named and Named Selection was used to define the Inlet

and Outlet• Fillets were added to some

sharp corners to improvemesh quality

Page 50: AM 12 Appendix A

Appendix A: Mesh Quality

A-50ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

8. In the Meshing Options panel select the following meshing options:• Physics Preference

– CFD

• Mesh Method

– Automatic

• Click OK after youmake the selection

• In Units, make sure the setting is mm

Meshing Options

Page 51: AM 12 Appendix A

Appendix A: Mesh Quality

A-51ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

9. Set global “Mesh” control parameters:• Click on Mesh to change settings• Verify Defaults

– Physics Preference • CFD

– Solver Preference• Fluent or CFX

– Fluent is used initially, but results for the CFXsetting are also presented

• Set Sizing parameters– Set Use Advanced Size Function

• On: Curvature

– Set Curvature Normal Angle to 15°– Set Min Size to 0.20 mm– Maintain all other defaults

Global Mesh Parameters

Page 52: AM 12 Appendix A

Appendix A: Mesh Quality

A-52ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

10.Set Inflation parameters• Click drop-list for Use Automatic Tet Inflation and select Program

Controlled, leave all others as default

• Set Maximum Layers to 4• Activate View Advanced Options

11.Set Pinch control

• Set Pinch Tolerance = 0.15 mm• Activate Generate on Refresh

12.Set Mesh Metrics to Skewness ( for Fluent)

Inflation and Pinch Parameters

Note: Program Controlled Inflation will add inflation on all boundaries that do not have assigned Name Selection. It does not add inflation to Fluid-Fluid interfaces

Note: Smooth Transition provides a transition between the inflation layers and the tetrahedral mesh following the specified Growth Rate

Note: Layer Compression is the default Collision Avoidance for Fluent and Stair Stepping is default for CFX

Note: When edge length or distance between vertices is less than the pinch tolerance, software will ignore the edge or remove extra vertex during meshing

Note: Pinch Tolerance should be smaller than Size Function Min Size

Page 53: AM 12 Appendix A

Appendix A: Mesh Quality

A-53ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

13.Create Pinch control :• Right-Mouse-Button -click in the Tree (RMB (Tree))

• Select Create Pinch Controls– 10 Pinch Controls are created (Expand the Mesh button to list the pinch

controls)

Pinch Controls

Page 54: AM 12 Appendix A

Appendix A: Mesh Quality

A-54ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualViewing Pinch Controls

14.View the Pinch Controls• Ctrl Left-Mouse-Button – Select the Pinch controls, these will be

highlighted in the viewing window

Page 55: AM 12 Appendix A

Appendix A: Mesh Quality

A-55ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

15.Assign Sweep Method to the inlet and outlet bodies:

Sweep Method

• Select Mesh button in Tree

• Select the bodies (as shown below)– Set the Cursor Mode to Body Selection– Left-Mouse-Button click (Select) one sweepable body– Hold Ctrl key and select the second body

• Insert Method– Right-Mouse-Button -click in the graphics window (RMB (Window))– Insert - Method

• The “Automatic Method” form appears

• In the Automatic Method form– Select Sweep from the – pull-down menu

Page 56: AM 12 Appendix A

Appendix A: Mesh Quality

A-56ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

16.Set Sweep Method controls• Src/Trg Selection;

– Select Manual Source– Click on the Source Selection Field

• This will activate the face picker

– Hold the Ctrl key and pick both the Inlet and the Outlet face

– Apply the Selection

• Additional Settings– Set Free Face Mesh Type; All Quad– Set Sweep Num Divs; 20– Set Sweep Bias Type; _ __ ___ __ _

– Set Sweep Bias; 4

Sweep Method Settings

Inlet

Outlet

Page 57: AM 12 Appendix A

Appendix A: Mesh Quality

A-57ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

17.2D-Inflation on swept bodies:• Pick Faces;

– Set the Cursor Mode to Face Selection– Select the Inlet and Outlet faces (green)– RMB (Window) Insert-Inflation

• Pick Edges– Set the Cursor Mode to Edge selection– Select four edges surrounding the

inlet and outlet faces (marked in red)– Apply the selection

• Inflation Settings– Set Maximum Thickness:

• 3.0 mm– Maintain all other options

Inflating the Sweep

Page 58: AM 12 Appendix A

Appendix A: Mesh Quality

A-58ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

18.Surface-mesh the model:• Right-click on Mesh and select Preview Surface Mesh

– This will provide us with feedback about mesh quality and density

– The Advanced Size Function creates a very fine mesh in the swept bodies, • We can reduce the size by specifying the edge intervals on the Inlet and Outlet

Initial Surface Mesh

Page 59: AM 12 Appendix A

Appendix A: Mesh Quality

A-59ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualEdge Sizing

19.Scoped edge mesh on swept bodies:• Insert Scoped Edge Size ;

– Activate edge picker– Pick the four edges

surrounding the inlet and outlet faces

– Right-click – Insert ->Sizing

• Set Parameters– Change the Type

• Number of Divisions; 20

– Change Behavior; Hard

Page 60: AM 12 Appendix A

Appendix A: Mesh Quality

A-60ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

20.Check the inflation layer: (Optional)• Right-click on Mesh and select Preview Inflation

– View the mesh Statistics, mesh size and max skew is around 310000 and 0.92 respectively

– We are ready for volume meshing

Preview Inflation

.

Page 61: AM 12 Appendix A

Appendix A: Mesh Quality

A-61ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

21.Mesh the model:• RMB (Tree) select Generate Mesh

– Again, check the Statistics for the total element count and Max Skewness which will be around 926000 and 0.92 respectively

Volume Mesh with Fluent Settings

.

Page 62: AM 12 Appendix A

Appendix A: Mesh Quality

A-62ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

22.Create a Section Plane:• Click on the Z-Axis at the lower

right corner to orient the model• Click the Selection Plane icon• Press and hold the left mouse

button while moving along the indicated red arrow then release

• The position of the Section Plane can be adjusted by moving the slider bar

• Click on “Show Whole Element”

• Reselect the rotation button to adjust the view

Using a Section Plane to View Internal Mesh

Page 63: AM 12 Appendix A

Appendix A: Mesh Quality

A-63ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

23.Rotate the geometry to view the mesh• RMB (Tree) Show Worst Elements

– Note the location; far from the main flow field

Viewing the Worst Elements

Tip: Select ‘Wireframe’ from the ‘View’ menu to help see the element

Page 64: AM 12 Appendix A

Appendix A: Mesh Quality

A-64ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualCFX Solver Preference

24.Using CFX Solver Preference (optional)• Change Solver Preference: CFX

• RMB (Tree) select Generate Mesh

– Note the higher Max Skewness for the CFX Solver settings

Page 65: AM 12 Appendix A

Appendix A: Mesh Quality

A-65ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training Manual

25.Check quality in FEModeler (optional)• Meshing application

– RMB (Tree) Update– Close Meshing Application

• Workbench 2– Drag-and-Drop FE Modeler on

top of Mesh in the Project Schematic– Double click on Model

• FEModeler– RMB (Tree) Insert Mesh Metrics– Mesh Metrics - Valve – 4 Node

Linear Tetrahedron– Set Mesh Metric Type: Aspect Ratio

– Max aspect ratio is less than 50

Checking the Quality in FEModeler

.

Page 66: AM 12 Appendix A

Appendix A: Mesh Quality

A-66ANSYS, Inc. Proprietary© 2009 ANSYS, Inc. All rights reserved.

April 28, 2009Inventory #002645

Training ManualSaving the Project

26.The mesh is now complete

• Select File > Close to close FEModeler

• In the WB panel select Update

• In the WB panel select File > Save Project As… and give the project a name

• Exit from ANSYS Workbench by selecting File > Exit