ammonia as an efficient cox-free hydrogen carrier ......fundamentals and applications. 1. hydrogen...

30
Young Suk Jo Korea Institute of Science and Technology AIChE, 2018.10.31 Ammonia as an Efficient CO X - free Hydrogen Carrier: Fundamentals and Applications

Upload: others

Post on 20-Oct-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

  • Young Suk JoKorea Institute of Science and Technology

    AIChE, 2018.10.31

    Ammonia as an Efficient COX-free Hydrogen Carrier:

    Fundamentals and Applications

  • 1. Hydrogen Energy

    2. Ammonia as an Efficient COX Hydrogen Carrier

    3. Technical Applications

  • Hydrogen Energy

    H2

    2013 2014 2015

    NEXO

    2018

    609 km of Driving range

    “Korean government expects 5000 H2 stations by 2030”

    Congress R&D Meeting(’18.03.30)

    Clarity

    MIRAI

    Tucsan

  • Elements on Earth

    Oxygen

    47%

    Silicon

    28%

    Al 8%

    Fe 5%

    Others

    12%

    Nitrogen

    78%

    Oxygen

    21%

    Ar 0.9%

    Trace 0.1%

  • Energy Density of Hydrogen

    U.S. Department of Energy

  • Research Motivation

    Production

    Storage

    Utilization

  • Hydrogen Society - Final Goal

    Excess renewable E

    BatteryESS

    for < MWh

    Wind

    Electrolyzer Power Transportation

    H2

    Solar

    E-Chemicals/Chemicals(e.g., eH2,

    eNH3, eMeOH)

    H2O, N2/H2O

    CO2/H2O

    Fuel Cells

    Fossil FuelsReforming

    P2L

    H2

    P2G

    (e.g., CH4)

    e-

    Transportation

    CCS

    ConventionalRenewable

    House

  • Ammonia as a H2 Carrier

    ReleaseStoreHydrogenation

    NH3

    N2

    ➲ Well-developed NH3 synthesis process ( Haber-Bosch )

    ➲ Easy storage (0.8 MPa, 20 ℃, liquid) & transportation

    ➲ High hydrogen contents ( 17.7 wt%, 108 gH2/ L(l) )

    No further emission of CO2)

    Dehydrogenation

    Electrolysis PEMFC

  • Ammonia to Hydrogen

    N2NH3

    H2NH3

    NH3Decomposition

    H2Purification

    NH3Removal

    • On-site power generation• Hydrogen station

    High-purityHydrogen

  • COX-free Power-pack fueled by NH3

    Chem E (NH3) Fuel CellReformer

    Chem E (C4H10) Combustor

    Heat E (Heat)

    Cham E (H2)

    Applications

    Electrical E

    Jo. Y., et al., Applied Energy 224:194-204, 2018

  • Catalyst Development

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    Surface area

    (m2/g)

    Pore size

    (cm3/g)

    Pore

    diameter

    (Å)

    Al2O3 155.3 0.52 129.5

    La(10)-Al2O3

    145.8 0.60 160.5

    La(20)-Al2O3

    95.62 0.46 188.8

    La(30)-Al2O3

    59.47 0.28 184.5

    La(40)-Al2O3

    47.30 0.22 176.9

    La(50)-Al2O3

    35.76 0.17 189.3

    La doped Al2O3 LaAlO3 (perovskite phase)

    La mol (↑) Surface area, Pore size (↓)

  • Catalyst Evaluation

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    ➲ 10 or 20 mol% of La promoted Al2O3 showed activities

    ➲ La(10)-Al2O3 density 0.55 g/mL , La(20)-Al2O3 density 0.78 g/mL

    ➲ Select Ru2 wt%/La(20)-Al2O3

  • Reactor Development

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    > 99.7% Conversion

    Amount of H2 produced>800 L (2.6 kWh)

    ➲ Stable operation for about 60 min at 550 ℃(currently ~ 7 months durability tested)

    ➲ Energy efficiency 70%

    Adsorbent MaterialsCapacity

    (mmol NH3/g)

    13X zeolite 3.08

    HY zeolite 1.31

    HZSM-5 zeolite 0.23

    10 wt% Mg-Al2O3 0.46

    10 wt% Ca-Al2O3 0.38

  • System Process Design

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    1 kW PEMFC

    13X Zelolite

    Ru/La-Al2O3

    Reactor

  • System Integration

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    0 20 40 60 80 100 120

    0

    200

    400

    600

    800

    1000

    1200

    Fu

    el C

    ell P

    ow

    er

    Ou

    tpu

    t (W

    )

    Time (min)

    Butane + Hydrogen

    > 2.3kWh

    NH3 9L/min [ 32A, 32.7V ]

    Power Generation Demonstration

  • Efficiency Analysis

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    Reformer: ~ 63 %System: ~ 31%

    2 3 4 5 6 7 8

    35

    40

    45

    50

    55

    60

    Reformer Efficiency

    System Efficiency

    NH3 Feed rate (L min

    -1)

    Re

    form

    er

    Eff

    icie

    nc

    y (

    %)

    18

    20

    22

    24

    26

    28

    30

    32

    34

    Sy

    ste

    m E

    ffic

    ien

    cy

    (%

    )

    ➲ Reformer ηNH3 feed rate, heat source/transfer

    ➲ System η Waste H2 recovery

  • NH3 to H2 to Electricity - Best Efficiency Reported

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    6 10 14 18 22

    20

    25

    30

    35

    40

    45

    50

    Sy

    ste

    m E

    ffic

    ien

    cy

    (%

    )

    Current Loaded (A)

    Hydrogen

    Butane + Hydrogen

    Butane

    (b)

    OriginalReformer Efficiency: ~ 63 %System Efficiency: ~ 31%

    Improved~ 84 %~ 49 %

  • Electricity from Ammonia

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    0 50 100 150 200 250 3000

    1

    2

    3

    4

    5

    6

    7

    8

    System weight (kg)

    Gra

    vim

    etr

    ic h

    yd

    rog

    en

    cap

    acit

    y (

    gH

    2/g

    syste

    m)

    0

    10

    20

    30

    40

    50

    60

    Vo

    lum

    etr

    ic h

    yd

    rog

    en

    cap

    acit

    y (

    gH

    2/L

    syste

    m)

    ReactorCatalyst

    Ammonia Tank

    Power Pack Packaging

    PEMFCUS DOE target

    (onboard automotive H2 storage)

    ➲ 3.4 wt% system based (with heavy NH3 tank)

    ➲ 4.9 wt% expected (with light NH3 tank)

  • Jo. Y., et al., Applied Energy 224:194-204, 2018

    Tethered Drone Application

  • First Flight Test

    Duration Test

  • Ammonia Energy Scenarios

    Renewable Hydrogen

    2018.07.13“Liquid sunshine: Ammonia made from sun, air, and water could turn Australia into a renewable energy superpower,”

    2018.05.03

    2018.08.08

  • NH3 to H2 using Membrane Reactor

    Membrane

    Catalyst

    MR(Simultaneous reforming + purification)

    MemCatalyst

    Reforming Purification

  • Novel NH3 MR Concept

    Jo. Y., et al., Journal of Power Sources 400:518-526, 2018

  • Membrane and Membrane Reactor

    Jo. Y., et al., Journal of Power Sources 400:518-526, 2018 Jo. Y., et al., Seperation and Purification Technology 200:221-229 (2018)

    Jo. Y., et al., Applied Energy 224:194-204, 2018

  • Performance Improvements

    Jo. Y., et al., Journal of Power Sources 400:518-526, 2018

  • Comparisons

    Jo. Y., et al., Journal of Power Sources 400:518-526, 2018

  • 암모니아 분리막 반응기

    Jo. Y., et al., Journal of Power Sources 400:518-526, 2018

  • Ammonia: What needs to be done?

  • Novel Strategy: H2 as a Heat Source

    Jo. Y., et al., Applied Energy 224:194-204, 2018

    𝑆𝐿 ~ 180 𝑐𝑚/𝑠

    𝑆𝐿 ~ 35 𝑐𝑚/𝑠