научная сессия-конференция секции ЯФ ОФН РАН 27 ноября...

Post on 04-Jan-2016

47 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Status of NICA Project N uclotron-based I on C ollider f A cility. G. Trubnikov for NICA Collaboration. научная сессия-конференция секции ЯФ ОФН РАН 27 ноября 2009 г. Contents Introduction: “The physics case” and goals of the NICA project 1. NICA scheme & layout - PowerPoint PPT Presentation

TRANSCRIPT

1научная сессия-конференция секции ЯФ ОФН РАН

27 ноября 2009 г.

Status of NICAStatus of NICA ProjectProjectNNuclotron-baseduclotron-based I Ionon CColliderollider ffAAcilitycility

G. Trubnikovfor NICA Collaboration

2

ContentsIntroduction:

“The physics case” and goals of the NICA project

1. NICA scheme & layout

2. Heavy ions in NICA

2.1. Operation regime and parameters

2.2. Collider

3. Polarized particle beams in NICA

4. NICA project status and nearest plans

Conclusion

3

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

n/n_nuclear

(n_nuclear = 0.16 fm-3)

Introduction: Relativistic nuclear physics today & “the physics case” of NICA

critR

HIC (2

009)

stars

4

The NICA Project goals

formulated in NICA CDR are the following:

1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at

sNN = 4 11 GeV (1 4.5 GeV/u ion kinetic

energy ) at

Laverage= 11027 cm-2s-1 (at sNN = 9 GeV)

1b) Light-Heavy ion colliding beams of the same energy range and luminosity

2) Polarized beams of protons and deuterons:

pp sNN = 12 25 GeV (5 12.6 GeV kinetic energy )

dd sNN = 4 13.8 GeV (2 5.9 GeV/u ion kinetic

energy )

Introduction: Relativistic nuclear physics today & “the physics case” of NICA

5

NICA scheme & layout

Synchrophasotron yoke

Nuclotron

Existing beam lines(Fixed target exp-s)

ColliderC = 251 m

“Old” linac

KRION-6T & HILac

Beam transfer line

MPD

Spin Physics Detector (SPD)

2.3 m

4.0 m

Booster

6

1. NICA scheme & layout

(Contnd)

“Old” Linac LU-20

KRION + “New” HILACBooster

Nuclotron

Collider MPD

SPD Beam dump

7

2. Heavy ions in NICA

Nuclotron (45 Tm)injection of one

bunch of 1.1×109 ions,

acceleration up to 14.5 GeV/u max.

Collider (45 Tm)Storage of

17 (20) bunches 1109 ions per ring

at 14.5 GeV/u,electron and/or stochastic

cooling

Injector: 2×109 ions/pulse of 197Au32+ at energy of 6.2 MeV/u

IP-1

IP-2

Two superconductingcollider rings

2.1. Operation regime and

parameters

Booster (25 Tm)1(2-3) single-turn

injection, storage of 2 (4-6)×109,acceleration up to 100

MeV/u,electron cooling,acceleration up to 600 MeV/uStripping (80%) 197Au32+ 197Au79+

2х17 (20) injection cycles

Bunch compression (RF phase jump)

8

Stage E MeV/u

unnorm mmmrad

p/p lbunc

h m

Intensityloss,%

Space charge

Q

Injection (after bunching on 4th harmonics

6.2 10 1.3E-3

6 10 0.022

After cooling (h=1)

100 2.45 3.8E-4

7.17

<10 0.016

At extraction 600 0.89 3.2E-4

3.1 0.0085

Injection (after stripping)

594 0.89 3.4E-4

3.1 <20 0.051

After acceleration

3500 0.25 1.5E-4

2 <1 0.0075

At extraction 3500 0.25 110-3 0.5 Loss = 40%

Nextr= 1E9

0.03

2. Heavy ions in NICA

(Contnd)

Bunch parameters dynamics in the injection

chain

2.1. Operation regime and

parameters

9

0

0,5

1

1,5

2

0 2 4 6

2. Heavy ions in NICA

(Contnd)Time Table of The Storage

Process

2.1. Operation regime and

parameters

B(t

), a

rb. u

nit

s0

0,5

1

1,5

2

0 2 4 6

Booster magnetic field

B(t

), a

rb. u

nit

s

Nuclotron magnetic field

t, [s]

t, [s]

electroncooling

1 (2-3) injection cycles,electron cooling (?)

Extraction, stripping to 197Au79+

bunch compression,extraction

injection

34 injection cycles to Collider ringsof 1109 ions 197Au79+ per cycle

1.71010 ions/ring

10

2. Heavy ions in NICA

(Contnd)

MPD

RF

I.Meshkov, O.Kozlov, V.Mikhailov,A.Sidorin, A.Smirnov, N.Topilin

SPDx,y kicker

10 m

Injection channels

Spin rotator

2.2.

Collider

Upper ring

Beam dump

Long. kicker

S_Cool PUx, y, long

E_cooler

11

Ring circumference, [m] 251.52

B max [ Tm ] 45.0

Ion kinetic energy (Au79+), [GeV/u]

1.0 4.56

Dipole field (max), [ T ] 4.0

Quad gradient (max), [ T/m ] 29.0

Number of dipoles / length 24 / 3.0 m

Number of vertical dipoles per ring

2 x 4

Number of quads / length 32 / 0.4 m

Long straight sections: number / length

2 x 48.0 m

Short straight sections: number / length,

4 x 8.8 m

2. Heavy ions in NICA

(Contnd) 2.2. Collider

(Contnd)General Parameters

12

βx_max / βy_max in FODO period, m

16.8 / 15.2

Dx_max / Dy_max in FODO period, m

5.9 / 0.2

βx_min / βy_min in IP, m 0.5 / 0.5

Dx / Dy in IP, m 0.0 / 0.0

Free space at IP (for detector)

9 m

Beam crossing angle at IP 0

Betatron tunes Qx / Qy 5.26 / 5.17

Chromaticity Q’x / Q’y -12.22 / -11.85

Transition energy, _tr / E_tr 4.95 / 3.012 GeV/u

RF system harmonics amplitude,

[kV]

102 100

Vacuum, [ pTorr ] 100 10

2. Heavy ions in NICA

(Contnd)2.2. Collider General parameters

(Contnd)

13

Energy, GeV/u 1.0 3.5

Ion number per bunch 1E9 1E9

Number of bunches per ring 17 17

Rms unnormalized beam emittance, ∙mm mrad

3.8 0.25

Rms momentum spread 1E-3 1E-3

Rms bunch length, m 0.3 0.3

Luminosity per one IP, cm-2∙s-1 0.75E26 1.1E27

Incoherent tune shift Qbet 0.056 0.047

Beam-beam parameter 0.0026 0.0051

IBS growth time, s 650 50

2. Heavy ions in NICA

(Contnd) 2.2. Collider General

parameters (Contnd)Collider beam parameters and

luminosity

14

2) Injection and storage with barrier bucket

technique and cooling of a coasting (!) beam,

20 bunches, bunch number is limited by interbunch space in IP

straight section, bunch compression in Nuclotron is NOT required (!) Electron and/or stochastic cooling for storage and

luminosity preservation, bunch formation after storage

are required.

2. Heavy ions in NICA

(Contnd)

Two injection schemes are considered:

1) bunch by bunch injection, 17 bunches: bunch number is limited by kicker pulse duration, bunch compression in Nuclotron is required (!) Electron and/or stochastic cooling is used for

luminosity preservation.

2.2. Collider (Contnd)

Under development by Prof. T.Katayama (retired from Tokyo Univ.)

15

3. Heavy ions in NICA

(Contnd)What is “old” and what is

new?3.2. Collider: the problems to be

solved

Collider SC dipoles with max B up

to 4 T,

“Flexible” lattice (transition energy change

with energy), RF parameters (related problem), Single bunch stability, Vacuum chamber impedance and multibunch

stability, Electron clouds (vacuum chamber coating?), Stochastic cooling of bunched ion beam, Electron cooling at electron energy up to 2.5

MeV.

see below

16

3. Polarized particle beams

in NICALongitudinal polarization formation MPD

Yu.Filatov,I.Meshkov

BB

Upper ring

SPD

Spin rotator:

“Full Siberian snake”

“Siberian snake”: Protons, 1 E 12 GeV (BL)solenoid 50 T∙m

Deuterons, 1 E 5 GeV/u (BL)solenoid 140 T∙m

17

Energy, GeV 5 12

Proton number per bunch 6E10 1.5E10

Rms relative momentum spread 10E-3 10E-3

Rms bunch length, m 1.7 0.8

Rms (unnormalized) emittance, mmmrad

0.24 0.027

Beta-function in the IP, m 0.5 0.5

Lasslet tune shift 0.0074 0.0033

Beam-beam parameter 0.005 0.005

Number of bunches 10 10

Luminosity, cm-2∙s-1 1.1E30

1.1E30

3. Polarized particle beams in NICA

(Contnd)

Parameters of polarized proton beams in collider

18

4. NICA project status and plans

January 2008

NICA CDR MPD LoI

Conceptual Design Reportof

Nuclotron-based Ion Collider fAcility (NICA)(Short version)

January 2009

NICA CDR (Short version)

19

4. NICA project status and plans (Contnd)

Since publication of the 1-st version of the NICA CDR

The Concept was developed, the volumes I and II of the

TDR have been completed:

Volume I – Part 1, General description

Part 2, Injector complex

Volume II – Part 3, Booster-Synchrotron

20

4. NICA project status and plans (Contnd)

Ускорительно-накопительныйкомплекс NICA

(Nuclotron-based Ion Collider

fAcility)

Технический проект

Том I

Дубна, 2009

Ускорительно-накопительныйкомплекс NICA

(Nuclotron-based Ion Collider

fAcility)

Технический проект

Том II

Дубна, 2009

August 2009

NICA TDR (volumes I & II)

21

4. NICA project status and plans (Contnd) Approved byDirector of JINR

academician A.N.Sisakian____________________

Nuclotron-based Ion Collider fAcility (NICA) "____ " 2009 г.

Technical Design ReportProject leaders: A.Sisakian,A.Sorin

TDR has been developed by the NICA collaboration:JINR

Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets,

E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets,

V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky,

R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov,

S.Yakovenko, V.Zhabitsky

Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov,

T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin IHEP, Protvino O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev,

INR RAS, TroitskV.Matveev, A.Belov, L.Kravchuk

Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan

ITEP, Moscow: A.Bol’shakov, V.Kapin, B.Sharkov, P.Zenkevich

Chief engineer of the Project V.Kalagin, Chief designer of the Project N.Topilin

Editors: I.Meshkov, A.Sidorin

22

Infrastructure

Control systems

PS systems

Diagnostics

Collider

Transfer channel to Collider

Nuclotron-NICA

Nuclotron-M

Booster + trans. channel

LINAC + trans. channel

KRION

2015201420132012201120102009

operation

comms/operatn

mountg+commssiong

Manufctrng + mounting

design

R & D

4. NICA project status and plans

Booster: magnetic system

23

To be commissioned in

2013.

4. NICA project status and plans

4.3. Nuclotron-

NICA

To be designed, constructed and commissioned:

1.Injection system (new HILAC)

2.RF system – new version with bunch

compression

3.Dedicated diagnostics

4.Single turn extraction with fine

synchronization

5.Polarized protons acceleration in

Nuclotron

24

Nuclotron provides now performance of experiments on accelerated proton and ion beams (up to Fe24+, A=56) with energies up to 5,7 and 2,2 GeV/n correspondingly (project parameters for ions is 6 GeV/n with Z/A = 0,5)

25

10 stages-subprojects of the Nuclotron-M project

Beam dynamics: minimization of the beam losses at all stages from injection to acceleration and to extraction of the beams (not more then 15-20%, we have about 50-80%).

- Modernization of ion source KRION to KRION 6T;

- Improvement of the vacuum in the Nuclotron ring;

- Development of the power supply system, quench detection and energy evacuation system;- Modernization of the RF system (including trapping & bunching systems, controls and diagnostics);- Modernization of the slow extraction system for accelerated heavy ions at maximal energies;

- Modernization of automatic control system, diagnostics and beam control system;

- Transportation channel of the extracted beams and radiation safety;- Improvement of the safety, stability and economical efficiency of the cryogenics;- Modernization of the injector complex (fore-injector and linac) for acceleration of heavy ions;- Development and creation of high intensity polarized deutron source

26

Nuclotron-M beams in 2010 and further (until NICA commissioning):- Deutrons, protons – development of existing physics program + appl. research- Light ions – hypernuclei, applied research (medicine, radiobiology, etc)- Heavy ions – R&D for detector elements, key accelerator technologies for NICA (stripping, fast injection/extraction, cooling, electron clouds effect, etc) - Polarized deutrons from new intense source (polarimetry, etc.)

Nuclotron-MIntensity >10^7 ppc

(with KRION-2)

Energy 6 Gev/n(for Z/A = 1/2)

Field ~ 2T

Heavy ions (A=100-200)

Stable, safe,long operation

Development of the KRION ESIS

Vacuum improvement

Injector modernization+

Energy evacuation system

Quench protection system

Slow extraction at HE

Control, diagnostics, RF

Power supply system modernization

Cryogenics modernization

Radiation safety

27

Machine advisory committee (MAC)– Boris Sharkov, (ITEP), chairman– Pavel Beloshitsky, (CERN)– Sergei Ivanov, (IHEP)– Thomas Roser, (BNL) – Markus Steck, (GSI)– Nicholas Walker, (DESY)

1-st report on Nuclotron-M Jan 2009 1-st review on NICA June 2009 The next meeting is foreseen in Dubna Jan 2010

28

Nuclotron-M/NICA Machine Advisory Committee

29

HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL),

under design and construction (O.Belyaev & the Team, IHEP, Protvino).

4. NICA project status and plans

4.1.

Injector KRION - Cryogenic ion source of “electron-string” type

developed by E.Donets group at JINR. It is aimed to

generation of heavy multicharged ions (e.g.197Au32+).

RFQ Electrode

s

2H cavities of "Ural" RFQ(prototype)

Sector H-cavityof “Ural” RFQ

DTL(prototype)

E.D.DonetsE.E.Donets

KRION-6T Cryostat & vac. chamber

To be commissioned in

2013.

To be commissioned in

2013.

30

4. NICA project status and plans

4.2. Booster

Superconducting Booster

in the magnet yoke

of The SynchrophasotronSynchrophasotron

yoke

B = 25 Tm, Bmax = 1.8 T1)3 single-turn injections 2) Storage and electron

cooling of 8×109 197Au32+

3) Acceleration up to 600 MeV/u

4) Extraction & stripping

A.ButenkoV.MikhailovG.KhodjibagiyanN.Topilin

Nuclotron

Booster

“Nuclotron-type” SC magnets for Booster

2.3 m

4.0 mVladimir I. Veksler

Dismounting is in progress presently

31

4. NICA project status and plans

4.2. Booster

(Contnd)

The technical design of the Booster is in progress,

The Booster is to be commissioned in 2013.

32

4. NICA project status and plans4.2. Booster

(Contnd)SC magnet technologySC magnet technology

SC hollow cable

33

RF system parameters

Frequency range,MHz

0.6 2.4

Maximum voltage amplitude, kV

10

Number of cavities

2

Cavity length, m

1.4

RF tube type EIMAC 4XC15.000A

4. NICA project status and plans4.2. Booster

(Contnd)RF system (designed by Budker INP)

34

4. NICA project status and plans 4.2. Booster

Contnd)Electron cooling system of the Booster

(Contnd)

e-gun e-collector

35

4. NICA project status and plans

4.4.

Collider

“Twin magnets” for NICA collider rings

“Twin” dipoles

“Twin” quadrupoles

1 – Cos coils, 2 – “collars”, 3 – He header,

4 – iron yoke, 5 – thermoshield, 6 – outer jacket

Double ring collider; (B)max = 45 Tm, Bmax = 4 T

A.KovalenkoG.Khodjibagiyan

To be commissioned in

2014.

36

4. NICA project status and plans

4.4. Collider (Contnd)

“Twin magnets” for NICA collider rings

“Twin” quadrupoles

Double ring collider; (B)max = 45 Tm, Bmax = 4 T

G.Khodjibagiyan et al.

“Twin” dipole field

37

4. NICA project status and plans4.4.

ColliderElectron cooling system of the ColliderMax electron energy, MeV 2.5Max electron current, A 0.5Solenoid magnetic field, T 0.3

“Magnetized” electron beamSolenoid type: “warm” at acceleration columns superconducting at transportation and

cooling sections

HV generator: Dynamitron type

I.MeshkovA.SmirnovS.Yakovenko

6 m

3 m

To be commissioned in

2014.Under development in collaboration with - All-Russian Institute for Electrotechnique (Moscow)

- FZ Juelich

- Budker INP

Warm, NbTi or HTSC

(?!)

38

GSI/FAIR SC dipoles for

Booster/SIS-100 SC dipoles for Collider

4. NICA project status and plans

4.5. NICA

Collaboration Budker INP Booster RF system Booster electron

cooling Collider RF system Collider SC magnets (expertise) HV electron cooler

for collider

Electronics (?)

IHEP (Protvino) Injector Linac FZ Jűlich (IKP)

HV Electron cooler

Stoch. cooling

Fermilab HV Electron

coolerBeam dynamics Stoch.

coolingAll-Russian Institute for

Electrotechnique HV Electron cooler

BNL (RHIC)

Electron &

Stoch. CoolingITEP: Beam dynamics in the collider

GSI/JINR/BNL2005 - 2009

Round Table Discussions I, II, III, IV JINR, Dubna, 2005, 2006, 2008

http://theor.jinr.ru/meetings/2008/roundtable/

Corporation “Powder Metallurgy” (Minsk, Belorussia): Technology of TiN coating of vacuum chamber walls for reduction of secondary emission

39

Thank you for your attention!

40

SPD 25

m

From Nuclotron

5. NICA project status and plans

5.5. “Collider

2T”

V.KalaginI.MeshkovV.MikhailovG.Trubnikov

Collider: C_Ring 380 м

Dipoles 2 Тл

Luminosity?

“The ambush regiment”

MPD

41

3. Heavy ions in NICA

(Contnd)3.2. Collider

(Contnd)

Ion trajectory in the phase space (p, )

2

V(t)Cavity

voltage

(p)i

on

0

Barrier Bucket Method

(p)i

on

0

NICA: Trevolution = 0.85 0.96 s, VBB 16 kV

The particle storage with barrier buckets method was tested

at ESR (GSI) with electron cooling (2008).

p > (p)separatrix

Unstable phase area

(injection area)In reality RF voltage pulses can be (and are actually) of nonrectangular shape

Cooling is ON

The first proposal: Fermilab, J. Griffin et.al., IEEE Trans. on Nuclear Science, v.NS30 No.4, 3502 (1983)

_stack

42

!

B [kG]

8

6

4

2

2. Heavy ions in NICA

(Contnd) 2.2. Collider (Contnd)

BETACOOL

simulation

Parameters

ion beam: 197Au79+ at 3.5 GeV/u, initial =0.5 ∙mm∙mrad, (p/p) = 1∙10-3

electron beam: Ie = 0.5 A, re = 2 mm, Te|| = 5 meV; = 0.024 (6 m/250 m)

IBS Heating and cooling – luminosity evolution at electron cooling

0

1E+27

2E+27

3E+27

4E+27

5E+27

6E+27

0 5 10 15 20 25reference time, sec

6

Luminosity

[1E27 cm-2∙s-1] 4

2

0

Te = 10 eV to reduce recombination!

43

For NICA bunch parameters (109 197Au79+ ions/bunch)

(Nbunch)necessary ~ 7108, (Nbunch)sufficient ~ 6109.

2. Heavy ions in NICA

(Contnd) 2.2. Collider: electron cloud effect

Electron cloud formation criteria

The necessary condition:

The sufficient condition (“multipactor effect”):

,lZr

b)N(

spacee

22

necessarybunch ⋅≥β

Here βc is ion velocity, Z – ion charge number, b – vacuum chamber radius,

re – electron classic radius, lspace – distance between bunches,

me – electron mass, c – the speed of light,

crit ~ 1 keV – electron energy sufficient for secondary electron generation.

.cm2Zr

b)N(

2e

crit

esufficientbunch

β⋅≥

44

5. NICA project status and plans

5.5. “Collider 2T”

(Contnd)Dipoles 2

Тл

G.Khodjibagiyan et al.

I.Meshkov, G.Trubnikov Status of NICA Project Seminar at BNL November 5, 2009

Victor Yarba, Alexander

Zlobin:

“Common coils” technology Fermilab, October 30, 2009

45

3. Polarized particle beams in NICA

(Contnd)Transverse polarization

formation MPD

SPD

B

Lower ring

Dipole “450”

B (450)

Dipole “450”

B (450)

46

Type of resonance

Resonance condition

Number of resonances at acceleration

p 0 – 12 GeV

d 0 – 6 GeV/u

1.Intrinsic res. Qs = kp Qz 6 0

2.Integer res. Qs = k 25 1 (5.6 GeV/u)

3.Nonsuperperiodic

Qs = m Qz , m kp

44 2

4.Coupling res. Qs = m Qx 49 2

3. Polarized particle beams in NICA

(Contnd)Polarized particle acceleration in Nuclotron:

Spin resonances

Q – betatron and spin precession tunes,

k, m – integers, p – number of superperiods (8 for Nuclotron)

Power of the Spin resonances: P1,2 ~ 103∙P3,4

top related