07-nodal analysis - · pdf filenodal analysis with voltage sources • properties of a...

Post on 06-Feb-2018

228 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

07-Nodal Analysis Text: 3.1 – 3.4

ECEGR 210

Electric Circuits I

Overview

• Introduction

• Nodal Analysis

• Nodal Analysis with Voltage Sources

Dr. Louie 2

Introduction

• Basic Circuit Laws

Ohm’s Law

Kirchhoff’s Voltage Law (KVL)

Kirchhoff’s Current Law (KCL)

• Now we seek to analyze any linear circuit systematically using

Nodal analysis

Mesh analysis

Dr. Louie 3

Introduction

• Express circuit as a system of linear equations

• Solve linear equations

Substitution

Gaussian elimination

Cramer’s Rule

Numerical methods

Others

• Remember: for a unique solution there must be an equal number of independent equations as unknowns

Dr. Louie 4

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

y y y x b

y y y x b

y y y x b

Introduction

• Let X be a vector of variables to be solved for

• Nodal Analysis:

X: node voltages

Y: conductances

b: currents

• Mesh Analysis:

X: loop currents

Y: resistances

b: voltages

Dr. Louie 5

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

y y y x b

y y y x b

y y y x b

Nodal Analysis

Steps to solve a circuit with N nodes

1. Assign a reference node

2. Assign a variable to the voltages at all nodes wrt the reference node (N-1 variables)

3. Apply KCL to each of the N-1 non-reference nodes to generate N-1 equations

4. Use Ohm’s Law to express currents as functions of node voltages

5. Solve resulting simultaneous equations

Dr. Louie 6

Nodal Analysis

• Let I1, I2, R1, R2, R3 be known (given)

• Solve for the voltages at each node

Dr. Louie 7

I1

I2

R1 R3

R2

Step 1: Assign Reference Node

• Recall: all voltage is a relative measure

• Reference node is also known as ground

In power systems it is actually the ground (earth)

In electronics it could be the metallic chassis

Or arbitrary

Dr. Louie 8

I1

I2

R1 R3

R2

(usually the “bottom” of circuit)

Step 2: Assign Variables to Nodes

• There are two remaining nodes (variables)

• Assign voltages and polarities wrt reference node

• No need to write voltage across R2

Does not add an independent equation (no new information)

Can solve later as V1 – V2

Dr. Louie 9

I1

I2

R1 R3

R2

+

- V1

+

- V2

x x

Step 3: Apply KCL

• KCL gives one equation per node (two equations)

• I1 = I2 + i1 + i2

• I2 = i3 – i2

Dr. Louie 10

I1

I2

i1 i3

i2

Step 4: Apply Ohm’s Law

• Need to write i1, i2, i3 in terms of the node voltages

• Remember sign convention

• i1 = (V1 - 0)/R1

• i2 = (V1 – V2)/R2

• i3 = (V2 - 0)/R3

Dr. Louie 11

I1

I2

i1 i3

i2

x x V2 V1

Step 5: Solve Equations

• Recap

two variables (V1, V2)

two KCL equations

• KCL equations use intermediate variables i1, i2, i3

I1 = I2 + i1 + i2

I2 = i3 – i2

• Use substitution to express KCL in terms of voltages

i1 = (V1 - 0)/R1

i2 = (V1 – V2)/R2

i3 = (V2 - 0)/R3

Dr. Louie 12

Step 5: Solve Equations

• Via substitution:

I1 = I2 + V1/R1 + (V1 – V2)/R2

I2 = V2/R3 – (V1 – V2)/R2

• Can we solve this system of equations?

• Yes!

Two independent equations, two unknowns

The rest is just math

Dr. Louie 13

Step 5: Solve Equations

• In matrix form

I1 = I2 + V1/R1 + (V1 – V2)/R2

I2 = V2/R3 – (V1 – V2)/R2

• Many methods of solving linear equations

Dr. Louie 14

1 2 2 1 1 2

2 2

2 3 2

1 1 1

R R R V I I

V I1 1 1

R R R

Example

• Let

I1 = 10A

I2 = 5A

R1 = 6Ω

R2 = 4Ω

R3 = 2Ω

• Find all voltages

Dr. Louie 15

I1

I2

i1 i3

i2

Example

• Equations:

I1 = I2 + V1/R1 + (V1 – V2)/R2

I2 = V2/R3 – (V1 – V2)/R2

• Using circuit values:

10 = 5 + V1/6 + (V1 – V2)/4

5 = V2/2 – (V1 – V2)/4

Dr. Louie 16

Example

• Starting with the second equation

5x4 = [V2/2 – (V1 – V2)/4]x4

Yields

20 = 2V2 – (V1 – V2) = 3V2 – V1

Now the first equation:

10x12 = [5 + V1/6 + (V1 – V2)/4]x12

120=60 + 2V1+ 3V1 – 3V2

60 = 5V1 – 3V2

Dr. Louie 17

Example

20 = -V1 + 3V2 60 = 5V1 – 3V2

Solve using elimination

• 20x5 = [-V1 + 3V2]x5 = 100 = -5V1 + 15V2

60 = 5V1 – 3V2

160 = 0 +12V2

Yields:

• V2 = 13.333V

• V1 = 20V

Dr. Louie 18

Example

• Solving in matrix form:

Dr. Louie 19

1 2 2 1 1 2

2 2

2 3 2

1

2

1 1 1

R R R V I I

V I1 1 1

R R R

1 1 1V 56 4 4

V 51 1 1

4 2 4

Can use Matlab, Gaussian elimination Cramer’s Rule, matrix inversion

Solution by Matrix Inversion

Dr. Louie 20

1

2

1 1 1V 56 4 4

V 51 1 1

4 2 4

1

2

1 1

2

V 5

V 5

V 5 20

V 5 13.3

G

G

G (matrix)

For small matrices use “inv()” command in Matlab

1 3 1

1 1.67

Gwhere

Nodal Analysis with Voltage Sources

• Nodal analysis requires knowledge of current through elements

• Recall that the current through a voltage source is not readily known

• Example:

Current through resistor is I = (Va – Vb)/R

But what is the current through a voltage source? How is the “R” in the equation to be interpreted?

Dr. Louie 21

+

- V

+

-

Nodal Analysis with Voltage Sources

• If the voltage source is connected to the reference node, then it can be easily included in nodal analysis

Dr. Louie 22

I1

I2

i1

i2

+

- V3

Nodal Analysis with Voltage Sources

• Only one node with unknown voltage

• I1 = I2 + V1/R1 + (V1 – V3)/R2

• Compare this to earlier example (2 eqns, 2 unknowns)

Dr. Louie 23

I1

I2

+

- V3

+

- V1

R2

R1

x

Nodal Analysis with Voltage Sources

• If voltage source not connected to reference:

Move the reference so it is! (only works if there is one voltage source)

Or

Use Supernode concept

Dr. Louie 24

Nodal Analysis with Voltage Sources

• Supernode: a closed surface containing a voltage source and its two nodes AND any elements in parallel with it

• Current into supernode = current out of supernode

• Also applies to dependent voltage sources

Dr. Louie 25

+ -

Supernodes

I I

node

+ -

I I

Nodal Analysis with Voltage Sources

• Properties of a supernode

Voltage source inside the supernode provides a constraint equation needed to solve for node voltages

A supernode has no voltage of its own

There is only one KCL equation for the supernode, but two unknown node voltages

Additional equation is found from application of KVL

Dr. Louie 26

Nodal Analysis with Voltage Sources

• Find the node voltages

Dr. Louie 27

+ -

2V

10W

2A 7A 4W 2W

assume reference is here

Nodal Analysis with Voltage Sources

• Make a supernode out of the voltage source

• Write KCL for supernode

2 = i1 + i2 + 7 (only one equation since it is a supernode)

Dr. Louie 28

+ -

2V

10W

2A 7A 4W 2W

assume reference is here

i1 i2

Nodal Analysis with Voltage Sources

• Write i1, i2 in terms of node voltage

• i1 = (v1 – 0)/2

• i2 = (v2 – 0)/4

Dr. Louie 29

+ -

2V

10W

2A 7A 4W 2W

assume reference is here

i1 i2

v1 v2

Nodal Analysis with Voltage Sources

• Substitute into supernode KCL

• 2 = i1 + i2 + 7 (supernode KCL)

2 = 0.5v1 + 0.25v2 + 7 (after substitution)

8 = 2v1 + v2 +28 (multiplying by 4)

Dr. Louie 30

+ -

2V

10W

2A 7A 4W 2W i1 i2

v1 v2

Nodal Analysis with Voltage Sources

• Apply KVL around loop

-v1 + 2 + v2 = 0 (second equation)

Dr. Louie 31

+ -

2V

10W

2A 7A 4W 2W i1 i2

v1 v2

Nodal Analysis with Voltage Sources

• How many independent equations?

8 = 2v1 + v2 +28

-v1 + 2 + v2 = 0

• How many unknowns?

v1, v2

Dr. Louie 32

Solve!

+ -

2V

10W

2A 7A 4W 2W i1 i2

v1 v2

Nodal Analysis with Voltage Sources

• Solving…

8 = 2v1 + v1 - 2 +28

v1 = -5.333V

v2 = -7.333V

Dr. Louie 33

+ -

2V

10W

2A 7A 4W 2W i1 i2

v1 v2

Example

• Find the node voltages in the circuit shown

Dr. Louie 34

+ -

10V

2W

4W

2W

8W 5A

Example

• 3 unknown voltages: V1, V2, V3

• Need three independent equations (that do not introduce new variables)

Dr. Louie 39

+ -

10V

2W

4W

2W

8W

V1 V2 V3

5A

Example

• Identify the supernode

Dr. Louie 40

+ -

10V

2W

4W

2W

8W

V1 V2 V3

5A

Example

• Write KCL for the supernode

i5 = i1+i4+i3 (supernode)

• Write KCL for the other node

5+i4 = i5 (node 2)

Dr. Louie 41

+ -

10V

2W

4W

2W

8W

V1 V2 V3

5A i1 i3

i4 i5

Example

• Express currents in terms of voltages

i1 = (V1 – 0)/4

i3 = (V3 – 0)/8

i4 = (V1 – V2)/2

i5 = (V2 – V3)/2

Dr. Louie 42

+ -

10V

2W

4W

2W

8W

V1 V2 V3

5A i1 i3

i4 i5

Example

• Have two equations

KCL for node 2, supernode

• Need one more independent equation

• Do KVL around top loop

10 = 2i4 + 2i5

Dr. Louie 43

+ -

10V

2W

4W

2W

8W

V1 V2 V3

5A i1 i3

i4 i5

Example

• 5 + i4 = i5 (node 2)

• i6 = i1 + i5 + i3 (supernode)

i1 = (V1 – 0)/4 = 0.25V1

i3 = (V3 – 0)/8 = 0.125V3

i4 = (V1 – V2)/2 = 0.5V1 – 0.5V2

i5 = (V2 – V3)/2 = 0.5V2 – 0.5V3

5 + 0.5V1 – 0.5V2 = 0.5V2 – 0.5V3 (solving node 2 eqn)

10 + V1 – V2 = V2 – V3

0.5V2 - 0.5V3 = 0.25V1 + 0.5V1 – 0.5V2 + 0.125V3 (supernode eqn)

4V2 - 4V3 = 2V4 + 4V1 – 4V2 + V3

10 = 2i4 + 2i5 (KVL of top loop)

10 = V1 – V2 + V2 – V3

Dr. Louie 44

Example

10 + V1 – V2 = V2 + V3 (node 2)

10 = -V1 + 2V2 + V3 (after rearranging)

4V2 - 4V3 = 2V1 + 4V1 – 4V2 - V3 (supernode)

0 = 6V1 -8V2 + 3V3 (after rearranging)

10 = V1 – V2 + V2 – V3 (KVL of top loop)

10 = V1 + 0V2– V3 (after rearranging)

Solving

V1 = 12.22V

V2 = 10V

V3= 2.22V

Dr. Louie 45

1

2

3

1 2 1 10

6 8 3 0

1 0 1 10

V

V

V

Example

• Find Vx

Dr. Louie 46

2A

+

-

Vx 20W 10W 0.2Vx

Example

• One node, write equation from KCL

2 =I1 + I2 + 0.2Vx

• From Ohm’s Law

I1 = Vx/10

I2 = Vx/20

• Solving:

2 = 0.1Vx + 0.05Vx + 0.2Vx

Vx = 5.71V

Dr. Louie 47

2A

+

-

Vx

20W 10W 0.2Vx I1 I2

top related