1 2d bloch wave optics - bilkent universityregpot/winterschool2009/app/... · 2009. 2. 3. ·...

Post on 29-Aug-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1© Philip Russell, MPL, Erlangen

2D Bloch Wave Optics

or the

Peculiar Properties of Light in periodic media

Philip Russell

Max-Planck Institute for the Science of Light

Erlangen, Germany

http://www.ioip.mpg.de/~russell/PC_website/index.htm

2© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

3© Philip Russell, MPL, Erlangen

“Nearly free photon”

theory

Λ

strong cumulative reflection

Bragg angle

very weak reflection from each Bragg plane

4© Philip Russell, MPL, Erlangen

“Nearly free photon”

theory

assume that waves exist inside the periodic region

allow them to be “coupled”

by Bragg scattering:

Bragg angle

B

B

0

1

( ) ( ) exp[ ]( ) exp[ ( ) ]

E V iV i

= ⋅

+ − ⋅Kk

kr r r

r r

at a particular frequency, special values of Bloch wavevector yield:

a “magic”

combination of amplitudes that “sneaks through”

the structure without change•

these are the Bloch waves

0 ( )V r

1( )V r

y

x

2 ˆπΛy

Bloch

wavevector

Λ[a.k.a. coupled mode theory]

5© Philip Russell, MPL, Erlangen

Solutions for a 1-D crystal

Λ

0 ( )V r

1( )V rfr

eq

ue

nc

y

wavevector

k π=

Λk π

reminder: Gω∂

=∂

vk

free waves

dc

b

a

c

d

b

a

6© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

7© Philip Russell, MPL, Erlangen

isotropic media

8© Philip Russell, MPL, Erlangen

Refraction & reflection

inc

ω=k

ray diagramwavevector diagram

kx

ky

medium 1medium 1

medium 2medium 2

constructionline

interfacekt

incident

reflected

refracted

9© Philip Russell, MPL, Erlangen

Total internal reflection

ray diagramwavevector diagram

kx

ky

medium 1medium 1

medium 2medium 2

interface

constructionline

kt

incident

reflected

inc

ω=k

10© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

11© Philip Russell, MPL, Erlangen

anatomy of a Bloch wave: Real space

group velocity

Λ

2 /K π= Λ

12© Philip Russell, MPL, Erlangen

2 /K π= Λ

K KKK K

2k1k0k1k2k

3k

anatomy of a Bloch wave: Reciprocal space

13© Philip Russell, MPL, Erlangen

Bloch’s theorem

B

B

( , ) exp( ) exp( )

exp( () )

mm

j A jm

Pj

ωΨ = − ⋅ − ⋅

= − ⋅

∑ K r

rk

rk

r

r

function with period of lattice

Bloch wavevector

reciprocal lattice vector

2 /π= ΛK

lattice spacing

Bloch waves have multiple phase velocities & a single group velocity

/( )

( )m B

g B

v k mKφ ω

ω

= +

= ∇kv k

14© Philip Russell, MPL, Erlangen

Bone-structure & face

http://tutorialblog.org/skull-face/

with flesh without flesh

15© Philip Russell, MPL, Erlangen

2 /K π= Λ

1k0k1k2k

xk

yk

anatomy of a Bloch wave

16© Philip Russell, MPL, Erlangen

Hugely enhanced design freedom ...

magnitude

& direction

of group & phase velocity can be almost independently controlled

17© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

18© Philip Russell, MPL, Erlangen

Bloch wave refraction and reflection

19© Philip Russell, MPL, Erlangen

ray diagram

medium 1

Λ

Mono-periodic medium

constructionlines

wavevector diagram

medium 2

2

2π/Λ

1

interface

incident

20© Philip Russell, MPL, Erlangen

Double negative refraction

wavevector diagram

group ( )ω= ∇kV k

medium 2

average average

medium 2

incident

Λ

medium 1

interface

21© Philip Russell, MPL, Erlangen

Negative & positive refraction

group ( )ω= ∇kV k

medium 2

medium 1

incident

wavevector diagram

medium 2

average average

interface

Λ

22© Philip Russell, MPL, Erlangen

kx

kyT

E c

ircl

e

TM circle

corrugated

smoothsmooth

Negative refraction (1983)

in “Confined Electrons and Photons”

(Eds

Burstein & Weisbuch) pp 585-633

Plenum Press, 1995

150 nm sputtered tantala

on borosilicate glass

~1 dB/cm losses

enhanced scattering in periodic region

For reprints see: www.ioip.mpg.de/~russell/PC_website/index.htm/

© Philip Russell, University of Bath

23© Philip Russell, MPL, Erlangen

kx

kyT

E c

ircl

e

TM circle

corrugated

smoothsmooth

Double negative refraction (1983)

in “Confined Electrons and Photons”

(Eds

Burstein & Weisbuch) pp 585-633

Plenum Press, 1995

150 nm sputtered tantala

on borosilicate glass

~1 dB/cm losses

enhanced scattering in periodic region

© Philip Russell, University of Bath

For reprints see: www.ioip.mpg.de/~russell/PC_website/index.htm/

24© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

25© Philip Russell, MPL, Erlangen

Double negative refraction

wavevector diagram

group ( )ω= ∇kV k

medium 2

average average

medium 2

incident

Λ

medium 1

interfaceΔk

ray diagram

26© Philip Russell, MPL, Erlangen

ray diagram

medium 2

medium 1

Λ

interface

Bloch wave interference

wavevector diagram

incident

2π/Δk

Λ << 2π/Δk

Phys Rev A33

(3232-3242) 1986

Δkmedium 2

average

incident

27© Philip Russell, MPL, Erlangen

Bloch wave point-influence function

ray diagram

medium 1

Λ

medium 2

interface

incident

Phys Rev A33

(3232-3242) 1986wavevector diagram

spectralspread

medium 2

average

28© Philip Russell, MPL, Erlangen

Bloch wave point-influence function

ray diagram

medium 1

Λ

medium 2

interface

2π/Δkmin

Δkmin

Phys Rev A33

(3232-3242) 1986wavevector diagram

spectralspread

medium 2

average

29© Philip Russell, MPL, Erlangen

with polariser

Experimental observation

Pendellösung

period 50 μm

stop-band width 125 per mm

100% directional coupler is only 25 μm thick

boundary

smooth

corrugations

guide

d pen

cil be

am

300 nm50 μm

30© Philip Russell, MPL, Erlangen

Experimental observationsPhys Rev A33

(3232-3242) 1986

no polarizer

0 -1

“0

wave blocked

with polarizer

0 -1

“-1

wave blocked

with polarizer

0 -1

31© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

32© Philip Russell, MPL, Erlangen

Bloch wave lens

kx

kyBragg planes

boundarieswavevector diagram near Bragg point

using negative and positive refraction

33© Philip Russell, MPL, Erlangen

Bloch wave lens

kx

kyBragg planes

boundarieswavevector diagram near Bragg point

using negative and positive refraction

34© Philip Russell, MPL, Erlangen

Bloch wave lens

kx

kyBragg planes

boundarieswavevector diagram near Bragg point

using negative and positive refraction

35© Philip Russell, MPL, Erlangen

Bloch wave beam expander

miniature optical elements•

two-dimensional resonators•

in-plane 2D lasers•

new kinds of lenses

Electron. Lett., 20 (72-73) 1984

Bloch wave beam expander

1 mm

36© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

37© Philip Russell, MPL, Erlangen

Total internal reflection at normal incidence

slow

fast

( )g Bω= ∇kv k

“fast” mode

waveguide

evanescent

medium 2evanescent

Erice 1993

38© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

39© Philip Russell, MPL, Erlangen

Diffraction (spatial dispersion)

diffraction wanted?

Free-space:

diffraction is OK but rather limited & isotropic

Photonic crystals:

diffraction can be very strong and anisotropic with multiple beams

40© Philip Russell, MPL, Erlangen

very fast

a bit

faster

Phase velocity is not a vector

41© Philip Russell, MPL, Erlangen

“Slowness”

vector

highlights the change in refractive index with frequency and direction

( ) ( )c ω ωω

=k n

wavevector

frequencyvector refractive index

42© Philip Russell, MPL, Erlangen

Slowness diagrams for light: TE

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5 Λ

yc kω

xc kω

as the wavelength drops, the fields can discriminate better between low & high index regions

higher

lower

43© Philip Russell, MPL, Erlangen

Λ

Slowness diagrams: Beam diffraction

air

air circle

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5yc k

ω

xc kω

divergent

44© Philip Russell, MPL, Erlangen

Slowness diagrams: Beam diffraction

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Λ

yc kω

xc kω

close to zero diffraction

45© Philip Russell, MPL, Erlangen

Slowness diagrams: Beam diffraction

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Λ

yc kω

xc kω

convergent

46© Philip Russell, MPL, Erlangen

Slowness diagrams: Beam diffraction

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Λ

yc kω

xc kω

zero diffraction

47© Philip Russell, MPL, Erlangen

Slowness diagrams: Beam diffraction

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Λ

48© Philip Russell, MPL, Erlangen

Slowness diagrams: Beam diffraction

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Λ

evanescent

evanescent

49© Philip Russell, MPL, Erlangen

Slowness diagrams: Beam diffraction

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Λ

highly

divergent

50© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

51© Philip Russell, MPL, Erlangen

Square lattice

Brillouin zone (Bragg condition)

yk

xk

2 2 2 2x y ok k n k+ =

ok

δ

scan

angle

52© Philip Russell, MPL, Erlangen

o 1 (cos cos )M Kx Kyε ε/ = + +

[ ]ˆ ˆ

o o0 0

( , ) exp (( ) cos ) (( sin )m n

mnm n

E x y V j k m K x k n K yδ θ θδ= =

= − + − + + ) −∑∑

2 200o o

2 210o o

2 201o o

2 211o o

0/ 2 0 / 20/ 2 / 2 000 / 2 / 20/ 2 0 / 2

s

s c

c

aq

qVk M k MVk M k MVk M k MVk M

qqk

aM

aa

⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎜ ⎟ ⎜ ⎟−⎢ ⎥ ⎜ ⎟ ⎜ ⎟=⎢ ⎥ ⎜ ⎟ ⎜ ⎟− −⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

Nearly-free photons in square lattice

o( )q kδ δ= − + 2 o4 ( )sinsa kπ π δ θ⎛ ⎞= − +⎜ ⎟Λ Λ⎝ ⎠

o4 ( ) cosca kπ π δ θ⎛ ⎞= − +⎜ ⎟Λ Λ⎝ ⎠

perturbation

53© Philip Russell, MPL, Erlangen

Wavevector diagrams in square crystal

PBGlower band

edge

negative

refraction

PBG

1 2 3 4

5 6 7 8

9 10 11 12

fre

qu

en

cy

inc

rea

sin

g

54© Philip Russell, MPL, Erlangen

upper band edge

Wavevector diagrams in square crystalPBG 13 14 15 16

17 18 19 20

21 22 23 24

fre

qu

en

cy

inc

rea

sin

g

positive

refraction

55© Philip Russell, MPL, Erlangen

negative diffraction positive diffraction

convergent rays:

surface “nose”

points away

from direction of energy flow

divergent rays:

surface “nose”

points towards

direction of energy flow

56© Philip Russell, MPL, Erlangen

Negative diffraction in a square-latticeZengerle, J. Mod. Opt. 34 (1589-1617) 1987

ω1frequency

57© Philip Russell, MPL, Erlangen

Negative diffraction in a square-latticeZengerle, J. Mod. Opt. 34 (1589-1617) 1987

2ω ω1>frequency

58© Philip Russell, MPL, Erlangen

Negative diffraction in a square-latticeZengerle, J. Mod. Opt. 34 (1589-1617) 1987

3 2ω ω>frequency

focusing independent of position

59© Philip Russell, MPL, Erlangen

Reinhard

Ulrich

first experiments on metal-wire “meta-materials”

early 1970s•

first experiments on multiply-

periodic planar waveguides (“photonic crystals”) –

from 1975

http://www.ioip.mpg.de/~russell/PC_website/index.htm

60© Philip Russell, MPL, Erlangen

Topics

Peculiar Bloch waves•

nearly free photon model•

wavevector diagrams•

anatomy of a Bloch wave•

negative & positive refraction•

interference, Green’s functions•

curious focusing device•

TIR at normal incidence•

slowness diagrams & diffraction•

square lattices

Conclusions

http://www.ioip.mpg.de/~russell/PC_website/index.htm

61© Philip Russell, MPL, Erlangen

Conclusions

refractive index vector plays a crucial role in periodic media –

usually it is multi-valued•

negative & positive refraction are common in periodic media –

often at the same time•

negative diffraction is a common feature of propagation in periodic media

many negative effects were first reported in the early 1980s in planar periodic waveguides

since about 1990, periodic optical media have become known as “photonic crystals”

http://www.ioip.mpg.de/~russell/PC_website/index.htm

top related