1 aerospace structures and materials: lamination theory and applications dr. tom dragone orbital...

Post on 29-Mar-2015

236 Views

Category:

Documents

9 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Aerospace Structures and Materials:

Lamination Theory and Applications

Dr. Tom Dragone

Orbital Sciences Corporation

2

Structure Design / Analysis Process

BOX BEAM ANALYSIS Component Loads (Cap Forces, Shear Flow)

BOX BEAM ANALYSIS Component Loads (Cap Forces, Shear Flow)

JOINT LOADS Weld , Braze Bond, Bolt

Metal Yield Rupture

Composite FPF LPF

Stability Buckling Crippling

Fracture Toughness Crack Size

Fatigue Crack Initiation Crack Growth

MS>0?MS>0?

SHEAR-MOMENTDIAGRAM Section Loads

GLOBAL LOADS Aerodynamics Inertial Applied

GEOMETRY Planform Skin Construction Spar/Rib Layout

SIZING Thickness Ply Orientation

MATERIALS Metal Composite

StructureIdealization

Stiffness Lamination Theory

Done

FAILURE ANALYSIS

Yes No

3

ABD Matrix Coupling: Uniaxial

ABD Matrix Types Showing Coupling

P Poissons Coupling StB Stretch-Bend CouplingBT Bend-Twist Coupling StT Stretch-Twist Coupling

StSh Stretch-Shear Coupling ShT Shear-Twist CouplingShB Shear-Bend Coupling

UniaxialStr1 Str2 Shr Bend1 Bend2 Twist

Str1 PStr2 PShrBend1 PBend2 PTwist

• Example: [06]

• In general, diagonal terms will be different– E11>>E22 D11>>D22

• NOTE: Isotropic materials would have same terms populated, but– E11=E22 D11=D22

4

Symmetric BalancedStr1 Str2 Shr Bend1 Bend2 Twist

Str1 PStr2 PShrBend1 P BTBend2 P BTTwist BT BT

ABD Matrix Coupling: Symmetric Balanced

ABD Matrix Types Showing Coupling

P Poissons Coupling StB Stretch-Bend CouplingBT Bend-Twist Coupling StT Stretch-Twist Coupling

StSh Stretch-Shear Coupling ShT Shear-Twist CouplingShB Shear-Bend Coupling

• Example: [0 45 -45 90]S [+30 -30]2S [0 +253 -45 -253 45 90]S

• Balanced Symmetric laminates have Bend-Twist coupling• In general, the diagonal terms will be different• Quasi-Isotropic laminates have equal inplane moduli, but still have bend-

twist coupling (hence, not truly isotropic)

5

Symmetric UnbalancedStr1 Str2 Shr Bend1 Bend2 Twist

Str1 P StShStr2 P StShShr StSh StShBend1 P BTBend2 P BTTwist BT BT

ABD Matrix Coupling:Symmetric Unbalanced

ABD Matrix Types Showing Coupling

P Poissons Coupling StB Stretch-Bend CouplingBT Bend-Twist Coupling StT Stretch-Twist Coupling

StSh Stretch-Shear Coupling ShT Shear-Twist CouplingShB Shear-Bend Coupling

• Example: [0 45 90]S [303]S

• Unbalanced laminates have Stretch-Shear coupling

6

0/90 Str1 Str2 Shr Bend1 Bend2 Twist

Str1 P StBStr2 P StBShrBend1 PBend2 PTwist

ABD Matrix Coupling:0/90 Coupling

ABD Matrix Types Showing Coupling

P Poissons Coupling StB Stretch-Bend CouplingBT Bend-Twist Coupling StT Stretch-Twist Coupling

StSh Stretch-Shear Coupling ShT Shear-Twist CouplingShB Shear-Bend Coupling

• Example: [0 90] [04 904]

• 0/90 laminates have Stretch-Bend coupling

0° (Stiff)90° (Weak) 0°

90°

7

Unsymmetric BalancedStr1 Str2 Shr Bend1 Bend2 Twist

Str1 P StTStr2 P StTShr ShB ShBBend1 P BTBend2 P BTTwist BT BT

ABD Matrix CouplingUnsymmetric Balanced

ABD Matrix Types Showing Coupling

P Poissons Coupling StB Stretch-Bend CouplingBT Bend-Twist Coupling StT Stretch-Twist Coupling

StSh Stretch-Shear Coupling ShT Shear-Twist CouplingShB Shear-Bend Coupling

• Example: [02 ±45 90]3 [454 -454]

• Unsymmetric laminates have Stretch-Twist and Shear Bend coupling

8

Unsymmetric UnbalancedStr1 Str2 Shr Bend1 Bend2 Twist

Str1 P StSh StB P StTStr2 P StSh P StB StTShr StSh StSh ShB ShB ShTBend1 P BTBend2 P BTTwist BT BT

ABD Matrix CouplingUnsymmetric Unbalanced

ABD Matrix Types Showing Coupling

P Poissons Coupling StB Stretch-Bend CouplingBT Bend-Twist Coupling StT Stretch-Twist Coupling

StSh Stretch-Shear Coupling ShT Shear-Twist CouplingShB Shear-Bend Coupling

• Example: [0 10 20 30 40 50]

• Unsymmetric Unbalanced laminates have all coupling including Shear-Twist coupling

9

ABD Matrix CouplingABD Matrix Types Showing Coupling

P Poissons Coupling StB Stretch-Bend CouplingBT Bend-Twist Coupling StT Stretch-Twist Coupling

StSh Stretch-Shear Coupling ShT Shear-Twist CouplingShB Shear-Bend Coupling

Uniaxial 0/90 Str1 Str2 Shr Bend1 Bend2 Twist Str1 Str2 Shr Bend1 Bend2 Twist

Str1 P Str1 P StBStr2 P Str2 P StBShr ShrBend1 P Bend1 PBend2 P Bend2 PTwist Twist

Symmetric Balanced Unsymmetric BalancedStr1 Str2 Shr Bend1 Bend2 Twist Str1 Str2 Shr Bend1 Bend2 Twist

Str1 P Str1 P StTStr2 P Str2 P StTShr Shr ShB ShBBend1 P BT Bend1 P BTBend2 P BT Bend2 P BTTwist BT BT Twist BT BT

Symmetric Unbalanced Unsymmetric UnbalancedStr1 Str2 Shr Bend1 Bend2 Twist Str1 Str2 Shr Bend1 Bend2 Twist

Str1 P StSh Str1 P StSh StB P StTStr2 P StSh Str2 P StSh P StB StTShr StSh StSh Shr StSh StSh ShB ShB ShTBend1 P BT Bend1 P BTBend2 P BT Bend2 P BTTwist BT BT Twist BT BT

10

Introduction to COMPFAIL

• COMPFAIL (COMPosite FAILure analysis tool) is an Excel spreadsheet-based implementation of Composite Lamination Theory

• User enters – Lamina Information

– Laminate Information

– Loading

• Code calculates– ABD Matrix

– Equivalent Moduli

– Global Strains and Curvatures

– Local Ply Stresses and Strains

– Failure Indices

11

COMPFAIL Process

• Choose Ply Material– Sets E, Vf, X,Y,S,,t

Number 1Fiber AS4

Matrix 3501-6Form (T/C) Tape

X (ksi) 209.8X' (ksi) 209.8Y (ksi) 7.54Y' (ksi) 29.87S (ksi) 13.49

thickness (in) 0.005density (pci) 0.054

Vf (%) 62%Vm (%) 38%

Ex (Msi) 18.50Ey (Msi) 1.30

Gxy (Msi) 1.030Nuxy 0.3alphx (1e-6F-1) -0.22alphy (1e-6F-1) 12

Minv= 0.99368

Qxx (Msi) 18.61767Qyy (Msi) 1.307464Qxy (Msi) 0.392239Qss (Msi) 1.030

12

COMPFAIL Coordinate Systems

2

1

3

Laminate Coordinate System

x

y

z

Material Coordinate System

13

COMPFAIL Process

• Choose Ply Material– Sets E, Vf, X,Y,S,,t

• Choose Layup– Ply by Ply definition of material and angle (relative to reference)

14

COMPFAIL Process

• Choose Ply Material– Sets E, Vf, X,Y,S,,t

• Choose Layup– Ply by Ply definition of material and angle (relative to reference)

• Intermediate Calculations– Define Qij, Aij, Bij, Dij

15

COMPFAIL Process

• Choose Ply Material– Sets E, Vf, X,Y,S,,t

• Choose Layup– Ply by Ply definition of material and angle (relative to reference)

• Intermediate Calculations– Define Qij, Aij, Bij, Dij

• Define ABD Matrix

6

2

1

6

2

1

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211

6

2

1

6

2

1

DDDBBB

DDDBBB

DDDBBB

BBBAAA

BBBAAA

BBBAAA

M

M

M

N

N

N

DB

BA

M

N

16

COMPFAIL Process

• Apply Loads

–N1, N2, N6, M1, M2, M6

17

COMPFAIL Process

• Apply Loads

–N1, N2, N6, M1, M2, M6

• Return Strains and Curvatures

– 1, 2, 6, 1, 2, 6

18

COMPFAIL Process

• Apply Loads

–N1, N2, N6, M1, M2, M6

• Return Strains and Curvatures

– 1, 2, 6, 1, 2, 6

• Return Equivalent Moduli (For Symmetric Laminates ONLY)

– EInPlane, EFlexure

19

COMPFAIL Process

• Apply Loads• Return Strains and Curvatures• Return Equivalent Moduli (For Symmetric Laminates ONLY)• Return Ply Strains and Ply Stresses

– 1, 2, 6, 1, 2, 6 for Global (Laminate) Coordinate System

– x, y, s, x, y, s for Local (Material) Coordinate System

Two Values:Top and Bottom

of Ply

20

COMPFAIL Process

• Apply Loads• Return Strains and Curvatures• Return Equivalent Moduli (For Symmetric Laminates ONLY)• Return Ply Strains and Ply Stresses• Ignore Failure Criteria for Now

21

Satellite Solar Panel Example

Spacecraft Bus

Solar Array Panel

CommunicationsAntennae

INDOSTAR SATELLITE

22

Solar Panel Example

LAMINATE REQUIREMENTS• Stiff Substrate to Minimize Deflections => High Modulus• Equal Stiffness in All Directions => Quasi-Isotropic• Thermal Stability => High Conductivity• Light Weight => Composite

T

Light & Heat

Broken

Connections

FragmentCracksSi or GaAs

Solar Cells

Connections

Solar Panel

23

Laminate Cure Effects

Co-Cure(Both Skins at Same Time)

Consider an 8-Ply Quasi-Isotropic Sandwich During Cure Process

80+psi Pressure

ToolCore

OML Skin

• Cure Pressure on Thin Sandwich Leads to Pillowing

• Poor Consolidation• High Void Content• Wavy SurfaceIML Skin

24

Laminate Cure Effects

Separate-Cure (Skins Cured Separately)

Consider Same 8-Ply Quasi-Isotropic Sandwich During Cure Process

OML Skin

• Skins Must be Cured Separately• Uniform T During Cure is Like Uniform In-Plane Loads (N1, N2)• Uniform Load on Non-Symmetric Laminate Results in Warping• Individual Skins Must be Quasi-Isotropic

IML Skin

Adhesive Film

Cold Bond (Room Temp)

25

Flutter Effects

• Recall that Cp is @ 1/4 MAC for Subsonic Flight– Results in Torsion that leads to Leading Edge Up

CPElastic AxisTorsion Axis

Increases with Span

LIFT

26

Positive FeedbackPositive Feedback

Flutter Effects

• Recall also that Lift Increases with Angle of Attack– Twist Increases the Local Angle of Attack on a Wing Segment

• System Becomes Unstable at “Divergence Speed”• Subject to Pronounced Vibrations => Flutter

TWIST HIGHER AOA HIGHER LIFT

Lift

Local AOA ( + )

Typical Operating Point

27

X-29 Composite Wing Design

Forward-SweptWings

Canards

28

X-29 Composite Wing Design

• Forward-swept wings provide enhanced maneuverability– Would be an advantage to close-combat aircraft

• Forward-swept wings enhance flutter effects– Wing bending increases local AOA even without torsion

• Composites enable weight-efficient forward swept wings for the X-29 aircraft by exploiting negative stretch-twist coupling

6

2

1

6

2

1

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211

6

2

1

6

2

1

DDDBBB

DDDBBB

DDDBBB

BBBAAA

BBBAAA

BBBAAA

M

M

M

N

N

N

29

Flutter Reduction Effect

• Wing bending causes tension (top) and compression (bottom) stretching in the skins

• Stretch-Twist coupling produces a twisting moment in the skins• Since the wing is thin, this becomes a torque on the whole wing• Upward Bending => LE Down Twist, reducing flutter effects

6

2

1

6

2

1

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211

6

2

1

6

2

1

DDDBBB

DDDBBB

DDDBBB

BBBAAA

BBBAAA

BBBAAA

M

M

M

N

N

N

top related