1 october 2: spring scales – hooke’s law. 2 question: what is exactly a spring scale measuring?...

Post on 01-Jan-2016

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

October 2: Spring Scales – Hooke’s law

2

Question:

What is exactly a spring scale measuring?

Discussion:

Measuring mass and measuring weight.

•An object’s mass is the same everywhere.•An object’s weight varies with gravity.

3

Equilibrium states

•An object is in an equilibrium state when it experiences zero net force.

•At equilibrium, an object can be either at rest, or coasting.

•A spring scale measures the force it receives. It measures weight using equilibrium.

•A spring scale is accurate only when everything is in equilibrium.

4

Question

You are standing on a bathroom scale in an elevator. When the elevator starts moving upward, the scale will read

A) Exactly your weight.B) More than your weight.C) Less than your weight.

5

Springs:

•A free spring has an equilibrium length, when its ends are not pulled or pushed.

•When distorted, the ends of the spring experience forces that tend to restore the spring to its equilibrium length. These forces are called restoring forces.

restoring

force

6

Hooke’s law (the law of elasticity)

The restoring force exerted by a spring is proportional to how far it has been distorted from its equilibrium length. The restoring force is directed to oppose the distortion.

xF

k

distortionconstant spring force restoring

7

Robert Hooke (1635-1703) English natural philosopher, architect and polymath. Discovered “the law of elasticity”. Discovered cell. No portrait exists.

8

Question:

How much will the spring stretch if I add more bricks?

9

More examples of Hooke’s law

10

Read: Ch3: 1Homework: Ch3: E5,7;P3Due: October 9

11

October 5: Ball Sports: Bouncing – Coefficient of restitution

12

Springs: Elastic potential energy

x

I stretched a spring for a distance of x. The spring has a spring constant of k. Question 1:Did I do work on the spring?Question 2:How much work have I done on the spring?Question 3:Where has my work gone?

2

2

1xk

energy potential Elastic

13

Energy change in a bouncing ball

Collision energy: The kinetic energy absorbed during the collision.

Rebound energy: The kinetic energy released during the rebound.

When a ball strikes a rigid wall, the ball’s • kinetic energy decreases by the collision

energy.• elastic potential energy increases as it dents.

When the ball rebounds from the wall, the ball’s

• elastic potential energy decreases as it undents.

• kinetic energy increases by the rebound energy.

14

Question: Why can’t a ball that’s dropped on a hard floor rebound to its starting height?

Answer:Rebound energy < Collision energybecause of loss of the energy into thermal energy.

15

Coefficient of restitution: Measuring a ball’s liveliness

Coefficient of restitution•Is a conventional measure of a ball’s liveliness.•Is the ratio between the outgoing and the incoming speeds:

•Is measured in bouncing from a rigid surface.

ball theof speedcollision

ball theof speed rebound n restitutio oft coefficien

16

2ratio) speed(energy collision

energy rebound ratioenergy

17

Question 2:

A ball’s coefficient of restitution is 0.5. It is dropped from 1 meter high onto a rigid floor. How high will it bounce?

Question 1:

A basket ball hits a rigid floor at a velocity of 2 m/s. What is its rebound velocity if the coefficient of restitution is 0.80?

18

Read: Ch3: 2Homework: Ch3: E11;P4Due: October 14

19

October 7: Ball Sports: Bouncing – Effects from surfaces

20

Review questions:

1.A tennis ball has a coefficient of restitution of 0.75. It hits a rigid floor at a speed of 2 m/s. How much is its rebound speed?

2.If the tennis ball is dropped from 1 meter high onto the floor, how high will it bounce?

21

Ball bouncing from an elastic surface

•Both the ball and the surface dent during the collision.•Work done in distorting each object is proportional to the dent distance. Whichever object dents more receives more collision energy.•Both the denting ball and the denting surface store and return energy.•A soft, lively surface can help the ball to bounce.

22

Examples of lively surfaces

23

Ball bouncing from a moving surface

•Incoming speed → relative approaching speed•Outgoing speed → relative separating speed•The coefficient of restitution now becomes

speed gapproachin

speed separating nrestitutio oft coefficien

24

Relative velocities

Two cars are traveling at 60 mph and 50 mph, respectively, according to a pedestrian.

1)When they collide head-on, how much is their approaching speed?

2)When they collide head-on-tail, how much is their approaching speed?

25

Ball bouncing from a moving surface: Example

•The approaching speed is

•Baseball’s coefficient of restitution is 0.55. The separating speed is•The bat heads toward the pitcher at 100 km/h. The ball heads toward the pitcher at

200 km/h.

110 km/h.

210 km/h.

26

The ball’s effects on the bat

•The ball 1) pushes the bat back and 2) rotates the bat.

•When the ball hits the bat’s center of percussion, the bat’s backward and rotational motions balance, so that the bat’s handle doesn’t jerk.

•When the ball hits the bat’s vibrational node, the bat doesn’t vibrate.

27

Read: Ch3: 2Homework: Ch3: E14,19Due: October 14

28

October 9: Carousels and Roller Coasters – Circular motion

29

Examples of circular motions

30

Uniform circular motions

•An object is in a uniform circular motion if its trajectory is circular and its speed is a constant.

•When an object is in a uniform circular motion, it has a net acceleration toward the center of the circle, which is called the centripetal acceleration.

•The centripetal acceleration is caused by a centripetal force, which is the net force exerted on the object.

31

Centripetal acceleration and centripetal force

rr

va

22

22

radiusspeedangular radius

speed on accelerati lCentripeta

rmr

vmF

22

22

radiusspeedangular massradius

speed mass force lCentripeta

• The centripetal force is given by

• The centripetal acceleration is given by

32

More about centripetal force

•Centripetal force is needed to keep the circular motion of an object, otherwise the object will move on a straight line according to Newton’s first law of motion.

•Centripetal force is not a new kind of force, it is rather a net sum of force provided by whatever traditional forces we have known.

•There is no such force called centrifugal force exerted on the object. Centrifugal force is only related to our feeling.

33

Question:

You are running on a circular track with a radius of 20 m. Your mass is 70 kg. Your speed is 2 m/s.

3) Who exerts this centripetal force on you?

1) How much is your acceleration?

222

m/s 0.2m 20

m/s) (2on accelerati lCentripeta

r

v

2) How much centripetal force is needed?

N 14m/s 0.2kg 70 force lCentripeta 22

r

vm

34

Question 2:

How much is the acceleration of the child?

A child with a mass of 30 kg is riding on a playground carousel with a radius of 1.5 m. The carousel turns one circle every two second.

Question 1:

How much is the speed of the child?

Question 3:

How much is the centripetal force on the child?

Questions:

35

Examples of centripetal forces

36

Read: Ch3: 3Homework: Ch3: E31;P6Due: October 14

top related