1 physique des galaxies florence durret (institut d’astrophysique de paris et université pierre...

Post on 04-Apr-2015

110 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

PHYSIQUE DES GALAXIES

Florence DURRET(Institut d’Astrophysique de Paris

et Université Pierre et Marie Curie)

COURS 3

2

Plan du cours

• Historique• Principales techniques d’observation• Morphologie des galaxies• Distances des galaxies• Contenu des galaxies : étoiles, gaz, poussières, matière

noire• Cinématique des galaxies• Galaxies en interaction ; simulations numériques• Les galaxies à noyau actif

• Distribution des galaxies dans l’Univers• Notions sur la formation et l’évolution des galaxies• Groupes et amas de galaxies

3

• Remonter dans le temps

La lumière émise par un astre met un certain temps à nous parvenir.

Quand on observe le Soleil on le voit tel qu’il était il y a 8 minutes

Quand on observe à grand décalage spectral, on « remonte » donc dans le temps, et par conséquent on

observe l’Univers quand il était plus « jeune ».

Observer des galaxies à différents décalages spectraux nous renseigne donc sur l’évolution de l’Univers.

4

« Look-back time » en fonction du redshift

5

Correspondance distance-décalage spectral

z distance (Mpc)

0.001 4.2

0.01 42

0.1 393

1 2470

5 5000

10 5900

6

LES GALAXIES EN COSMOLOGIELES GALAXIES EN COSMOLOGIE

• La Cosmologie étudie l’Univers dans son ensemble.

• Les galaxies permettent de « dessiner » l’Univers à grande échelle.

• Pour connaître la taille de l’Univers, il faut observer les galaxies les plus lointaines possibles.

7

OBSERVER DES OBJETS TRÈS LOINTAINSOBSERVER DES OBJETS TRÈS LOINTAINS

• Le flux lumineux f reçu d’une galaxie est proportionnel à la surface S du télescope et inversement proportionnel au carré de sa distance D :

f S / D2

Si D est grande, le flux f est petit et on a évidemment besoin de grands télescopes (S grand)!

• On peut aussi observer aux grandes longueurs d’onde, où se trouve déplacé le maximum d’émission des galaxies en raison de leur grand décalage spectral.

8

LES MOYENS D’ÉTUDE EN COSMOLOGIELES MOYENS D’ÉTUDE EN COSMOLOGIE

• La spectroscopie et les décalages spectraux

La spectroscopie des quasars permet d’analyser la distribution de matière entre le quasar et nous.Les mesures de nombreux décalages spectraux de galaxies ont permis de mettre en évidence une structure de l’Univers en feuillets ou en éponge :

- des galaxies distribuées en filaments ou sur des feuillets- beaucoup de vides- des amas de galaxies à l’intersection des filaments

• L’imagerie profonde

Permet de détecter les galaxies lointaines, les amas de galaxies, les arcs gravitationnels

• Les simulations numériques

Méthode : on suppose que l’on met dans une boîte un certain nombre de particules ayant chacune une masse, et on regarde comment la structure évolue avec le temps sous l’effet de la gravité.

Résultats : la distribution de particules obtenue a une structure qui ressemble aux structures observées.

9

LES GALAXIES UTILISEES POUR SONDER LES GALAXIES UTILISEES POUR SONDER L’UNIVERSL’UNIVERS

de Lapparent, Geller & Huchra (1986) ApJL 302, L1

Le premier diagramme en cône

Carte

10

LA « GRANDE MURAILLE »LA « GRANDE MURAILLE »

Ascension droite

Déclinaison

Geller & Huchra (1989) Science 246, 897

LES GALAXIES UTILISEES POUR SONDER LES GALAXIES UTILISEES POUR SONDER L’UNIVERSL’UNIVERS

11

DES TRANCHES D’UNIVERS :DES TRANCHES D’UNIVERS :les diagrammes en côneles diagrammes en cône

Geller & Huchra (1989) Science 246, 897

12

DISTRIBUTION DES GALAXIES DANS LE PROCHE DISTRIBUTION DES GALAXIES DANS LE PROCHE UNIVERSUNIVERS

Le long du cercle :ascension droite

cZ = 15000 km/s Z = 0.05

Vitesses de récession

représentées radialement

13

Le grand relevé 2dF (terminé)• 1500 degrés carrés • Télescope Anglo-Australien (4m)• Chaque champ = cercle de 2 degrés de diamètre /

spectrographe à 200 fibres• 221.414 galaxies (z<0.25)

14

Un champ spectroscopique 2dF

15

2dF : relevé relativement peu profond mais dans une grande zone du ciel

Colless et al. 2003 “Final Data Release”

16

Hiérarchie de structures dans le 2dF

Eke et al. 2004, MNRAS 348, 866

Chaque point est une galaxie Chaque point est un groupe de galaxies

17

Le relevé 6dF (terminé)

Jones et al. 2004 D. Heath Jones et al. 2009

• 17 046 degrés carrés• Télescope 1.2m • Champ individuel 6

degrés• Spectrographe à 150

fibres• 150.000 galaxies à

z<0.1

18

• Télescope de 2.5m (Apache Point, USA)• Champ individuel : diamètre 1.5 degrés / spectrographe

à 640 fibres• Champ total 7 000 degrés carrés• Décalages spectraux pour 900.000 galaxies (z<0.25)

Le grand relevé Sloan (=SDSS, en cours)

SpectroImagerie

20

Les amas de galaxies dans le Sloan

Einasto et al. 2003, A&A 405, 425

Nord Sud

21

Les superamas dans le Sloan

Einasto et al. 2003, A&A 405, 425

Nord Sud

22

Les relevés plus profonds (z~0.5)ESO-Sculptor (3.5m)

de Lapparent et al. 2004

Norris (Palomar 5m)

Small et al. 1999, ApJ 524, 31

23

Comparaison de trois relevés

Sloan ESO-SculptorTegmark et al. 2004 de Lapparent et al. 2004

CfA

de Lapparent et al. 1986

24

Relevé VLT / VIMOS• ESO Very Large Telescope (VLT) 8m• VIMOS : ~400 fentes• 100 000 galaxies à z<1.5• 4x4 degrés carrés

25

VIMOS VLT

Le Fèvre et al. 2004

26

DISTRIBUTION SPATIALE D’AMAS DE DISTRIBUTION SPATIALE D’AMAS DE GALAXIES EN RAYONS XGALAXIES EN RAYONS X

Borgani S. & Guzzo L. 2001, Nature 409, 39

27

Un filament de galaxies entre plusieurs amas de galaxies

A 2197/2199

Z = 0.0305/0.0296

COMAZ = 0.023

A 1367Z = 0.0216

West, Jones & Forman (1995) ApJ 451, L5

A 779Z = 0.023

28

Les deux filaments de Abell 1763

Fadda, Biviano, Marleau, Storrie-Lombardi & Durret 2007, ApJ 672, L9

29

Abell 496 et son environnement : un filament de galaxies, groupes et amas

Boué, Adami, Durret, Mamon & Cayatte 2008, A&A 479, 335

30

Simulation numérique de la formation de structures dans un Univers de matière noire CDM. Le cube fait 500 millions d’années-lumière, et inclut 16 millions de particules (d’après le groupe INC de l’IAP).

31

Principaux résultats

• Les galaxies ne sont pas distribuées de manière uniforme dans l’espace

• Elles constituent une structure en éponge, avec des feuillets et des vides

• Elles semblent préférentiellement distribuées selon des filaments

• A l’intersection de ces filaments se situeraient les amas de galaxies

• Bon accord entre observations et simulations numériques

32

Plan du cours

• Historique• Principales techniques d’observation• Morphologie des galaxies• Distances des galaxies• Contenu des galaxies : étoiles, gaz, poussières, matière

noire• Cinématique des galaxies• Galaxies en interaction ; simulations numériques• Les galaxies à noyau actif• Distribution des galaxies dans l’Univers• Notions sur la formation et l’évolution des

galaxies• Groupes et amas de galaxies

33

Formation des galaxies

• Principales questions : Comment se forment les galaxies ? Quand se sont-elles formées ? Quels facteurs déterminent le type de galaxie qui va se

former ? Relation(s) entre formation d’étoiles et formation des

galaxies ?

• Deux approches complémentaires : Remonter dans le temps à partir de ce qu’on observe

aujourd’hui Voir comment l’Univers a pu évoluer à partir des

conditions initiales qu’on lui attribue

34

Hypothèses dans le cadre de la théorie du Big Bang

• L’Univers a environ 14-15 milliards d’années• L’expansion (loi de Hubble) existe depuis le Big Bang

(BB), mais son taux peut avoir varié• Univers primordial très chaud et très dense ;

température et densité constants à un instant donné dans l’Univers mais avec de faibles fluctuations

• Durant expansion/refroidissement, création de particules (protons, neutrons…) à partir de quarks

• Charge électrique totale nulle : autant de protons que d’électrons

• Les premières minutes après le BB, formation de noyaux d’hélium, d’où matière baryonique = environ 76% H et 24% He

• Existence aussi de matière non baryonique

35

Origine des galaxies

• Fluctuations de densité • Existence de zones plus denses• Accrétion accrue de matière (instabilité

gravitationnelle)• « Proto-galaxies » où se sont formées les

galaxies• Processus dit « monolithique » : chaque proto-

galaxie va s’effondrer (« gravitational collapse ») pour donner une galaxie, contenant de la matière baryonique et de la matière non-baryonique (la matière noire)

• Problème : la matière noire doit jouer un rôle important mais on ne connaît pas sa nature !

36

Le scénario matière noire froide ou CDM (cold dark matter)

• Matière noire constituée de particules ayant vitesse << c

• Simulations numériques de « collapse » montrent formation de structures de 106 M0

• Ces structures fusionnent (un certain nombre de fois) pour créer des galaxies de masse typique 1011 M0

• Ce scénario est appelé « hiérarchique » ou « bottom-up »

37

Le scénario matière noire chaude ou HDM (hot dark matter)

• Matière noire constituée de particules ayant vitesse comparable à c

• Fluctuations de densité à petite échelle disparaissent• Simulations numériques montrent formation de

structures de masse >> masse des galaxies individuelles• Ces structures se fragmentent ensuite pour créer des

galaxies de masse typique 1011 M0

• Ce scénario est appelé « top-down  »• Problèmes : Observations semblent indiquer que petites structures se

sont formées avant les grandes Structures à très grande échelle prédites semblent

différentes de ce qu’on observe

38

Le processus CDM

• Difficulté : il faut inclure les effets de la formation d’étoiles dans les simulations numériques

• La formation des galaxies elliptiques par fusion s’explique bien

• La formation des spirales pose problème : on forme des spirales de 106 M0 mais pas plus

• Une possibilité : on obtient des galaxies elliptiques de 1010-12 M0 qui peuvent accréter de la matière du milieu environnant ; si cette matière a moment angulaire suffisant elle peut former un disque

• En faveur de cette idée : bulbes des spirales et elliptiques ont mêmes propriétés

39

Les fonctions de luminosité des galaxies

La formule de Schechter

Ajustement = minimiser le χ2

En haut : Mlim=-16, α =-1.6, M*=-20.1En bas : Mlim=-17, α =-1.4, M*=-20.0

40

Evolution en luminosité des galaxies isolées

• Evolution des galaxies dépend de l’environnement (fusions) et de l’évolution propre de la galaxie (étoiles, gaz)

• Lumière émise par une galaxie = somme des lumières émises par les étoiles qui la forment

• Donc évolution = taux de formation d’étoiles (Star Formation Rate, ou SFR) + évolution de chaque étoile

• SFR dans les elliptiques élevé dans le passé mais quasi nul maintenant

• SFR dans les spirales : dans les Sa, SFR décroît avec le temps comme dans les elliptiques mais beaucoup moins vite, et est a peu près constant dans les Sc

41

• La formation stellaire était beaucoup plus importante dans le passé (il y a 8-10 milliards d’années) que maintenant

M0

Mpc

-3 y

r-1

Steidel et al. 1999, ApJ 519, 1

Schaefer et al. 2002, ApJL Madau et al. 1996, MNRAS 283, 1388Lanzetta et al. 2002, ApJ 570, 492

42

• A z>3-4, il semble que le taux de formation d’étoiles rediminue quand z augmente

• Effet Butcher-Oemler : proportion de galaxies bleues beaucoup plus grande dans amas lointains que dans amas proches

43

Evolution chimique des galaxies isolées

• Les plus faciles à modéliser• Premières étoiles = H+He (Population III)• Explosions de supernovae enrichissent

générations suivantes d’étoiles en éléments lourds

• Donc composition chimique des étoiles et du MIS (milieu interstellaire) changent avec le temps

• Problème : il n’y a presque pas de galaxies isolées !

44

Evolution morphologique

• Observations Hubble Deep Field semblent montrer que près de 25% des galaxies lointaines étaient irrégulières contre 7% aujourd’hui

• SFR plus élevé autrefois qu’aujourd’hui

• Rôle des poussières ?

45

Conclusions

• Les galaxies n’ont pas pu se former à un moment unique de l’histoire de l’Univers

• Hypothèses Big Bang + CDM et formation « bottom-up » des galaxies : simulations numériques globalement en accord avec les observations

MAIS…• Certaines propriétés observées ne sont pas en

accord avec prédictions des modèles

46

Conclusions (suite)

• Approche semi-analytique et approche hybride (analytique + numérique) reproduisent bien :

les fonctions de luminosité des galaxies à différentes longueurs d’onde et leur évolution au moins jusqu’à z=3

les corrélations entre les différentes propriétés des galaxies (contenu gazeux, masse, couleur, type)

47

MAIS …

la pente des fonctions de luminosité calculée est de l’ordre de -1.5 à -1.3 alors que la pente observée est plutôt -1.0 ; explications possibles :

- effets de sélection sur les données ? - modélisation incomplète des vents galactiques ? - chauffage du milieu inter galactique par premières étoiles,

noyaux actifs et/ou supernovae primordiales ? relations entre matière et lumière mal connues comptages de galaxies dans domaine submillimétrique mal

reproduits (galaxies des modèles ne sont pas assez lumineuses dans ce domaine ; poussières mal prises en compte ?)

couleurs des galaxies lointaines mal prédites

48

Plan du cours

• Historique• Principales techniques d’observation• Morphologie des galaxies• Distances des galaxies• Contenu des galaxies : étoiles, gaz, poussières, matière

noire• Cinématique des galaxies• Galaxies en interaction ; simulations numériques• Les galaxies à noyau actif• Distribution des galaxies dans l’Univers• Notions sur la formation et l’évolution des galaxies

• Groupes et amas de galaxies

49

• Les amas de galaxies comprennent :

des galaxies (quelques centaines à plusieurs milliers) visibles surtout en lumière visible

du gaz très chaud émettant en rayons X

de la matière noire (ou sombre)

Les amas de galaxies sont les plus grandes structures de l’Univers

liées par la gravité

Galaxies

Amas de galaxies

Gaz chaud

George Abell

50

Un amas célèbre : Coma(la chevelure de Bérénice)

Coma en lumière visible Coma en rayons XComa en rayons X

Satellite XMM-Newton

SatelliteChandra

51

Les galaxies dans les amas

• Les galaxies elliptiques sont probablement formées par la fusion de galaxies spirales

• Dans les amas, on observe plus de galaxies elliptiques dans les régions centrales, et plus de spirales dans les zones extérieures

• Dans les zones extérieures on voit aussi des spirales où la formation d’étoiles est intense, donc on pense que ce sont des galaxies en train de « tomber » sur l’amas : le gaz est alors comprimé et des étoiles se forment

52

Un moyen d’analyse pour les galaxies : les fonctions de luminosité

• Les fonctions de luminosité (FDL) des galaxies dans les amas nous renseignent sur la proportion de galaxies à différentes magnitudes

• La pente de la FDL aux faibles magnitudes semble dépendre de l’environnement : elle est plus plate au centre des amas (les galaxies faibles sont accrétées par les grosses galaxies) et plus « pentue » dans les zones externes

53

Exemple de Coma

Lobo et al.1997, A&A 317, 385

54

La relation couleur-magnitude

Adami et al. 2006, A&A 459, 659Boué et al. 2008, A&A 479, 335

ComaAbell 496

55

Qu’arrive-t-il aux galaxies dans les amas ?

• « Ram pressure stripping », déficience HI : la pression exercée par le gaz interamas arrache leur gaz aux galaxies

• « Harrassment » : les fusions et interactions de marée successives arrachent aussi du gaz aux galaxies

• « Starvation/strangulation » : du fait de la diminution du gaz disponible, le taux de formation d’étoiles diminue

56

Observateur

Amas deGalaxies

Galaxie Lointaine

Les amas sont aussi des lentilles gravitationnelles

57

Strong lensing in the core

Weak lensing on large scale

Most massive clustersEinstein radius: 10-45”

Ned Wright, UCLA

58

59

DÉCOUVERTE DU PREMIER ARC GÉANT : ABELL 370DÉCOUVERTE DU PREMIER ARC GÉANT : ABELL 370

Zamas = 0.375

Z source = 0.725

Soucail et al. (1987) A&A 172, L14

60

MS 2137 - 23MS 2137 - 23

Zamas = 0.33

Zsource = 0.913

61

ABELL 2218ABELL 2218

HST 04/1995 W. Couch (UNSW), NASA

Z = 0.1710

62

RDCS152.9-2927 à z=1.237Mosaique 4 ACS pointages, total de 20 orbites dans la bande z, 12 orbites dans la bande i combinées avec de l’imagerie profonde ISAAC

Champs : 4’x4’ (2x2 Mpc) 2’x2’ (1x1 Mpc) 1’x1’ (0.5x0.5 Mpc) 0.5’x0.5’ (0.25x0.25 Mpc)

HS

T/A

CS

i &

z +

IS

AA

C/V

LT K

s

P. Rosati

63

Arcs gravitationnels découverts dans l ’amas RDCS1252 à z=1.24Arcs gravitationnels découverts dans l ’amas RDCS1252 à z=1.24

Arc A

Arc B

Galaxie à z= 3.36

64

RÉSUMÉRÉSUMÉ

• L’effet de lentille gravitationnelle FORT permet :

de déduire la distribution de masse dans l’amas-lentille ; la masse totale de l’amas ainsi déduite est en général en bon accord avec celle calculée à partir de l’émission de l’amas en rayons X

d’observer des galaxies très lointaines qu’on ne détecterait pas autrement

• L’effet de lentille gravitationnelle FAIBLE permet, par l’analyse des déformations de très nombreuses galaxies, de déterminer le cisaillement (« shear ») dû à l’effet gravitationnel de l’amas

65

Les amas de galaxies en rayons X

• On observe le ciel en rayons X grâce à des satellites, car les rayons X sont absorbés par l’atmosphère terrestre et ne parviennent pas au sol

• Actuellement, trois grands satellites X sont en orbite : XMM-Newton (européen), Chandra (américain) et Suzaku (japonais)

• L’émission X est due à du gaz très chaud (dix à cent millions de degrés) et très peu dense

66

Quelques exemples d’images d’amas en rayons X

Abell 2142 (z=0.09)

L’amas du Centaure (z=0.011)

67

Abell 426(Persée)(z=0.0179)

68

ABELL 754 (z=0.0535)

En couleurs : carte de densité en lumière visibleEn blanc : isocontours en rayons X (Rosat PSPC)

Zabludoff & Zaritsky (1995) ApJ 447, L21

69

Deux amas en fusion plus lointains

70

Les spectres en rayons X

Ces spectres sont interprétés comme dus à un gaz très chaud (des millions de degrés) et très peu dense (108 particules par mètre cube, alors que l’atmosphère terrestre au niveau de la mer en contient environ 1025 par mètre cube)

Le spectre X de L’amas Abell 85(z=0.055)Satellite XMM-Newton

Raie du fer

71

• Les spectres en rayons X nous permettent d’estimer :

la température et la densité du gazla variation de ces quantités en fonction de

la distance au centre de l’amasl’abondance des éléments « lourds » qui

ont été fabriqués dans les étoiles et rejetés dans le milieu intergalactique, en particulier le fer

72

Les cartes de température en rayons X

Abell 2667Abell 85

Abell 496Abell 3376

73

Comparaison avec des simulations numériques

Bourdin, Sauvageot, Slezak, Bijaoui, Teyssier 2004, A&A 429, 443

Emissivité

Températuredu gaz

z=0z=0.09z=0.13

74

XMM temperature map

Carte de température obtenuepar simulation numérique

Durret, Lima Neto & Forman 2005, A&A 432, 809

Bourdin, Sauvageot, Slezak, Bijaoui, Teyssier 2004, A&A 429, 443

Abell 85

75

A partir de ces quantités on peut calculer la masse de gaz en fonction du rayon et la masse totale de l’amas en fonction du rayon

76

• Masse totale en fonction du rayon (voir aussi plus loin amas de galaxies) :

où mp=masse du proton μ=0.61 poids moléculaire moyen

Pnt=pression supplémentaire (magnétique, rayons cosmiques, turbulence… ) qui peut être nulle ou négligeable

• Masse totale s’obtient par intégration sur r

• Même calcul pour les galaxies elliptiques géantes entourées d’un halo de gaz très chaud

77

On constate que la masse de gaz est seulement environ 20% de la masse totale

présence de matière noire

La masse totale des amas calculée à partir des données en rayons X et à partir des lentilles gravitationnelles

est la même !

78

Conclusions

• Les amas jouent un rôle important en cosmologie pour déterminer les paramètres cosmologiques

• On observe maintenant des amas de plus en plus lointains (décalage spectral >1)

• On en connaît plusieurs à z>1 où l’on approche du z de formation des amas

Vikhlinin et al. 2008, arXiv: 0812.2720

top related