1 plasma membrane ion channels and epithelial to ...413687/uq413687...5 98 ion channel activated by...

Post on 16-Jun-2018

226 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Plasmamembraneionchannelsandepithelialtomesenchymaltransitionincancercells1

2

ImanAzimi1,2,3,GregoryR.Monteith1,2,3*3

1TheSchoolofPharmacy,TheUniversityofQueensland,Brisbane,Queensland,Australia4

2MaterResearchInstitute,TheUniversityofQueensland,Brisbane,Queensland,Australia5

3TranslationalResearchInstitute,Brisbane,Queensland,Australia6

7

*CorrespondenceshouldbeaddressedtoGRMonteith,Emailgregm@uq.edu.au8

Runningtitle:IonchannelsandEMTincancer9

10

Abstract11

Avarietyofstudieshavesuggestedthatepithelialtomesenchymaltransition(EMT)maybe12

importantintheprogressionofcancerinpatientsthroughmetastasisand/ortherapeuticresistance.13

AnumberofpathwayshavebeeninvestigatedinEMTincancercells.Recently,changesinplasma14

membraneionchannelexpressionasaconsequenceofEMThavebeenreported.Otherstudieshave15

identifiedspecificionchannelsabletoregulateaspectsofEMTinduction.Theutilityofplasma16

membraneionchannelsastargetsforpharmacologicalmodulationmakethemattractivefor17

therapeuticapproachestotargetEMT.Inthisreview,weprovideanoverviewofsomeofthekey18

plasmamembraneionchanneltypesandhighlightsomeofthestudiesthatarebeginningtodefine19

changesinplasmamembraneionchannelsasaconsequenceofEMTandalsotheirpossiblerolesin20

EMTinduction.21

22

2

Introduction23

EpithelialtoMesenchymaltransition(EMT)referstotheprocesswherebyepithelialcellswhich24

typicallyexhibitfeaturessuchasstrongcelltocelladhesionandapical-basalpolarity,losethese25

propertiesandacquireotherssuchasgreatermotilityandaspindlelikemorphology(vanDenderen26

andThompson2013)(Thiery,etal.2009)(Fig.1).EMTisakeyeventindevelopmentalprocesses27

includingembryogenesiswhereitisassociatedwithimplantationandembryonicgastrulation(Kalluri28

andWeinberg2009).EMTisalsoafeatureofotheraspectsofnormalphysiologysuchaswound29

healingwhereithasanimportantroleintissueregeneration,andorganfibrosis(Kalluriand30

Weinberg2009).31

EMTincancer 32

Metastasisisthecauseofmortalityincancertypesthatoriginatefromorganswheresurgical33

resectionand/ortreatmentoftheprimarytumourareoftenfeasible(e.g.breastandprostate).34

Metastasisisahighlyregulatedprocesswherebycellsescapetheprimarytumour,enterthe35

circulatorysystemanddepositatametastaticsite(HanahanandWeinberg2011).Thereisclear36

coordinationofprocessesinmetastasisandthisisreflectedinthepropensityofdifferentcancer37

subtypestopreferentiallyformmetastaticlesionsinspecificsites.Thelossofcell-to-celladhesion,38

theacquisitionofmotility,theabilitytodegradethesurroundingextracellularmatrixandtosurvive39

stressessuchasthatinducedbyentryintothecirculationareallfeaturesthatarerequiredofcancer40

cellsduringmetastasis.Itisthereforenotsurprisingthatitisbelievedthatascellsleavetheprimary41

tumourtheymayundergoprocessessimilartoEMT(Heerboth,etal.2015).Theseincludethe42

expressionofthespecifictranscriptionfactorsSnailandTwist,expressionofmesenchymalmarkers43

suchasvimentinandN-Cadherin,andlossofepithelialmarkerssuchasE-cadherin(TsaiandYang44

2013).Indeed,theconsequencesofEMThavebeenreportedasincreasedmotilityandaremodelling45

ofcellularadhesion(Lamouille,etal.2014).EMTincancercellsisalsoassociatedwiththe46

acquisitionoftherapeuticresistance(SinghandSettleman2010).Althoughsomeveryrecentstudies47

3

indicatethatinsomecancersEMTmaybemoreimportantintheacquisitionoftherapeutic48

resistancethanmetastasis(Fischer,etal.2015;Zheng,etal.2015),understandingtheinductionof49

EMTandthepropertiesofthemesenchymalstatewouldclearlyhelpidentifynoveltherapeutic50

targets.51

AnumberoffactorsinthetumourmicroenvironmenthavebeenidentifiedasinducersofEMTin52

cancercells.Inbreastcancercells,growthfactorssuchasepidermalgrowthfactor(EGF),and53

hypoxiahavebeenshowntoinduceEMTinavarietyofinvitromodels,suchasMDA-MB-468breast54

cancercellsandZR-75-1breastcancercells(Davis,etal.2014a;Lester,etal.2007).Inprostate55

cancercells,EMTisinducedbyepidermalgrowthfactor(EGF)(Zhang,etal.2013b)andGrowthand56

differentiationfactor9(GDF-9)(Bokobza,etal.2011).Studiesinlungcancercellshave57

demonstratedthathypoxiainducesEMTthroughproteinkinaseA(PKA)activityinahypoxia-58

induciblefactor1-alpha(HIF1-α)dependentmanner(Shaikh,etal.2012).Avarietyofdrugable59

targetshavebeenidentifiedaspotentialmechanismstocontrolEMTinductionand/ortargetthe60

mesenchymalphenotypewhichisaconsequenceofEMT(Davis,etal.2014b).Oneclassofproteins61

thatarethetargetofexistingdrugsandmanydrugdevelopmentprogramsareionchannels.62

Plasmalemmalionchannelsinparticularareoftenamenabletopharmacologicalmodulationdueto63

theirextracellulardomains.Theavailabilityofselectiveinhibitorstospecificionchannelisoforms64

alsoallowschemogenomicandothermethodstodevelopnewtherapeutics.65

Ionchannelsasregulatorsofcellularprocesses66

Thepresenceofiongradientsacrosstheplasmamembraneisadefiningfeatureofmammaliancells.67

ThesodiumiongradientismaintainedbyNa+/K+-ATPasesthatactivelypumpNa+ionsfromthe68

cytoplasmtomaintainalowerintracellularfreeNa+levelcomparedtothoseoftheextracellular69

space(Castillo,etal.2015).Changesinthisgradientcanleadtorapidchangesinmembrane70

potentialanddriveactionpotentialsinexcitablecells.Similarly,changesincytosolicfreeCa2+71

([Ca2+]CYT)levelscanbemediatedbyactivationofCa2+permeableionchannelsandsuchchanges72

4

haveimportantrolesinanarrayofcellularprocessesincludingfertilization,musclecontraction,73

hormonesecretion,genetranscriptionandcelldeath(Berridge,etal.2003).Thediversityof74

processesinfluencedbychangesinNa+,Ca2+andK+andotherionsthroughtheopeningofion75

channels,requiresthecelltoselectivelycontrolsuchchangesandthewaysuchchangesare76

decodedtoaltercellularprocesses.Hence,itisnotsurprisingthatthereareaplethoraofion77

channelsincells.Forexamplethereareover20genesthatencodeforjustonespecificclassofion78

channel-transientreceptorpotential(TRP)channelsinhumans.Thenextsectionprovidesan79

outlineofthegeneralpropertiesofionchannelsrelevanttothisreview.Wethenprovideaspecific80

overviewofstudiesthathaveidentifiedrolesofionchannelsinEMTinductionand/orremodelling.81

Plasmamembraneionchannels82

Thereareavarietyofionchannelswithdifferentpermeabilityandselectivityforcationsoranions.A83

comprehensivereviewofallionchannelsevenjustthoseoftheplasmamembraneiswellbeyond84

thescopeofthisreview.Hence,readersaredirectedtosourcesofcomprehensivelistsandreviewof85

ionchannelssuchastheIUPHAR/BPSguidetopharmacology(Southan,etal.2016),whichincludes86

otherchannelsnotdiscussedinthisreviewsuchasacid-sensing(proton-gated)ionchannels(ASICs)87

andsomeligandgatedCa2+channelssuchasionotropicglutamatereceptors.Arguably,themost88

extensivelystudiedplasmamembraneionchannelsarethosedepictedinFig.2–whichinclude89

calciumchannels,sodiumchannels,potassiumchannelsandchloridechannels.Examinationofeach90

ofthesechanneltypesprovidesinsightintotheirdiversity.Thesechannelscandifferdramaticallyin91

theirpropertiesfromionselectivitytotheirmechanismofactivation.92

ThediversityinionchannelpropertiesisclearintheplasmamembraneCa2+channelspresentedin93

Fig.2–Orai,TRP,P2XandvoltagegatedCa2+channels(VGCC).Theseclasseshavecleardifferences94

intheirmechanismofactivation.ForexampletheOrai1proteinispartofacomplexwherebyCa2+95

influxisactivatedbythedepletionofendoplasmicreticulumCa2+stores(Azimi,etal.2014).In96

contrast,TRPchannelshavebeendescribedassensors,asexemplifiedbyTRPV1aCa2+permeable97

5

ionchannelactivatedbyheatandthehotchillicomponent,capsaicin(Azimietal.2014).Other98

ligandgatedcalciumchannelsincludeionotropicglutamatereceptorsandalsoP2Xchannelsthatare99

activatedbysomenucleosides(e.g.ATP)whereasVGCCsareactivatedbychangesinmembrane100

potential(Azimietal.2014).EvenwithinclassesofCa2+channelsthereisgreatdiversityofactivators101

(e.g.TRPV1isactivatedbycapsaicinwhereasTRPM8isactivatedbymenthol)andionselectivity(e.g.102

TRPV6ishighlyselectiveforCa2+ionswhereasTRPV1isalsopermeabletoNa+ions)(Azimietal.103

2014).TheremodellingofCa2+channelexpressionhasbeendefinedinsomecancersandsomehave104

beenidentifiedaspotentialtherapeutictargetsinsomecancersubtypesasreviewedelsewhere105

(Azimietal.2014;Stewart,etal.2015).Indeed,SOR-C13,aTRPV6inhibitorhasbeenrecently106

assessedinclinicaltrialsofovariancancer(www.clinicaltrials.gov,NCT01578564).107

AlthoughtheassociationbetweenNa+influxandactionpotentialshasseenafocusonNa+channel108

inneuroscienceandcardiovascularresearch,Na+channelsareinfactexpressedinavarietyofcell109

types.Forexamplevoltagegatedsodiumchannels(VGSC)areexpressedinexcitablecellsincluding110

neuronsandmusclecells,wheretheyareresponsibleforactionpotentialandconduction(Southan111

etal.2016);NALCNhasbeendescribedasasodiumleakchannelwhichregulatestheresting112

membranepotentialandexcitabilityinneurons(Cochet-Bissuel,etal.2014);andepithelialsodium113

channels(ENaC)playpivotalrolesintheregulationofextracellularfluid(ECF)volumeandblood114

pressureinkidneytubules(HanukogluandHanukoglu2016).Potassiumchannelsareequallyas115

complexanddiverseandincludethosethatarevoltagegated(VGKC),thosethataretwo-pore116

domain(K2P),thosethatplayrolesinCa2+-activatedK+transport(KCachannels)andInwardly117

rectifyingK+(IRK)channels(Hibino,etal.2010).118

Chloridechannelsincludechannelsthatwhendefectiveduetohereditarymutationcanalterthe119

fluidtransportinepithelialcellsresultingincysticfibrosis(CysticFibrosisTransmembrane120

conductanceRegulator(CFTR)),channelsactivatedbyintracellularCa2+(CaCC),thosewhichare121

6

ligandactivated(LGCC),orvolumeregulated(VRAC)orthechloridechannelsuperfamily(CIC)122

(Southanetal.2016).123

Theoutlineofplasmalemmalionchannelspresentedabovehighlightedthediversityofionchannels124

andtheirrolesinmammaliancells.Asdiscussedbelow,someoftheseionchannelshaverecently125

beenshowntoberemodelledasaconsequenceofEMTincancercellsorplayrolesintheinduction126

ofEMTmarkersinducedbysomestimuli.127

PlasmamembraneionchannelsandEMTincancercells128

ThisreviewisfocusedontheremodellingandinsomecasesrolesofionchannelsinEMTincancer129

cells.ItshouldbenotedthatotherstudieshaveinvestigatedionchannelsinEMTinthecontextof130

otherEMTrelevantprocessesmanyofwhichintersectwithdiseasestatessuchasairway131

remodelling(Arthuretal.,2015)andrenalfibrosis(Maietal.,2016).132

133

Theverydifferentpropertiesofcancercellssuchastheacquisitionoftherapeuticresistanceandthe134

majorchangesintheexpressionofspecificproteins(e.g.vimentin)andtranscriptionfactors(e.g.135

twistandSnail)asaconsequenceofEMTmeansthatchangesinioninfluxshouldnothavebeen136

surprising.ThechangeinphenotypeofcancercellsthathaveundergoneEMTandtheveryspecific137

rolesofspecificionchannelsindifferentcelltypessuggeststhatthemesenchymalphenotypewill138

exploitdifferentionchannelstoachievedifferentcellularfunctions.Inthesectionbelowwewill139

provideanoverviewofstudiesthathavenowshownsuchchangesandinsomecasesimplicated140

specificionchannelsinEMTinduction.ManyofthesestudiesaresummarisedinTable1.141

SodiumchannelsandEMTincancercells142

Hypotheseshavebeenproposedandanintellectualcasemadeforthepotentialofvoltage-gated143

sodiumchannelstoregulateEMTinductionincancercells(ErenandOyan2014;Eren,etal.2015).144

Therepositioningofclinicallyusedvoltage-gatedsodiumchannelblockerstoattenuatemetastatic145

7

progressionand/orchemotherapyresistancethroughinhibitionofEMTinductionhasalsobeen146

highlighted(Erenetal.2015).However,thisareahasyettobefullyassessedexperimentallywith147

modelsofEMTincancercells,andthisrepresentsanopportunityforfutureresearch.148

PotassiumchannelsandEMTincancercells149

TheassociationbetweenchangesinthepotassiumgradientandEMTwassuggestedinearlystudies150

ofpotassiumchlorideco-transporter3(KCC3)(Hsu,etal.2007).KCC3isnotanionchannel,butits151

abilitytocotransportK+andCl-ionsmakesitanimportantregulatorofthefluxoftheseionsacross152

theplasmamembranesofmanycelltypeswhereitcanplayanimportantroleintheregulationof153

cellvolume(Hsuetal.2007;Kahle,etal.2015).ForcedoverexpressionofKCC3incervicalcancer154

SiHacellsisassociatedwiththeadoptionofamoremesenchymal-likemorphology,thedown155

regulationoftheepithelialmarkerE-cadherinandtheupregulationofthemesenchymalmarker156

vimentin(Hsuetal.2007).SubsequenttothesestudiesanassociationwiththeEAG1potassium157

channelandEMTinlungcancercellshasbeenimplicated,becauseofanincreaseinEag1mRNA158

levelsinA549lungcancercellstreatedwithtransforminggrowthfactorbeta1(TGFβ1),anEMT159

inducerinthismodel(Restrepo-Angulo,etal.2011).Incontextofcolorectalcancer,studiesof160

phosphataseofregeneratingliver-3(PRL-3)inducedEMTinLoVocells(acoloncancercellline),has161

shownthatapharmacologicalinhibitoroftheCa2+activatedpotassiumchannelKCNN4-TRAM-34,162

supressesthemesenchymalmarkersvimentinandSnail,andincreasestheexpressionofthe163

epithelialmarkerE-cadherin(Lai,etal.2013).AlthoughtheconcentrationsofTRAM-34usedmay164

haveinhibitedotherionchannels,siRNAtoKCNN4phenocopiedtheeffectsofTRAM-34(Laietal.165

2013).Moreover,KCNN4expressionwaspositivelycorrelatedwithtumourstageinclinicalcohortof166

86patientcolorectaltumoursamples(Laietal.2013).Veryrecentstudieshavenowshownthat167

silencingofKCNN4inMDA-MB-231(abreastcancercelllinewithfeaturesofthemesenchymal168

phenotype)appearedtoreducetheexpressionofthemesenchymalmarkersvimentinandSnail1169

(Zhang,etal.2016).170

8

Collectively,thestudiesdescribedabovearebeginningtodefineassociationsbetweenspecific171

potassiumchannelsandEMTincancercells.Furtherstudiesofotherpotassiumchannelsinthe172

contextofchangesinexpressionasaconsequenceofEMTaswellastheinductionofEMTand/or173

maintenanceofthemesenchymalphenotypenowseemappropriate.GiventhediversityofEMT174

modelsincancercellsandthevarietyofinducersofEMT,itisalsoimportantthattherolesof175

specificpotassiumchannelsbeinvestigatedacrossavarietyofmodelsandinducersofEMT.176

ChloridechannelsandEMTincancercells177

Anincreasingnumberofstudieshaveidentifiedtheremodellingofexpressionofchloridechannel178

componentsasaconsequenceofEMTincancercells.Examplesofsuchremodellingincludeisoforms179

ofchloridechannelaccessoryproteins,namelyCLCA2andCLCA4.CLCA2mRNAlevelsarereducedin180

breastcancercelllinesassociatedwiththemesenchymalphenotype(e.g.MDA-MB-231andBT549)181

comparedtothoseoftenenrichedinepithelialmarkers(e.g.MCF-7).Indeed,expressionoftheEMT182

transcriptionfactorSnailsupressesCLCA2proteininthehumanbreastcelllineMCF10A,andCLCA2183

levelsarereducedinsubpopulationsofcellsfromthehumanmammaryepithelial(HMLE)cellline184

thatareenrichedinmesenchymalmarkers(Walia,etal.2012).Moreover,CLCA2levelsarereduced185

duringEMTinducedbyTGFβ(Yu,etal.2013).Similarly,reducedlevelsoftherelatedisoformCLCA4186

isafeatureofsubpopulationsofcellsfromtheHMLEcelllinethatareenrichedinmesenchymal187

markersandaconsequenceofTGFβ-inducedEMT(Yuetal.2013).ConsistentwiththelossofCLCA2188

andCLCA4inthemesenchymalphenotype,lowlevelsofCLCA2andCLCA4appearlikelytobe189

associatedwithanincreasedincidenceofmetastasis(asassessedthroughmetastasisorrelapsefree190

survival)usingspecificcohortsofbreastcancerpatients(Waliaetal.2012;Yuetal.2013).In191

additiontotheirremodellingasaconsequenceofEMT,CLCA2andCLCA4havealsobeenimplicated192

intheregulationofthetransitionofbreastcancercellstowardsamoremesenchymalstate.193

KnockdownofCLCA2orCLCA4issufficientinHMLEcellstoinducetheexpressionofthe194

mesenchymalmarkervimentinandsupresstheepithelialmarkerE-Cadherin(Waliaetal.2012;Yuet195

9

al.2013).InthecaseofCLCA2,theregulationofEMTmayatleastinpartbethroughinteractions196

withthecelljunctionalproteinEVA1(Ramena,etal.2016).Futurestudiesarenowrequiredto197

definetherelativeimportanceinchangesinchloridefluxintheseevents,andtheabilityoftheloss198

ofCLCA2orCLCA4toinduceamesenchymalphenotypeinothermodelsofEMT,includingthosenot199

ofbreastcancerorigin.200

Breastcancercellshavealsobeenthefocusofinvestigatorsexploringtherelationshipbetween201

CFTRandEMT.TheEMTinducerTGFβ1causesadownregulationofCFTRinMCF-7cells,whichis202

alsoassociatedwithadownregulationoftheepithelialmarkerE-cadherin(Zhang,etal.2013a).A203

functionalroleforCFTRinEMTinductionissuggestedbytheabilityofCFTRsilencingtoinducethe204

expressionofavarietyofmesenchymalmarkersinMCF-7breastcancercells.Thisproposedfunction205

ofCFTRisfurthersupportedbytheabilityofCFTRoverexpressioninmesenchymal-likeMDA-MB-206

231breastcancercellstosuppresstheexpressionofvimentin(amesenchymalmarker)andinduce207

theexpressionofE-cadherin(anepithelialmarker)(Zhangetal.2013a).Aswouldbepredicted208

basedontheseresults,reducedlevelsofCFTRareassociatedwithpoorprognosisinbreastcancer209

patients(Zhangetal.2013a).Morerecentstudieshavebeguntoexplorechloridechannelsinthe210

contextofEMTinothercancertypes,suchassquamouscellcarcinomasoftheheadandneck211

(Shiwarski,etal.2014).TMEM16A(alsoknownasANO1),isoneofareportedsubset(termed212

Anoctamins)ofcalciumactivatedchloridechannels(Kunzelmann,etal.2011).LevelsofTMEM16A213

arereducedincancercellsinmetastaticlymphnodescomparedtothoseoftheprimarytumourin214

squamouscellcarcinomasoftheheadandneck(Shiwarskietal.2014).TMEM16Aseemstobe215

morethanapotentialmarkerofEMT,sincesilencingofTMEM16AinT24cells(ahumanbladder216

carcinomacellline),producesamesenchymal-likephenotype(spindlemorphology,lowerE-217

cadherin,increasedSnail)andoverexpressionofTMEM16Aproducesanepithelial-likephenotype218

(roundedpackedmorphology,increasedE-cadherin,reducedvimentinandfibronectin)(Shiwarski219

etal.2014).220

10

Theworkdescribedabove,performedbyavarietyofinvestigatorsusinganarrayofmodelsand221

approacheshasnowhelpeddefinearemodellingofspecificchloridechannels(orcomponents)in222

EMTandaroleforthesesamechannelsintheinductionofEMTand/orthemaintenanceofthe223

epithelial-likephenotype.224

CalciumchannelsandEMTincancercells225

Thecalciumsignalhasbeenidentifiedasorcouldbespeculatedtobeapotentialmechanismby226

whichatleastsomeoftheaforementionedionchannelsmayimmediatetheireffectsonEMT.For227

examplethemechanismbywhichKCNN4mayregulateEMTincoloncancercellshasbeenlinkedto228

effectsoncalciumsignalling(Laietal.2013).Indeed,globalchelationofintracellularfreeCa2+that229

attenuatesincreasesincytosolicfreeCa2+,suppressesbothEGFandhypoxiainducedincreasesinthe230

mesenchymalmarkersvimentin,N-cadherinandCD44(Davisetal.2014a).Similarfindingshave231

nowbeenreportedinHuh7andHepG2hepaticcancercelllinesforEMTinducedbydoxorubicin232

(Wen,etal.2016).Itisalsonowclearthatamajorremodellingincalciumsignallingandthe233

expressionofspecificcalciumpermeableionchannelsisafeatureofEMTandsomecalcium234

permeableionchannelsareimportantintheinductionofexpressionofsomeproteinsassociated235

withthemesenchymalphenotype.236

AlterationsintheresponsestoATP,abletoactivateG-proteincoupledpurinergicreceptors(P2Y237

family)andligandgatedCa2+channels(P2Xfamily)isafeatureofbothEGFandhypoxiainducedEMT238

inMDA-MB-468breastcancercells(Azimi,etal.2015;Davis,etal.2011).EMTinducedbyhypoxia239

andEGFisassociatedwiththeattenuationofpeak[Ca2+]CYTandthesustainedphaseofCa2+influx240

inducedbyATP.EMTisalsoassociatedwithareductioninthesensitivitytoATPwithanincreasethe241

EC50(Azimietal.2015;Davisetal.2011).Suchchangesinthemesenchymalphenotypemaybean242

adaptionofbreastcancercellstothehighATPconcentrationsinsometumourmicroenvironments.243

However,despitethisconsistentchangeinATP-mediatedCa2+signalling,thenatureofthe244

remodellingofP2XreceptorsseemsverydifferentastheupregulationofP2X5mRNAisafeatureof245

11

EGFbutnothypoxiaassociatedATP(Azimietal.2015;Davisetal.2011).Theattenuationofstore246

operatedCa2+entry(SOCE)andbasalCa2+influxisalsoafeatureofEGFinducedEMTinMDA-MB-247

468(Davis,etal.2012),however,assessmentofsuchchangeswithhypoxiainducedEMThasnot248

beenreported.SuchstudiesarecriticalgiventhatinMCF-7cells,theEMTinducerTGF-β1hasbeen249

reportedtobeassociatedwithenhancementofstoreoperatedCa2+entry(Hu,etal.2011).250

InadditiontoaremodellingofCa2+influxand/ortheexpressionofsomeCa2+permeableion251

channelsinEMTincancercells,specificcalciumpermeableionchannelshavealsobeenidentifiedas252

regulatorsoftheinductionofatleastsomehallmarksofEMT.AfocusedsiRNAscreenidentified253

TRPM7asaregulatorofEGF-inducedexpressionofthemesenchymalmarkervimentininMDA-MB-254

468breastcancercells(Davisetal.2014a).ApharmacologicalinhibitorofTRPM7replicatedthe255

consequencesofTRPM7silencingonEGFinducedvimentinexpression.Theseeffectswerenotdue256

togeneralinhibitionofEGFreceptor(EGFR)signallingsinceEGF-mediatedEGFRandAKT257

phosphorylationwereunaffectedbyTRPM7silencing,however,EGF-mediatedSTAT3andERK1/2258

phosphorylationweresignificantlyreduced(Davisetal.2014a).AlthoughaCa2+permeableion259

channel,theimportanceofTRPM7inMg2+homeostasisanditsabilitytofunctionasanatypical260

alphakinase(Paravicini,etal.2012)requirefurtherattentionintothenatureofitscontributionto261

EMTinsomecancermodels.SilencingofthecoldsensorTRPM8increasestheexpressionofthe262

epithelialmarkerE-cadherininmesenchymal-likeMDA-MB-231cellsandreduceslevelsofthe263

mesenchymalmarkervimentin(Liu,etal.2014).ConsistentwitharoleforTRPM8inthe264

maintenanceand/orinductionofthemesenchymalphenotypeinbreastcancercells,overexpression265

ofTRPM8inthemoreepitheliallikeMCF-7celllineleadstoEMTinductionasindicatedbydown266

regulationofE-cadherinandinductionofvimentin(Liuetal.2014).InHuh7andHepG2hepatic267

cancercells,TRPC6silencingattenuateschangesintheexpressionofE-cadherininducedby268

doxorubicinsuggestingthatintheabilityofTRPC6silencingtoincreasesensitivitytodoxorubicin269

througheffectsofresistancepathwaysmaybedueatleastinparttoeffectsonsomeaspectsofEMT270

induction(Wenetal.2016).271

12

Hence,studiesofcalciumsignallingandCa2+permeableionchannelsinEMTfromavarietyofgroups272

usinganarrayofEMTinducersandmodelshavehelpeddefineacriticalrolefortheCa2+signalin273

EMTincancercells.274

275

Conclusion276

Anincreasingnumberofstudieshavereportedtheremodellingofplasmamembraneionchannel277

expressionasacharacterizingfeatureofEMTincancercells.Theidentificationoftheroleofspecific278

ionchannelsintheinductionofEMTand/orthemaintenanceofaspectsoftheepithelialor279

mesenchymal-likephenotypeincancercellssuggestthatsomeionchannelsmaybetherapeutic280

targetstocontrolEMTandhencediseaseprogression(e.g.therapeuticresistance).However,itis281

likelythatdifferentEMTinducersmayengagedifferentionchannelstoregulatethepropertiesof282

themesenchymalphenotypeand/orEMTinductionitself.Thisissueandthestudyofthe283

intersectionbetweensexhormonesandreceptorsthatregulateEMT(Jeon,etal.2016;Kong,etal.284

2015;Zuo,etal.2010;Sun,etal.2014;vanderHorst,etal.2012)andionchannelswhich285

themselvesintersectwithsexhormonepathways(Asuthkar,etal.2015;Hao,etal.2015;286

Mahmoodzadeh,etal.2016)areareasforfutureresearch.Whichionchannelstopursuefor287

therapeutictargetingrequirescarefulconsideration,anddecidingfactorswillincludetheexpression288

oftargetsinothercelltypesandthelikelyadversesystemiceffectsofchannelinhibitors.However,289

thesuccessfuluseofionchannelinhibitorsforconditionsasdiverseascardiovasculardiseaseto290

paindemonstratedtheneedtocontinueresearchinthisarea.291

292

DeclarationofInterest293

GRMisassociatedwithQUEOncologyInc.294

295

13

Funding296

TheresearchwassupportedbytheNationalHealthandMedicalResearchCouncil(NHMRC;project297

grant1079672).GRMwassupportedbytheMaterFoundation.TheTranslationalResearchInstitute298

issupportedbyagrantfromtheAustralianGovernment.299

300

References301

ArthurGK,DuffySM,RoachKM,HirstRA,ShikotraA,GaillardEA&BraddingP2015K(Ca)3.1K+302

ChannelExpressionandFunctioninHumanBronchialEpithelialCells.PLoSONE10e0145259.303

AsuthkarS,ElustondoPA,DemirkhanyanL,SunX,BaskaranP,VelpulaKK,ThyagarajanB,PavlovEV304

&ZakharianE2015TheTRPM8ProteinIsaTestosteroneReceptorI.Biochermicalevidencefor305

directTRPM8-testoesteroneintersactions.JournalofBiologicalChemistry2902659-2669.306

AzimiI,BeilbyH,DavisFM,MarcialDL,KennyPA,ThompsonEW,Roberts-ThomsonSJ&Monteith307

GR2015Alteredpurinergicreceptor-Casignalingassociatedwithhypoxia-inducedepithelial-308

mesenchymaltransitioninbreastcancercells.MolecularOncology10166–178.309

AzimiI,Roberts-ThomsonSJ&MonteithGR2014Calciuminfluxpathwaysinbreastcancer:310

opportunitiesforpharmacologicalintervention.BritishJournalofPharmacology171945-960.311

BerridgeMJ,BootmanMD&RoderickHL2003Calciumsignalling:dynamics,homeostasisand312

remodelling.NatureReviews.MolecularCellBiology4517-529.313

BokobzaSM,YeL,KynastonH&JiangWG2011Growthanddifferentiationfactor9(GDF-9)induces314

epithelial-mesenchymaltransitioninprostatecancercells.MolecularandCellularBiochemistry349315

33-40.316

CastilloJP,RuiH,BasilioD,DasA,RouxB,LatorreR,BezanillaF&HolmgrenM2015Mechanismof317

potassiumionuptakebytheNa+/K+-ATPase.NatureCommunications67622.318

14

Cochet-BissuelM,LoryP&MonteilA2014Thesodiumleakchannel,NALCN,inhealthanddisease.319

FrontiersinCellularNeuroscience8132.320

DavisFM,AzimiI,FavilleRA,PetersAA,JalinkK,PutneyJrJW,GoodhillGJ,ThompsonEW,Roberts-321

ThomsonSJ&MonteithGR2014aInductionofepithelial-mesenchymaltransition(EMT)inbreast322

cancercellsiscalciumsignaldependent.Oncogene332307-2316.323

DavisFM,KennyPA,SooET,vanDenderenBJ,ThompsonEW,CabotPJ,ParatMO,Roberts-Thomson324

SJ&MonteithGR2011Remodelingofpurinergicreceptor-mediatedCa2+signalingasaconsequence325

ofEGF-inducedepithelial-mesenchymaltransitioninbreastcancercells.PLoSONE6e23464.326

DavisFM,PetersAA,GriceDM,CabotPJ,ParatMO,Roberts-ThomsonSJ&MonteithGR2012Non-327

stimulated,agonist-stimulatedandstore-operatedCa2+influxinMDA-MB-468breastcancercells328

andtheeffectofEGF-inducedEMToncalciumentry.PLoSONE7e36923.329

DavisFM,StewartTA,ThompsonEW&MonteithGR2014bTargetingEMTincancer:opportunities330

forpharmacologicalintervention.TrendsinPharmacologicalSciences35479-488.331

ErenOO&OyanB2014Voltage-gatedsodiumchannelblockadeforinhibitionofEMT.Trendsin332

PharmacologicalSciences35621-621.333

ErenOO,OzturkMA,SonmezOU&OyanB2015Voltage-gatedsodiumchannelblockerscan334

augmenttheefficacyofchemotherapeuticsbytheirinhibitoryeffectonepithelial-mesenchymal335

transition.MedicalHypotheses8411-13.336

FischerKR,DurransA,LeeS,ShengJT,LiFH,WongSTC,ChoiHJ,ElRayesT,RyuSH,TroegerJ,etal.337

2015Epithelial-to-mesenchymaltransitionisnotrequiredforlungmetastasisbutcontributesto338

chemoresistance.Nature527472-476.339

HanahanD&WeinbergRA2011HallmarksofCancer:TheNextGeneration.Cell144646-674.340

HanukogluI&HanukogluA2016Epithelialsodiumchannel(ENaC)family:Phylogeny,structure-341

function,tissuedistribution,andassociatedinheriteddiseases.Gene57995-132.342

15

HaoJ,BaoX,JinB,WangX,MaoZ,LiX,WeiL,ShenD&WangJL2015Ca2+channelsubunitalpha343

1Dpromotesproliferationandmigrationofendometrialcancercellsmediatedby17beta-estradiol344

viatheGprotein-coupledestrogenreceptor.FASEBJournal292883-2893.345

HeerbothS,HousmanG,LearyM,LongacreM,BylerS,LapinskaK,WillbanksA&SarkarS2015EMT346

andtumormetastasis.ClinicalandTranslationalMedicine46.347

HibinoH,InanobeA,FurutaniK,MurakamiS,FindlayI&KurachiY2010InwardlyRectifying348

PotassiumChannels:TheirStructure,Function,andPhysiologicalRoles.PhysiologicalReviews90349

291-366.350

HsuYM,ChenYF,ChouCY,TangMJ,ChenJH,WilkinsRJ,ElloryJC&ShenMR2007KCI351

cotransporter-3down-regulatesE-cadherin/beta-catenincomplextopromoteepithelial-352

mesenchymaltransition.CancerResearch6711064-11073.353

HuJJ,QinKH,ZhangY,GongJB,LiN,LvD,XiangR&TanXY2011Downregulationoftranscription354

factorOct4inducesanepithelial-to-mesenchymaltransitionviaenhancementofCa2+influxin355

breastcancercells.BiochemicalandBiophysicalResearchCommunications411786-791.356

JeonSY,HwangKA&ChoiKC2016Effectofsteroidhormones,estrogenandprogesterone,on357

epithelialmesenchymaltransitioninovariancancerdevelopment.JournalofSteroidBiochemistry358

andMolecularBiology1581-8.359

KahleKT,KhannaAR,AlperSL,AdragnaNC,LaufPK,SunDD&DelpireE2015K-Clcotransporters,360

cellvolumehomeostasis,andneurologicaldisease.TrendsinMolecularMedicine21513-523.361

KalluriR&WeinbergRA2009Thebasicsofepithelial-mesenchymaltransition.JournalofClinical362

Investigation1191420-1428.363

KongDJ,SethiS,LiYW,ChenW,SakrWA,HeathE&SarkarFH2015AndrogenReceptorSplice364

VariantsContributetoProstateCancerAggressivenessThroughInductionofEMTandExpressionof365

StemCellMarkerGenes.Prostate75161-174.366

16

KunzelmannK,TianYM,MartinsJR,FariaD,KongsupholP,OusingsawatJ,ThevenodF,RoussaE,367

RockJ&SchreiberR2011Anoctamins.PflugersArchiv-EuropeanJournalofPhysiology462195-208.368

LaiW,LiuL,ZengYJ,WuH,XuHY,ChenS&ChuZH2013KCNN4ChannelsparticipateintheEMT369

inducedbyPRL-3incolorectalcancer.MedicalOncology30566.370

LamouilleS,XuJ&DerynckR2014Molecularmechanismsofepithelial-mesenchymaltransition.371

NatureReviewsMolecularCellBiology15178-196.372

LesterRD,JoM,MontelV,TakimotoS&GoniasSL2007uPARinducesepithelial-mesenchymal373

transitioninhypoxicbreastcancercells.JournalofCellBiology178425-436.374

LiuJX,ChenYZ,ShuaiS,DingDP,LiR&LuoRC2014TRPM8promotesaggressivenessofbreast375

cancercellsbyregulatingEMTviaactivatingAKT/GSK-3betapathway.TumorBiology358969-8977.376

MahmoodzadehS,HaaseH,SporbertA,RharassT,PanakovaD&MoranoI2016Nuclear377

translocationofthecardiacL-typecalciumchannelC-terminusisregulatedbysexand17beta-378

estradiol.JournalofMolecularandCellularCardiology97226-234.379

MaiX,ShangJ,LiangS,YuB,YuanJ,LinY,LuoR,ZhangF,LiuY,LvX,etal.2016BlockadeofOrai1380

Store-OperatedCalciumEntryProtectsagainstRenalFibrosis.JournaloftheAmericanSocietyof381

Nephrology.382

ParaviciniTM,ChubanovV&GudermannT2012TRPM7:Auniquechannelinvolvedinmagnesium383

homeostasis.InternationalJournalofBiochemistry&CellBiology441381-1384.384

RamenaG,YinYF,YuY,WallaV&ElbleRC2016CLCA2InteractorEVA1IsRequiredforMammary385

EpithelialCellDifferentiation.PLoSONE11e0147489.386

Restrepo-AnguloI,Sanchez-TorresC&CamachoJ2011HumanEAG1PotassiumChannelsinthe387

Epithelial-to-MesenchymalTransitioninLungCancerCells.AnticancerResearch311265-1270.388

17

ShaikhD,ZhouQY,ChenTJ,IbeJCF,RajJU&ZhouGF2012cAMP-dependentproteinkinaseis389

essentialforhypoxia-mediatedepithelial-mesenchymaltransition,migration,andinvasioninlung390

cancercells.CellularSignalling242396-2406.391

ShiwarskiDJ,ShaoCB,BillA,KimJ,XiaoD,BertrandCA,SeethalaRS,SanoD,MyersJN,HaP,etal.392

2014To"Grow"or"Go":TMEM16AExpressionasaSwitchbetweenTumorGrowthandMetastasis393

inSCCHN.ClinicalCancerResearch204673-4688.394

SinghA&SettlemanJ2010EMT,cancerstemcellsanddrugresistance:anemergingaxisofevilin395

thewaroncancer.Oncogene294741-4751.396

SouthanC,SharmanJL,BensonHE,FaccendaE,PawsonAJ,AlexanderSPH,BunemanOP,Davenport397

AP,McGrathJC,PetersJA,etal.2016YTheIUPHAR/BPSGuidetoPHARMACOLOGYin2016:towards398

curatedquantitativeinteractionsbetween1300proteintargetsand6000ligands.NucleicAcids399

Research44D1054-D1068.400

StewartTA,YapaKTDS&MonteithGR2015Alteredcalciumsignalingincancercells.BiochimicaEt401

BiophysicaActa-Biomembranes18482502-2511.402

SunY,WangYS,FanC,GaoP,WangXW,WeiGW&WeiJM2014Estrogenpromotesstemnessand403

invasivenessofER-positivebreastcancercellsthroughGli1activation.MolecularCancer13137.404

ThieryJP,AcloqueH,HuangRYJ&NietoMA2009Epithelial-MesenchymalTransitionsin405

DevelopmentandDisease.Cell139871-890.406

TsaiJH&YangJ2013Epithelial-mesenchymalplasticityincarcinomametastasis.Genes&407

Development272192-2206.408

vanDenderenBJW&ThompsonEW2013CANCERThetoandfrooftumourspread.Nature493487-409

488.410

18

vanderHorstPH,WangYY,VandenputI,KuhneLC,EwingPC,vanIJckenWFJ,vanderZeeM,Amant411

F,BurgerCW&BlokLJ2012ProgesteroneInhibitsEpithelial-to-MesenchymalTransitionin412

EndometrialCancer.PLoSONE7e30840.413

WaliaV,YuY,CaoD,SunM,McLeanJR,HollierBG,ChengJ,ManiSA,RaoK,PremkumarL,etal.414

2012LossofbreastepithelialmarkerhCLCA2promotesepithelial-to-mesenchymaltransitionand415

indicateshigherriskofmetastasis.Oncogene312237-2246.416

WenL,LiangC,ChenEJ,ChenW,LiangF,ZhiX,WeiT,XueF,LiGG,YangQ,etal.2016Regulationof417

Multi-drugResistanceinhepatocellularcarcinomacellsisTRPC6/CalciumDependent.Scientific418

Reports623269.419

YuY,WaliaV&ElbleRC2013LossofCLCA4PromotesEpithelial-to-MesenchymalTransitionin420

BreastCancerCells.PLoSONE8.421

ZhangJT,JiangXH,XieC,ChengH,DongJD,WangY,FokKL,ZhangXH,SunTT,TsangLL,etal.2013a422

DownregulationofCFTRpromotesepithelial-to-mesenchymaltransitionandisassociatedwithpoor423

prognosisofbreastcancer.BiochimicaEtBiophysicaActa-MolecularCellResearch18332961-2969.424

ZhangPS,YangXW,YinQ,YiJL,ShenWZ,ZhaoL,ZhuZ&LiuJW2016InhibitionofSK4Potassium425

ChannelsSuppressesCellProliferation,MigrationandtheEpithelial-MesenchymalTransitionin426

Triple-NegativeBreastCancerCells.PLoSONE11e0154471.427

ZhangSM,WangX,IqbalS,WangYR,OsunkoyaAO,ChenZJ,ChenZ,ShinDM,YuanHW,WangYQA,428

etal.2013bEpidermalGrowthFactorPromotesProteinDegradationofEpithelialProteinLostin429

Neoplasm(EPLIN),aPutativeMetastasisSuppressor,duringEpithelial-mesenchymalTransition.430

JournalofBiologicalChemistry2881469-1479.431

ZhengXF,CarstensJL,KimJ,ScheibleM,KayeJ,SugimotoH,WuCC,LeBleuVS&KalluriR2015432

Epithelial-to-mesenchymaltransitionisdispensableformetastasisbutinduceschemoresistancein433

pancreaticcancer.Nature527525-530.434

19

ZuoLA,LiW&YouSJ2010Progesteronereversesthemesenchymalphenotypesofbasalphenotype435

breastcancercellsviaamembraneprogesteronereceptormediatedpathway.BreastCancer436

Research12R34.437

438

439

440

441

20

442

top related