15. phonons

Post on 29-Jul-2022

15 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Institute of Solid State PhysicsTechnische Universität Graz

15. Phonons

May 15, 2018

Normal modes

The motion of the atoms can be described in terms of normal modes.

In a normal mode, all atoms oscillate at the same frequency .

The energy in a normal mode is quantized,

n is the number of phonons in that normal mode.

12( ).E n

Linear Chain

2

1 1 1 12 ( ) ( ) ( 2 )ss s s s s s s

d um C u u C u u C u u udt

21

22

23

24

25

26

2 0 0 02 0 0 0

0 2 0 0=0

0 0 2 00 0 0 2

0 0 0 2

AC m C CAC C m CAC C m CAC C m CAC C m CAC C C m

a

s = 0 s = 1 s = 2 s = 3 s = 4s = -1s = -2s = -3

Assume every atom oscillates with the same frequencyi t

s su A e

2 12 I T T 0.C m C A

Normal modes are eigen functions of T

solutions are eigenfunctions of the translation operator

a

( 1 ) ( )i k s a t ika i ksa t ikas k k sTu A e e A e e u

s = 0 s = 1 s = 2 s = 3 s = 4s = -1s = -2s = -3

N atoms, N normal modes, N eigenvectors of the translation operator, N allowed values of k in the first Brillouin zone.

( )iksa i t i ksa ts k ku A e e A e

solutions:

4 sin2

C kam

2

1 12 ( 2 )ss s s

d um C u u udt

( )i ksa ts ku A e

1 12

2

2

( 2 )( 2 )

2 (1 cos( ))

i k s a t i k s a ti ksa t i ksa t

ika ika

me C e e em C e em C ka

2 1sin 1 cos2 2ka ka

a

Linear Chains = 0 s = 1 s = 2 s = 3 s = 4s = -1s = -2s = -3

Linear Chain - dispersion relation

4 sin2

C kam

2

1 12 ( 2 )ss s s

d um C u u udt

( )i ksa ts ku A e

C am

speed of sound =

Max. freq.

Linear Chain - density of states

Determine the density of states numerically 4 sin2

C kam

Linear Chain - density of states

for every k calculate the frequency

4 sin2

C kam

4 sin2

C kam

1( )D k

cos2

C kad a dkm

( ) ( ) dkD D kd

2

1

14

DC mam C

This case is an exception where the density of states can be determined analytically.

density of states

D()

van Hove singularity

2

1

14

DC mam C

4 sin2

C kam

1( )D k

cos2

C kad a dkm

( ) ( )D k dk D d

maximum frequency

Linear chain M1 and M2

2

1 12 ( 2 )ss s s

d uM C v u vdt

( )i ksa ts ku u e

Newton's law:

2N modes

assume harmonic solutions

2

2 12 ( 2 )ss s s

d vM C u v udt

( )i ksa ts kv v e

21

22

(1 exp( )) 2

(1 exp( )) 2k k k

k k k

M u Cv ika Cu

M v Cu ika Cv

a

Linear chain M1 and M2

21

22

(1 exp( )) 2

(1 exp( )) 2k k k

k k k

M u Cv ika Cu

M v Cu ika Cv

a

21

22

2 (1 exp( ))0

(1 exp( )) 2k

k

uM C C ikavC ika M C

4 2 21 2 1 22 2 1 cos( ) 0M M C M M C ka

dispersion relation 2

22

1 2 1 2 1 2

4sin1 1 1 1 2

ka

C CM M M M M M

Optical phonon branch

Acoustic phonon branch

http://lampx.tugraz.at/~hadley/ss1/phonons/1d/1d2m.php

normal modes

density of states

2 22

1 2 1 2 1 2

1 1 1 1 4sin kaC CM M M M M M

Linear chain M1 and M2

2a

The branches of the dispersion curves can be translated by a reciprocal lattice vector G.

fcc

2

1 1 1 12

1 1 1 1 1 1 1 1

1 1 1 1 1 1

2

xx x x x x x x xlmnl mn lmn l mn lmn lm n lmn lm n lmn

x x x x x x x xl mn lmn l mn lmn lm n lmn lm n lmn

y y y y y y y yl mn lmn l mn lmn lm n lmn lm n lmn

lm

d u Cm u u u u u u u udt

u u u u u u u u

u u u u u u u u

u

1 1 1 1 1 1z z z z z z z z

n lmn lm n lmn l mn lmn l mn lmnu u u u u u u

and similar expressions for the y and z motion

1 2 3expx xlmn ku u i lk a mk a nk a t

These are eigenfunctions of T.

Normal modes are eigenfunctions of T

1 2 3expy ylmn ku u i lk a mk a nk a t

1 2 3expz zlmn ku u i lk a mk a nk a t

1 1 2 2 3 3

1 2 3 1 2 3

1 2 3

exp

exp exp

exp

x xpqr lmn k

xk

xlmn

T u u i lk a pa mk a qa nk a ra t

i lpk a qmk a rnk a u i lk a mk a nk a t

i lpk a qmk a rnk a u

fcc

1 2 3exp exp .

2 2 2yx zx x x

lmn k k

l n k al m k a m n k au u i lk a mk a nk a u i

Substitute the eigenfunctions of T into Newton's laws.

http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/fcc/fcc.html

For every k there are 3 solutions for .

Phonon dispersion AuFr

om S

prin

ger M

ater

ials

: Lan

dhol

t Boe

rnst

ein

Dat

abas

e

Materials with the same crystal structure will have similar phonon dispersion relations

Cu

Au

Phonon DOS fcc

D()

From

Spr

inge

r Mat

eria

ls: L

andh

olt B

oern

stei

n D

atab

ase

Phonon dispersion Fe

From Springer Materials: Landholt Boernstein Database

H P N

Phonon DOS Fe

D()

From Springer Materials: Landholt Boernstein Database

Next nearest neighbors (bcc)

D() C2/C1 = 0 C2/C1 = 1/6 C2/C1 = 1/3

C2/C1 = 1/2

D()C2/C1 = 1

The normal modes remain the same (the translational symmetry is the same).

Phonon DOS Fe

D()

From Springer Materials: Landholt Boernstein Database

C2/C1 = 0

C2/C1 = 1/6

D()

top related