2006 critical-state soil mechanics for dummies paul w. mayne, phd, p.e. civil & environmental...

Post on 14-Dec-2015

267 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

2006

Critical-State Soil Mechanics

For DummiesPaul W. Mayne, PhD, P.E.

Civil & Environmental EngineeringGeorgia Institute of Technology

Atlanta, GA 30332-0355www.ce.gatech.edu

Email: paul.mayne@ce.gatech.edu

PROLOGUE Critical-state soil mechanics is an effective stress

framework describing mechanical soil response

In its simplest form here, we consider only shear-induced loading.

We merely tie together two well-known concepts: (1) one-dimensional consolidation behavior, represented by e-logv’ curves; and (2) shear stress-vs. normal stress (v’)

from direct shear box or simple shearing.

Herein, only the bare essence of CSSM concepts are presented, sufficient to describe strength & compressibility response.

Critical State Soil Mechanics (CSSM)

Experimental evidence provided by Hvorslev (1936; 1960, ASCE); Henkel (1960, ASCE Boulder) Henkel & Sowa (1961, ASTM STP 361)

Mathematics presented elsewhere, including: Schofield & Wroth (1968); Burland (1968); Wood (1990).

In basic form: 3 material constants (', Cc, Cs) plus initial state (e0,

vo', OCR)

Constitutive Models, include: Original Cam-Clay, Modified Cam Clay, NorSand, Bounding Surface, MIT-E3 (Whittle, 1993) & MIT-S1 (Pestana) and others (Adachi, Oka, Ohta, Dafalias)

"Undrained" is just one specific stress path

Yet !!! CSSM is missing from most textbooks and undergrad & grad curricula in the USA.

One-Dimensional Consolidation Sandy Clay (CL), Surry, VA: Depth = 27 m

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Eff ective Vertical Stress, svo' (kPa)

Void

Rati

o,

e

Cc = 0.38

Cr = 0.04

vo'=300 kPa

p'=900

kPa

Overconsolidation Ratio, OCR = 3

Cs = swelling index (= Cr)

cv = coef. of consolidation

D' = constrained modulus

Ce = coef. secondary compression

k ≈ hydraulic conductivity

v’

Direct Shear Test Results

v’

Direct Shear Box (DSB)

v’

Direct Simple Shear (DSS)

s

Slow Direct Shear Tests on Triassic Clay,NC

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

Displacement, (mm)

She

ar S

tres

s,

(k

Pa) n'

(kPa)= 214.5

135.0

45.1

Slow Direct Shear Tests on Triassic Clay, Raleigh, NC

0

20

40

60

80

100

120

140

0 50 100 150 200 250

Eff ective Normal Stress, n' (kPa)

She

ar S

tres

s,

(k

Pa)

0.491 = tan '

Strength Parameters:

c' = 0; ' = 26.1 oPeak

Peak

Peak

CSSM for Dummies

Log v'

Effective stress v'

She

ar s

tres

s

Voi

d R

atio

, e

NC

CC

tan'

CSLEffective stress v'

Voi

d R

atio

, e

NC

CSL

CSSM Premise:

“All stress paths

fail on the critical

state line (CSL)”

CSL

c=0

CSSM for Dummies

Log v'

Effective stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e

Vo

id R

atio

, e

NCNC

CC

tan'

CSL

CSLCSL

STRESS PATH No.1

NC Drained Soil

Given: e0, vo’, NC

(OCR=1)

e0

vo

vo

Drained Path: u = 0

max = c + tan

ef

e

Volume Change is

Contractive: vol =

e/(1+e0) < 0

Effective stress v'

c’=0

CSSM for Dummies

Log v'

Effective stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e

Vo

id R

atio

, e

NCNC

CC

tan'

CSL

CSLCSL

STRESS PATH No.2

NC Undrained Soil

Given: e0, vo’, NC

(OCR=1)

e0

vo

vo

Undrained Path: V/V0 = 0

+u = Positive Excess Porewater Pressures

vf

vf

umaxcu=su

Effective stress v'

CSSM for Dummies

Log v'

Effective stress v'

She

ar s

tres

s

Voi

d R

atio

, e

NC NC

CC

tan'

CSL

CSLCSL

Note: All NC undrained

stress paths are

parallel

to each other, thus:

su/vo’ = constant

Effective stress v'

DSS: su/vo’NC = ½sin’

Voi

d R

atio

, e

CSSM for Dummies

Log v'Effective stress v'

Effective stress v'

Sh

ear

stre

ss

Voi

d R

atio

, e

Vo

id R

atio

, e

NC NC

CC

tan'

CSL

CSLCSL

CS

p'

p'

OC

Overconsolidated States:

e0, vo’, and OCR = p’/vo’

where p’ = vmax’ = Pc’ =

preconsolidation stress;

OCR = overconsolidation ratio

CSSM for Dummies

Log v'

Effective stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e

NC NC

CC

tan'

CSL

CSLCSL

CS

OC

Stress Path No. 3

Undrained OC Soil:

e0, vo’, and OCR

vo'

e0

vo'

Stress Path: V/V0 = 0

Negative Excess u

Effective stress v'vf'

Vo

id R

atio

, eu

CSSM for Dummies

Log v'

Effective stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e

Vo

id R

atio

, e

NC NC

CC

tan'

CSL

CSLCSL

CS

OC

Stress Path No. 4

Drained OC Soil:

e0, vo’, and OCR

Stress Path: u =

0 Dilatancy: V/V0 > 0

vo'

e0

vo'

Effective stress v'

Critical state soil mechanics

• Initial state: e0, vo’, and OCR = p’/vo’

• Soil constants: ’, Cc, and Cs ( = 1-Cs/Cc)

• For NC soil (OCR =1): Undrained (vol = 0): +u and max = su = cu

Drained (u = 0) and contractive (decrease vol)

• For OC soil:

Undrained (vol = 0): -u and max = su = cu

Drained (u = 0) and dilative (Increase vol)

There’s more ! There’s more ! Semi-drained, Partly undrained, Cyclic….. Semi-drained, Partly undrained, Cyclic…..

Equivalent Stress Concept

Log v'

Stress v'

Sh

ear

stre

ss

Vo

id R

atio

, e NC

NC

CC

tan'

CSL

CSLCSL

CS

OC

1. OC State (eo, vo’, p’)

vo'

2. Project OC state to NC

line for equivalent stress,

e’

3. e’ = vo’ OCR[1-Cs/Cc]

vo'

e0

Effective stress v'

Vo

id R

atio

, e

p' p'

e'

e'

su

vf'

ep

e = Cs log(p’/vo’)

e = Cc log(e’/p’)

e

at e’suOC = suNC

Critical state soil mechanics

• Previously: su/vo’ = constant for NC soil

• On the virgin compression line: vo’ = e’

• Thus: su/e’ = constant for all soil (NC &

OC)

• For simple shear: su/e’ = ½sin ’

• Equivalent stress: Normalized Undrained Shear

Strength:

su/vo’ = ½ sin’ OCR

where = (1-Cs/Cc)

e’ = vo’ OCR[1-Cs/Cc]

Undrained Shear Strength from CSSM

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sin'

s u/

vo' N

C

(DS

S)

AGS Plastic

Amherst

Ariake

Bootlegger

Bothkennar

Boston Blue

Cowden

Hackensack

James Bay

Mexico City

Onsoy

Porto Tolle

Portsmouth

Rissa

San Francisco

Silty Holocene

Wroth (1984)

su/vo'NC (DSS) =½sin'

plasticity index, PI (%)

s u/

vo' N

C

(DS

S)

AGS Plastic AmherstAriake Bootlegger

Bothkennar Boston BlueCowden Hackensack

James Bay Mexico CityOnsoy Porto Tolle

Portsmouth RissaSan Francisco Silty Holocene

Undrained Shear Strength from CSSM

0.1

1

10

1 10 100

Overconsolidation Ratio, OCR

DS

S U

ndra

ined

Str

engt

h, s

u/

vo' Amherst CVVC

Atchafalaya

Bangkok

Bootlegger Cove

Boston Blue

Cowden

Drammen

Hackensack

Haga

Lower Chek Lok

Maine

McManus

Paria

Portland

Portsmouth

Silty Holocene

Upper Chek Lok

20

30

40

' = 40o

20o 30o

su/vo' = ½ sin' OCR

Note: = 1 - Cs/Cc 0.8

IntactClays

Porewater Pressure Response from CSSM

-6

-5

-4

-3

-2

-1

0

1

1 10 100Overconsolidation Ratio, OCR

Nor

mal

ized

Por

ewat

er P

ress

ure,

u

/vo

' Amherst CVVC

Atchafalaya

Bangkok

Bootlegger Cove

Boston Blue

Cowden

Drammen

Hackensack

Haga

Lower Chek Lok

Maine

McManus

Paria

Portland

Portsmouth

Silty Holocene

Upper Chek Lok

20

30

40

= 0.9 0.8 0.7

Intact

' = 20o 30o 40o

us/vo' = 1 - ½cos'OCR

Yield Surfaces

Log v'

Normal stress v'

Sh

ear

stre

ss

Vo

id R

atio

, eNC NC

CSL

CSL

CSL

OC

Normal stress v'

Vo

id R

atio

, e

p'

p'

OC

Yield surface represents 3-d preconsolidation

Quasi-elastic behavior within the yield surface

Port of Anchorage, Alaska

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Effective Stress, p'* = (1'+2'+

3')/(3p')

Dev

iato

ric

Str

ess

= q

* =

(1-

3)/

p'

Bootlegger

Cove Clay

Mc = (q/p')f = 1.10

Mc = 6sin '/(3-sin ')' = 27.7o

0.1

1

10

1 10 100

Overconsolidation Ratio, OCR

Str

en

gth

Ra

tio

, su/

vo'

DSS Data

CIUC Data

MCC Pred CIUC

MCC Pred DSS

Critical State Soil Mechanics(Modified Cam Clay)

' = 27.7o

= 0.75

Cavity Expansion – Critical State Model for Evaluating

OCR in Clays from Piezocone Tests

OCRM

q uT b

vo

2

1

1 95 1

1

. '

/

where M = 6 sin’/(3-sin’)

and = 1 – Cs/Cc 0.8

qc

fs

ub

qqTT

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6

Overconsolidation Ratio, OCR

Dep

th (

met

ers)

CPTU

CRS

IL Oed

RF

Bothkennar, UK

Critical state soil mechanics

• Initial state: e0, vo’, and OCR = p’/vo’

• Soil constants: ’, Cc, and Cs ( = 1-Cs/Cc)

• Using effective stresses, CSSM addresses: NC and OC behavior

Undrained vs. Drained (and other paths)

Positive vs. negative porewater pressures

Volume changes (contractive vs. dilative)

su/vo’ = ½ sin’ OCR where = 1-Cs/Cc

Yield surface represents 3-d preconsolidation

top related