aplikasi bernoulli pada saluran kovergen/divergen diffuser, sudden expansion fluida gas flowmeter :...

Post on 27-Dec-2015

232 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

APLIKASI BERNOULLI PADASaluran Kovergen/Divergen Diffuser, Sudden expansionFluida gas Flowmeter : Pitot tube, Orificemeter, Venturimeter, Rotameter

PERS.BERNOULLI

dm

dQu

dm

dWVgz

P other)(2

2

Steady

Fdm

dWVgz

P other

)(2

2

inin

sys

dmV

gzP

uV

gzumd )()(22

22

otheroutout dWdQdmV

gzP

u )(2

2

PERS.BERNOULLI

Fdm

dWVgz

P other

)(2

2

g

F

gdm

dW

g

Vz

g

P other

)(2

2

HEAD FORM OF BERNOULLI EQUATION

DIFFUSERCara untuk untuk memperlambat kecepatan aliran

FA

AVPP

22

11

21

12 12

Fdm

dWVgz

P other

)(2

2

V1,P1,A1V2,P2,A2

z1-z2

12

SUDDEN EXPANSIONSCara untuk untuk memperlambat kecepatan aliran

FV

PP 2

21

12

1 2P1,V1 P2,V2=0z1-z2

Fdm

dWVgz

P other

)(2

2

BERNOULLI UNTUK GAS

Fdm

dWVgz

P other

)(2

2

M

RTvP 1

11

1

VR,PRP1,V1 21

1

)(2

atmR PP

V

21

1

11 )(

2

atmR PP

MP

RTV

--------------------P1-Patm V (ft/s) Psia (Eq.5.17) --------------------------0.001 350.1 1110.3 1910.6 2671.0 3402.0 4675.0 679

)1()1(

2

2 11

21

T

T

kRkT

MV R

(Eq.5.17)

1

11

kk

RR

T

T

P

P

Patmosfir

MP

RTv

1

1

11

1

Eq.in Chap.8

-------------V(ft/s)(Eq.in Chap.8)--------- 35111191269344477714

BERNOULLI FOR FLUID FLOW MEASUREMENT

PITOT TUBE

FVPP

2

2112

)(

212 hhgPP atm

21 ghPP atm 2111 22 FghV

2111 2ghV

1 2

h1

h2

Fdm

dWVgz

P other

)(2

2

••

VENTURIMETER

V1,P1

V2,P2

1 2

Manometer

02

21

2212

VVPP

)(

21

21

22

122 1

2

AA

PPV

)(

21

21

22

212 1

2

AA

PPCV v

Fdm

dWVgz

P other

)(2

2

Venturi Flowmeter

The classical Venturi tube (also known as the Herschel Venturi tube) is used to determine flowrate through a pipe.  Differential pressure is the pressure difference between the pressure measured at D and at d

D d Flow

ORIFICEMETER

21

Orifice plateCircular drilled hole

             where,   Co - Orifice coefficient

        - Ratio of CS areas of upstream to that of down stream

                                Pa-Pb  - Pressure gradient across the orifice meter

     - Density of fluid

ORIFICEMETER

             where,   Co - Orifice coefficient

        - Ratio of CS areas of upstream to that of down stream

                                Pa-Pb  - Pressure gradient across the orifice meter

     - Density of fluid

incompressible flow through an orifice

compressible flow through an orifice

Y is 1.0 for incompressible fluids and it can be calculated for compressible gases.[2]

For values of β less than 0.25, β4 approaches 0 and the last bracketed term in the above equation approaches 1. Thus, for the large majority of orifice plate installations:

Y = Expansion factor, dimensionless

r = P2 / P1

k = specific heat ratio (cp / cv), dimensionless

compressible flow through an orifice

compressible flow through an orifice

k = specific heat ratio (cp / cv), dimensionless

= mass flow rate at any section, kg/s

C = orifice flow coefficient, dimensionless

A2 = cross-sectional area of the orifice hole, m²

ρ1 = upstream real gas density, kg/m³

P1 = upstream gas pressure, Pa   with dimensions of kg/(m·s²)

P2 = downstream pressure in the orifice hole, Pa  with dimensions of kg/(m·s²)

M = the gas molecular mass, kg/kmol    (also known as the molecular weight)

R = the Universal Gas Law Constant = 8.3145 J/(mol·K)

T1 = absolute upstream gas temperature, K

Z = the gas compressibility factor at P1 and T1, dimensionless

Sudden Contraction (Orifice Flowmeter)

Orifice flowmeters are used to determine a liquid or gas flowrate by measuring the differential pressure P1-P2 across the orifice plate

QCd A2

2( p1 p2)

(1 2 )

1/ 2

QCd A2

2( p1 p2)

(1 2 )

1/ 2

0.60.650.7

0.750.8

0.850.9

0.951

102 105 106 107

Re

Cd

Reynolds number based on orifice diameter Red

P1 P2

dD

Flow

103 104

1

2

3

2

Solid ball with diameter D0

Density B

Fluid with density F

z=0

Tansparent tapered tube with diameter D0+Bz

ROTAMETER

bawahtekananboyancyatastekanangravity FFFF 0

201

30

203

30 66

0 DPgDDPgD fb

1

2

3

2

Solid ball D0

Density B

F z=0

D0+Bz

ROTAMETER

Fdm

dWVgz

P other

)(2

2

2 2 2 2

2 1 2 21 2 2

1

( ) (1 )2 2 2f f

V V V AP P

A

2

1

02 3

f

fbgDV

zBDD .0

20

202 .

4DzBDA

201

30

203

30 66

0 DPgDDPgD fb

3 20 0 1 3( ) ( )

6 b fD g D P P

01 2( ) ( )

6 b f

Dg P P

3 2 jika P P

222

1

0A

jikaA

22

1 2 2f

VP P

Only one possible value that keep the ball steaduly suspended

1

2

3

2

Solid ball D0

Density B

F z=0

D0+Bz

ROTAMETER

2 2 2Q V A

2

1

02 3

f

fbgDV

zBDD .0

20

202 .

4DzBDA

For any rate the ball must move to that elevation in the tapered tube where

2

2 [ 2 ( . ]4

A Bz B z

2 2A Bz

2 2 2Q V Bz

2

. 0B z

The height z at which the ball stands, is linearly proportional to the volumetric flowrate Q

TEKANAN ABSOLUT NEGATIF ?

40ft

10ft1

2

3 1 2

3 1 32 ( ) 2(32.2)(10) 25.3 /V g h h ft s

)( 22

22

12 2zzg

VPP

214.7 21.6 6.9 / 47.6lbf in kPa

? negatif

Fdm

dWVgz

P other

)(2

2

Applying the equation between point 1 and 3

Applying the equation between point 1 and 2

This flow is physically impossible. It is unrealBecause the siphone can never lift water more than 34 ft (10.4 m) above the water surfaceIt will not flow at all

top related