apologies mass-driven physics mass programs now...

Post on 18-Oct-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

• apologies • mass-driven physics• mass programs now• comparisons• what should we do?

Physics opportunities with EURISOL (16-21 January 2006)

Motivationmetrology: 28Si atomic mass standard (kg)

and other fundamental constants(Rainville et al., Science 2004)

atomic physics: QED test - atomic binding energy)(Verdu et al., PRL 2004)

weak interaction: nuclear astrophysics: CVC and SM tests nucleosynthesis, cosmochronology

→ orientation of mass models

nuclear structure: shells, shapes, pairs, halos

Dave L.

Plenty of ApfelStrudel

“Hey guys, is there any

Apfelstrudel left ?”

nuclear structure from the mass surface

nuclear structure from the mass surface

180 185 190 195 200 205

-0.6

-0.4

-0.2

0.0

0.2

0.4 ISOLTRAP data

Δn ground state

N (80Hg)125115 120110105100

δ<r2> ground state

δ<r2> isomeric state (J. Bonn et al., 1972)

δ<r2 >

(fm2 )

A (80Hg)

0.6

0.8

1.0

1.2

1.4

Δn (M

eV)

S. Schwarz et al., Nuc. Phy. A (2000)

Pairing: nuclear fine structure from the mass surface

S2n : 30 MeV; shell gap: 3 MeV; pairing gap: 0.3 MeV ⇒ δm ≤ 10−7

m

Test of the CVC hypothesis and CKM unitarity

comparative half-life ofsuperallowed β emitters

5/ 2-

0+

22Mg

26mAl

62Ga

74Rb

62Zn

14O

38mK

f (Q5) statistical rate functiont (T1/2,b) partial half-lifeδC nucleus-dependent correction

)1(2)1)(1( 2 V

RVCR G

KftFtΔ+

=−+≡ δδ

9 decays measuredwith ±0.1% in Ft

other 0+ → 0+ emittersaccessible

require: δm/m ≤ 3 10-8

known masses

r-process pathβ − decay path

β decay

one / two-delayed

neutron decay

p-isotopes-isotoper-isotope

PbTl

Hg

HfLuYbTmEr

AuPtIrOsReWTa

PoBi

At

neutron number 126

sstable isotopes-process path

β

Stellar Nucleosynthesis(A ∼ 200)

D. Lunney et al., ENAM 1995 (Arles)

mass model comparisons

See: Lunney, Pearson & Thibault, Rev. Mod. Phys. 75 (2003)

35 40 45 50 55 60 65 70 752

3

4

5

6

7

Z

N =

82

shel

l gap

(MeV

) EXP FRDM Duflo-Zuker HFB-2

‘‘…might even be relevant for the study of mass redistribution following super nova explosions...’’

Techniques

Indirect (energy)

reactions:A(a,b)BQ = MA+ Ma- Mb- MB

decays:A → B + αQα = MΒ− MΑ

Direct (mass spectrometry)

time of flight:

TOF = (m/q) (L/Bρ )

cyclotron frequency:

fc = qB/mISOL(keV)

FIFS(MeV)

PRODUCTIONSCHEME

betterprecision

bett

erse

nsiti

vity

‘the best of both worlds’

gas cellRFQ

SHIPTRAP (GSI)ESR (GSI)

CPT (ANL)LEBIT (NSCL)

TITAN (TRIUMF)

SPEGCSS2 (GANIL)

ISOLTRAP (CERN)MISTRAL (CERN)

SMILETRAP (MSI)

RIKENRING

FSU-TRAP

JYFLTRAP

MAFFTRAP

UW-PTMS

mass measurement programs at GANIL

Resolving power: 104

extremely sensitive

SPEG

SPEGtime-of-flight

+ magnetic rigiditym = q Bρ T / L

CSS1

H. Savajols et al., ENAM 2004

4

9

14

19

24

29

34

16 18 20 22 24 26 28 30 32

N

Si

PS

Cl

Ar

Ca

S 2n[MeV

]

PRELIMINARY

mass measurement programs at GANIL

CSS1 CSS2

CSS2time-of-flight:

phase differencewith acceleration

(longer flight path)

see M. Chartier J. Phys. G (2005)NUSTAR Proceedings

mass measurement programs at GSI

Isochronous Modevery fast

but not so precise

Schottky Modevery precise

but cooling slow

Experimental Storage Ring:Δm/m = γt

2 Δf/f + (γt2 − γ2) Δv/v

IMS 2002M. Matos, Ph.D(2004)

SMS 2002E. Kaza, Ph.D(2004)

Yu. Litvinov, Ph.D. (2003):~ 600 species in the ring

466 masses measured(117 calibration masses)139 masses from links200 improved masses75 new mass values

IMSJ. Stadlmann et al., Phys. Lett. (2004)

For drip line physics discussion see: Novikov et al., Nucl Phys A (2002)

mass is input parameter for halo models

see Y. Litvvinov et al. Nucl. Phys. A (2005)

RF

B

referencebeam

ion counterISOLDE60 kV beam

RF

1 m

magnet

slit 0.4 mm

FAST: short T1/2

fc fc

frequency (kHz)

505000 505100 505200

trans

mitt

edio

n si

gnal

(cou

nts) f = (n + ½) fc

MISTRAL: Mass measurements at ISOLDE with a Transmission RAdiofrequency spectrometer on-Line

C. Bachelet et al.,Eur. Phys. J. A (2005)

11Li(T1/2 = 8.6 ms)

CERN Courier, May 2004

Superlarge nuclei at ISOLDE vie for attention with the superdeformed and the superheavy

ISOLDECERN, Geneva

proton beam1 GeV HRS

GPS

REX-ISOLDE

MISTRALISOL-TRAP10 m

1 m

The mass spectrometer ISOLTRAP

2 cm

hyperbolicPenning trap:precision massmeasurement

cylindricalPenning trap:

isobar separa-tion & cooling

20cm

Gas-filled RF-Paul trap: universal beamcollector

low energy bunchescontinuous60 keV ISOLDE beam

N = 40 Shell closure ?

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

24 26 28 30 32 34 36 38 40

Proton number Z

ΔN

(MeV

)

N=39N=40N=41N=38

39

38

40

41

40 shell closure?in between 39 and 41

C. Guénaut, ‘Is N=40 magic?’(Ph.D., U. Paris-Sud, 2005

SHIPTRAP facility at GSI

ISOL facility for transuranium nuclides

92Mo (58Ni,xpyn) 147Ho→ new masses for 147Ho, 147,148Er (∼10−6)

(M. Block et al., ENAM04)

trapcoolercooler

ionguidemass

separator

JYFLTRAP at the IGISOL facility in Jyväskylä

ISOLDE elementsJYFLTRAP masses from IGISOL:

V. Kolhinen, NIMB (2004) & Ph.D.S. Rinta-Antila et al., PRC (2004)A. Jokinen, ENAM04 (2004)

U. Hager et al., PRL (2006)

Canadian Penning Trap (CPT) facility at ANL

22Mg: Savard et al., PRC (2004)68Se: Clark et al., PRL (2003)

252Cf fragmts : Wang et al., ENAM04beam

Low Energy Beam & Ion Trap (LEBIT) facility at NSCL/MSU

http://www.nscl.gov/lebit

G. Bollen et al.,ENAM 2004

∞ 106 103 100 10-310-9

10-8

10-7

10-6

10-5

10-4

JYFL COOL

CPT

ESR SMS

ISOLTRAP

ESRIMS

MISTRAL

CSS2

SPEG

rela

tive

unce

rtain

ty

half life (seconds)

Performance of the various methods

See: Lunney, Pearson & Thibault, Rev. Mod. Phys. 75 (2003) 1021

JYFLTRAPLEBIT

SHIPTRAP

reactions and decays(so-called ‘indirect’ techniques)

Decay studies: masses byproducts (Q-values)Z = 114/116: Oganessian et al., PRC (2004)

135Tb p decay: P.J. Woods et al., PRC (2004)130Eu p decay: C.N. Davids et al., PRC (2004)233Am α decay: M. Sakama et al., PRC (2004)265Bh α decay: Z.G. Gan et al., EPJA (2004)130Cd β decay: I. Dillmann et al., PRL (2003)

Reactions: masses of unbound nuclides15F: W. A. Peters et al., PRC (2003)11N: V. Guimarães et al., PRC (2003)25O: W. Mittig et al., (2004)

Mass values for the most exotic species

Also: 26Si (p,t) 28SiJ. Caggiano et al.(NUSTAR05)

Q25

Q26

Q31

Q33

Q35

MAYAradioactivebeam

D3P

D4P

26F (d,3He) 25O reaction

- - - - - - - - -

- - -

+ + + + + + + ++ + +

XYZ

SPEG

masses of unbound nuclides using MAYA at GANIL

See poster of C.-E. Demonchy

Z

Y X

MAYA

MAFF facility at FRM-II

Münich Accelerator for Fission Fragments

trap

n-rich nuclides

trap

funnel

Bavarium

D. Habs et al., ENAM 2004(MAFF workshop 04/2005)

ISAC beam

TRIUMF Ion Trap (TITAN) facility

Paul trapCooling and

Bunching (1-5ms)

EBITRapid charge

breeding (2-30 ms) Wien filterm/q selection

Penning trapPrecision mass measurement

(~ 10-100ms)

J. Dilling et al. ENAM04

Mass measurements

• T1/2 ≈10 ms

• δm/m < 1⋅10-8

•Operational 2006

fc = qB/m

Multiple-Reflection TOF-MS

Casares, Geissel, Plass, Scheidenberger, Wollnik et al.(Proc. 48th ASMS Conf. Mass Spectrom. Allied Topics, Long Beach, CA, 2000)

Ion SourceReflector 1 Reflector 2

MCP-Detector

mass measurement accuracy (~ ppm)short measurement durations (< 1 ms)

Beyond the horizonBeyond the horizon

GSI ’s futureFacility for Antiproton andIon Research(FAIR)

FAIRTRAP(MATS)

→ K. BlaumFAIR RINGS(ILIMA)

Preliminary Experimental Layout – Side View

2.0

4.5

4.8

test -ions

cooler-trapprecision-trap

RFQ - cooler/buncher

EBIT

Side View

Roof crane (2 T)

8.0

Detectors:- FT-ICR- TOF-ICR- Si(Li) electron

EBIT:charge breeding

q/m selection:charge breeding

Cooler trap:beam preparation

Precision trap:measurements

The Setup

LASPEC (GSI-FAIR Low-Energy Branch)W. Noertershaeuser (P. Campbell)

Gas-Catcher+ LIS

nuclides with known massesG.Audi et al., Nucl. Phys. A729 (2003) 3

stable nuclei

measured with FRS-ESR

observed nuclei

r-process

2028

50

82

8

8

20

28

50

82

126

nuclides with known masses

stable nuclei

to be measured with the FRS-ESRobserved nuclei

r-process

2028

50

82

8

8

20

28

50

82

126

nuclides with known masses

stable nuclei

to be measured with FAIR facilityobserved nuclei

r-process

2028

50

82

8

8

20

28

50

82

126

stellar nucleosynthesis

ConclusionsNo one experiment to unlock the secret of the nucleus

‘‘key’’ experiments key experimental programs‘‘pilot’’ experiments (systematic studies)

Ground-state properties (masses, radii, moments):fundamental axis of nuclear structureneeded due to absence of reliable model predictionsexamples of ISOL measurements par excellence

EURISOL ‘competitors’: FAIR/MAFF/RIA/SPIRAL2

78Ni; 100Sn; 110Zr; 60Ca; 48Ni; 42Si; 40Mg; 30Netrans-uraniums (à la SHIPTRAP)

top related