asymmetric binol-phosphate derived brønsted acids: development and catalytic mechanism reporter:...

Post on 21-Jan-2016

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and

Catalytic Mechanism

Reporter: Song FeifeiSupervisor: Prof. Yong Huang

2015.10.12

1

2

Outline

Introduction

Catalytic mechanism

Development

Overview of Catalysts

Summary

Looking Forward

Acknowledgment

Introduction

3Akiyama, T. et al. Chem. Rev. 2015, 115, 9277.

S

O

O

F3C OH Tf2HC

CHTf2

CHTf2

OHHO

OH

NH

S

S

F3C

OO

F3C

OO

R

CO2H

CO2H

R

R

SO3H

SO3H

R

R

R

SO2

SO2

NH

R H

Brønsted Acids

R

O

O

R

PO

OH

Introduction

4

SO

O O

H

CO

O

H1

23

4

free rotation

SO

O

H1

23

4

free rotation

P

O

OH

a) solfonic acids b) carboxylic acids c) sulfinic acids

12

3

d) phosphotic acids

PO

O

O

O

H

substrate recognition site

dual function bymonofunctional catalyst

Lewis basic site

Brønsted acidic site

stereoelectronic effect

G

G

ringstruture

e) cyclic phosphoric acids

Terada, M. Chem. Commun., 2008, 4097.

Introduction

5Rueping, M. et al. Chem. Rev. 2014, 114, 9047.

R

O

O

R

PO

X H

Brønsted acidorganocatalysis

R

O

O

R

PX

O

M+

Lewis acidmetal catalysis

mono-dual-

bifunctional-activation

6

Catalytic Mechanism

Mono activation

Dual activation

Bifunctional activation

Counterion catalysis

Ligand Behavior in Presence of Metals

Independent relay processes in presence of metals

7

Mono / Dual Activation

Rueping, M. et al. Angew. Chem. Int. Ed. 2011, 50, 6364.; Rueping, M. et al. Chem. Soc. Rev. 2011, 40, 4539.

PPhO

PhO

O

O

NH R3

R2R1

PPhO

PhO

O

O

NR3

R2R1

H

ion-pairing hydrogen bonding

Brønsted acidity, solvent, imine structure

PO

O

O

O

XR3

R2

*

H

YR1

PO

O

O

O

*

H Y

X

R2R1

H

two contacts tothe acidic proton

two contacts tothe catalyst

Mono Activation

Dual Activation

8

Bifunctional Activation

Goodman, J. M. et al. J. Org. Chem. 2011, 76, 1775.

NR2

R1

R3

PO

O

O

O

HH

NuR R

R3 larger than R2

Type I

PO

O

O

O

HH

NuR R

R2 larger than R3

Type II

NR3

R2

R1

9

Counterion Catalysis

H Nu

PO O

OO

electrophiliccationic species

R

R

Rueping, M. et al. Chem. Rev. 2014, 114, 9047.

10

Behavior in Presence of Metals

Ligand or a counterion for the metals

Independent relay processes

starting materials products

intermediates

relay catalysis

Mn+ PO

O

OH

O*

O

OP

O

O

R

Rn

Mn+

3,3'-positions can be tunedfor reactivity/selectivity

Lewis basic site

Can function asa Lewis acid

Rueping, M. et al. Chem. Eur. J. 2010, 16, 9350.; Alemán, J. et al. Org. Biomol. Chem. 2012, 10, 5001.;Luo, S. et al. Chem. Commun. 2013, 49, 847.

Development

11

2004

1992

1978

1971

R

O

O

R

PO

X H

Background

12Jacques, J. et al. Tetrahedron Lett. 1971, 4617.

HN

NH

C3H7

Me

O

EtO

PA16 N HCl

2 N NH4OH

(±)

HN

NH

C3H7

Me

O

EtO

(+)

H

O

O

H

PO

OH

PA 1

The Starting Seeds: Phosphinic Acids

13Cornforth, J. Proc. R. Soc. London, Ser. B. 1978, 203, 101.

P

XY

XY

R

R

O

OH

tunablearomatic groups

narrow well-definedchannel for substrates

possiblity forbackbone

substituents

PR RO O

H

P

R

R

O

O H

H2OHO

H

P

R

R

O

O

Me

Asymmetric Synthesis Using Chiral Rhodium Phosphate

14

O

OP

O

OH

Na4Rh2(CO3)4 O

OP

O

O Rh2(HCO3)2

(S)-PA1 Cat.

Me

O O

N2O

Cat. (0.5 mol%)

CH2Cl2, 40 C O

O

Me

O

Me

N2 Cat. (0.5 mol%)

CH2Cl2, -30 CO

Me

92%, 32% ee

80%, 60% ee

COMe

McKervey, M. A. et al. Tetrahedron Lett. 1992, 33, 5983.

15Akiyama, T. et al. Angew. Chem. Int. Ed. 2004, 43, 1566.; Akiyama, T. et al. J. Am. Chem. Soc. 2007, 129, 6756.

R

HO

N

R1 H

OR3

OTMS

H

R2

+

R

HO

HN

R1

R2

CO2R3

PA 15 (10 mol%)

toluene, -78 C, 24 h

15 examples65-100% yield

86:14-100:0 syn/anti81-96% ee

transition state:

NH

R1 H

OH

PO

O O

O*

OR3

OTMS

H

R2

O

OP

O

OH

NO2

NO2

PA 15

Mannich-Type Reaction by Akiyama

16

Catalytic Reaction Types

Friedel-Crafts ReactionMannich

1,3-DiopolarCycloaddition

Miscellaneous

Diels-Alder

Transfer Hydrogenation

BINOL PACatalysis

17

Overview of Catalysts

Alternative variants of catalysts

General BINOL-PA

Miscellaneous chiral PA

Multiple chiral axis containing PA

N-Phosphoramide

N-Thiophosphoramide

Spiro PA

[H8]-PA

PA

NPA

NTA

PKahigh

low

18

Alternative Variants of Catalysts

O

OP

O

OH

R

R

O

OP

O

OH

R

R

(S)-PA [H8]-PA

19

General BINOL-PA

R

O

O

R

PO

OH

PA 1, R = H

PA 2, R = SiPh3

PA 3, R = Si(4-tBuC6H4)3

PA 4, R = adamanthyl

PA 5, R = 1-naphthyl

PA 6, R = 2-naphthyl

PA 7, R = 9-anthracenyl

PA 8, R = 9-phenanthryl

PA 9, R = 1-pyrenyl

O

OP

O

OH

R

R

PA 10, R = H

PA 11, R = tBu

PA 12, R = F

PA 13, R = Cl

PA 14, R = OMe

PA 15, R = NO2

PA 16, R = Ph

PA 17, R = 3,5-(CF3)2C6H3

PA 18, R = 2,3,4,5,6-F5C6

PA 19, R = 2-naphthyl

O

OP

O

OH

R

R

R

R

PA 20, R = CF3PA 21, R = SF5PA 22, R = PhPA 23, R = 2,4,6-(Me)3C6H2

20

N

Ts

H2N O

Me+

Me

HN

N

Ts

PA 2 (10 mol%)Hantzsch ester

5Å MS, 24-96 h40-50 Cbenzene 90% yield

93% ee

MacMillan, D.W.C. et al. J. Am. Chem. Soc. 2006, 128, 84.

O

OP

O

OH

SiPh3

SiPh3

PA 2

General BINOL-PA

21

selective formethyl versus ethyl ketones

Si-face

= H

Si-face blocked= Me

Si-face exposed

ON

OR

N

EtO2C

Me Me

CO2Et

H

H H

+ OHN

OR

PA 2 (10 mol%)

5Å MS, 40 Cbenzene

R = Me, 82% yield, 97% eeR = Et, 27% yield, 79% ee

MacMillan, D.W.C. et al. J. Am. Chem. Soc. 2006, 128, 84.

General BINOL-PA

22Ackermann, L. et al. Synlett 2008, 995.; Akiyama, T. Angew. Chem. Int. Ed. 2008, 47, 4016.

General BINOL-PA

BnHNPh Ph

PA (20 mol%)

1,4-dioxane130 C, 20 h

N

Bn

Me

Ph

Ph

N

Ph

Ph

BnH P

O

O

O

O

H

*

transition state:

R1

NO2

NH

R2

NO2

HN

R2R1

PA 2 (10 mol%)

3 Å MS, -35 °Cbenzene/DCE 1:1

14 examples57-99% yield

88-94% ee

N

H

R1

N

PO

O

O

O

*

O

O

H

transition state:

PA 2 95% yieldPA 20 (S)-17% ee

23Gong, L.-Z. et al. J. Am. Chem. Soc. 2006, 128, 14802.; Gong, L.-Z. et al. Angew. Chem. Int. Ed. 2010, 49, 6378.

R1 CHO

+

H2N NH2

X

Me OR2

O O

X = O, S

NH NH

CO2R2

X

Me R1[H8]-PA 10 (10 mol%)

CH2Cl2, rt, 4d

24 examples40-86% yield

88-97% ee

Ar CHO

+H2N NH2

S

Me OEt

O O

Ar = 4-NO2C6H4

NH NH

CO2R2

S

Me Ar

NH NH

CO2R2

S

Me Ar

(S), 95%, 96% ee

(R), 94%, 85% ee

PA 2 (10 mol%)

toluene, 50 C, 4d

[H8]-PA 10 (10 mol%)

CH2Cl2, rt, 4d

R

O

O

R

PO

OH

PA 2, R = SiPh3PA 10, R = Ph

General BINOL-PA

24Gong, L.-Z. et al. J. Am. Chem. Soc. 2009, 131, 15301.

Ph

OP

O

O O

Ph

H

H

N

N

H

S

ArO

HMe

CO2Et

O

O

Ph

Ph

P

O

O H

HN

N

S

Ar

O Me

CO2Et

H

H

Ia, Ar = 4-NO2C6H4

IIa, Ar = 4-NO2C6H4

SiPh3

OP

O

O O

SiPh3

H

H

N

N

R'

S

ArO

H

R1

O

O

SiPh3

SiPh3

P

O

O H

HN

N

S

Ar

O R2

R1

H

R'

Ib, Ar = 4-NO2C6H4 R' = H, Me

IIb, Ar = 4-NO2C6H4R' = H, Me

R2

General BINOL-PA

25Luo, S. et al. Chem. Eur. J. 2012, 18, 799.

R1

R1

OMe

O

O

R2

+

(S)-PA-18 (2 mol%)InBr3 (1 mol%)

4Å MSCH2Cl2, -70 C O

R1

MeO2C

R2H

R1 11 examples85-99% yield

53-99% ee

O

Me

MeO2C

PhH

MeO

Bn

MeO2C

PhH

Bn

4-Cl

91%, 95% ee 99%, 99% ee

O

OP

O

OH

R

RPA 18

R = 2,3,4,5,6-F5C6

General BINOL-PA

26Luo, S. et al. Chem. Eur. J. 2012, 18, 799.

F

F

F

F

F

FF

FF

F

O

O

PO

O

H

In

Br

O

OPh

Oa

b

c

- Accessible space- Favorable pi-interaction

- Less accessible- Unfavorable pi-interaction

O

OO

Ph

1-

4-

2-

3- - 1- and 3-positions space less demanding

- 2- and 4-positions sterically unfavored

General BINOL-PA Stereocontrol

Regioselectivity control/Sunbstitution bias

27

O

OP

O

OH

RR

R

R

RR

O

OP

O

OH

R2R1

R1

R1

R1R2

O

OP

O

OH

RR

R

R

RR

X

X

PA 24, R = Me

PA 25, R = iPr

PA 26, R1 = Me, R2 = OMe

PA 27, R1 = iPr, R2 = tBu

PA 28, R1 = iPr, R2 = 4-tBuC6H4

PA 29, R1 = iPr, R2 = 9-anthracenyl

PA 30, R = iPr, X = I

PA 31, R = iPr, X = NO2

PA 32, R = iPr, X = Si(iPr)3

PA 33, R = iPr, X = C8H17

General BINOL-PA

28

N

OMe

(S)-PA 25 (1 mol%)

N

CO2EtEtO2C

H H

H

toluene, 35 C, 71 h

N HH

98% yield93% ee

XH

RX

Br

R

(S)-PA 25 (10 mol%)NBS

CH2Cl2, 0 C, 18 h 25 examples45-96% yield

21-90 eeX = O, NsN, or TrisylN

List.B. et al. Angew. Chem. Int. Ed. 2005, 44, 7424.; Shi.Y. et al. Org. Lett. 2011, 13, 6350.

General BINOL-PA

29Shi.Y. et al. Org. Lett. 2011, 13, 6350.

General BINOL-PA

O

OP

O

O

iPr

iPr

iPr

iPr

iPr

iPr

H

HN

R'

R

O N O

BrNR' R

Br

favored

A

O

OP

O

O

iPr

iPr

iPr

iPr

iPr

iPr

H

H

Br

disfavored

O N O

N

R'

R

B

NR' R

Br

Proposed transition state model for bromoaminocy-clization of cis--amino-alkenes.

30

R1

NH2

O

R2

N

R2

R2

hvPA 25 (1 mol%)

H *Bchiral ion pair

NH

R2*dihydropyridinetoluene, 55 C

R1

hvPA 25 dihydropyridine

17 examples52-84% yield

84-96% eeO

OP

O

OH

iPriPr

iPr

iPr

iPriPr

PA 25

Rueping, M. et al. Chem. Commun. 2013, 49, 7953.

General BINOL-PA

31

O

OP

O

OH

iPriPr

iPr

iPr

iPriPr

C8H17

C8H17

PA 33

General BINOL-PA

32Toste, F. D. et al. Science 2011, 334, 1681.

ONH

OR

PA 33 (5 mol%)Selectfluor (1.25 equiv)

Proton Sponge (1.1 equiv)

C6H5F, -20 C, 24 h ON

O RF

X

NH

OR

X = C, O

PA 33 (5 mol%)Selectfluor (1.25 equiv)

Na2CO3 (1.1 equiv)

C6H5F/hexane (1:1)23 C, 24 h

X

N

O

FR

9 examples67-96% yield9:1-20:1 d.r.79-97% ee

4 examples70-87% yield

>20:1 d.r.92-96% ee

ON

O

F

96%, >20:1 d.r.96% ee

N

O

F

Br

87%, >20:1 d.r.93% ee

General BINOL-PA

33Toste, F. D. et al. Science 2011, 334, 1681.

General BINOL-PA

PO

O

O

O2 *

Na

N

N

Cl

N

N

Cl

PO

O

O

O

*

N

N

Cl

PO

O

O

OP

O

O

O

O

*

N

N

Cl

2BF4

F

PO

O

OH

O*

N

O

F

Ar NH

ArO

F

Na2CO3

Selectfluor(insoluble)

2 NaBF4

chiral ion pair

anti-fluorocyclization

BF4

NaHCO3

NaBF4

*

34

Miscellaneous Chiral PA

Me

Me

O

O

Ar

PO

OH

PA 34, Ar = 2,4-(CF3)2C6H3PA 35, Ar = 9-anthracenyl

Ar

R

R

O

OP

O

OH

PA 36, R = HPA 37, R = Ph

O

OP

O

OH

Me

PA 38

O

OP

O

OH

N

NN

N

NN

Ad

AdC8H17

C8H17

PA 39

O

OP

O

O

R

R

PA 40, R = 9-anthracenyl

HN

O

OP

O

O

Ar

Ar

NH

H

CF3

F3C

F3C

CF3PA 41

Ar = 2,4,6-C6H2(iPr)3

35

MeO2C CO2Me

N R1

H H

R2

N

H

R2

R1

CO2MeCO2Me

H

PA 34 (10 mol%)

R3 R3

*

R1 = Me or Ph

toluene, 70-110 C5-64 h

11 examples45-100% yield

70-97% ee

MeO2C CO2Me

N Ph

Me H

Me

N

Me

CO2MeCO2Me

Yb(OTf)3 (10 mol%)

R3 R3

> 98% ee

toluene, rt, 4h

98%, 85% ee

MePh

Me

Me

O

OP

O

OH

F3C CF3

F3C CF3

PA 34

Akiyama, T. et al. J. Am.Chem.Soc. 2011, 133, 6166.

Miscellaneous Chiral PA

36Akiyama, T. et al. J. Am.Chem.Soc. 2011, 133, 6166.

Miscellaneous Chiral PA

R

R

OO

P

O O

H

R

R

O

OR

O

OR

N

H

H

stericrepulsion

stericrepulsion

ORO

OR

O

H

N

HH

PO

O

O

O

*

NH

H

O

O OR

OR

R

R

R

R

O O

P

OO

H

side view

Re-faceattack

N

Ph

Ph

CO2R

CO2R

(S)

H was preferentiallytransferred

37Toste, F. D. et al. J. Am.Chem.Soc. 2013, 135, 14044.

O

OP

O

OH

N

NN

N

NN

Ad

AdC8H17

C8H17

PA 39

Miscellaneous Chiral PA

N

NH

O

R2R1

N

NHAc

O BF4PA 39 (5 mol%)

Na3PO4 (2.4 equiv)p-xylene, rt, 48 h

N

N

O

R2R1

*

18 examples38-93% yield

60-94% ee

38Toste, F. D. et al. J. Am.Chem.Soc. 2013, 135, 14044.

Miscellaneous Chiral PA

PO

O

O

O

*

PO

O

O

O*

PO

O

O

O*

+[O]

[O]-H

N

H Nuc N

H Nuc

N

H Nuc

chiral ionpair

*

POH

O

O

O*

Base

H[O] X

X

Proposed chiral phosphate-catalyzed CDC

39

O

OP

O

O

Ar

Ar

NH

H

CF3

F3C

F3C

CF3PA 41

Ar = 2,4,6-C6H2(iPr)3

Miscellaneous Chiral PA

40List, B. et al. Angew. Chem. Int. Ed. 2008, 47, 1119.

OHCR OHC

R

OPA 41 (10 mol%)

tBuOOH (1.1 equiv)

dioxane or MTBE0-35 C, 24-72 h

18 examples60-95% yield

up to 99:1 d.r.76-96% ee

Mechanism for epoxidation:

R2N RR2N R

R2N R

PO

O

O

O*

OOtBu

PO

O

O

O*

H

* O*

*

PO

O

O

O*

tBuOOH

OHCO

OHCMe

OMe

OHCO

76%, >99:1 d.r.96% ee

83%, 94% ee 75%, 90% ee

Miscellaneous Chiral PA

41

Multiple Chiral Axis Containing PA

O

OO

OO

P

HOO PO

OH

O

OP

N

Ar

Ar

PO

O

OHO

Ar

Ar

RR

RO

O

O

P OHO

PO

OH

O

R

R

R

PA 42 PA 43, Ar = 2,4,6-Et3C6H2

PA44, Ar = iPr

OO

P

OHO

OR RO

PA 45, R = alkyl

42Gong, L.-Z. et al. J. Am.Chem.Soc. 2008, 130, 5652.

R1

O

H H2N

R2

R3CO2R4

CO2R4

+ +

NH

CO2R4

R4O2C

R1

R2

R3

PA 42 (10 mol%)

CH2Cl2, rt, 3Å MS24-96 h

23 examples70-97% yield

76-99% ee

transition state:

N

H

CO2EtR2

R1 CO2Et

R4O2C CO2R4

PO

O

O

O*

HP

O

O

O

O

*

H

NH

CO2MeMeO2C

CO2Et

CO2Et NH

CO2MeMeO2C

Ph

CO2Et

Br

NH

CO2BuBuO2C

Ph

CO2Et

NO2

93%, 91% ee 93%, 97% ee 77%, 81% ee

Multiple Chiral Axis Containing PA

43

O

OP

N

Ar

Ar

PO

O

OHO

Ar

Ar

PA 43, Ar = 2,4,6-Et3C6H2

O OH

n = 0, 1, 2

O O

nn

(S)-PA 43 (1 mol%)

MTBE, 35 C, 24 h

OO

H

PO

O

OO

*transition state:

O O OO O O

77%, 96% ee 78%, 92% ee 62%, 92% ee

6 examples62-88% yield

91-97% ee

List, B. et al. Nature 2012, 483, 315.

Multiple Chiral Axis Containing PA

44

R1

NHCbz

+CHOR2

NH

CHO

R2

Cbz

R1

PA 44 (2.5 mol%)

4Å MStoluene, -80 C

11 examples48-92% yield

95-99% ee

RR

RO

O

O

P OO

PO

OO

R

R

R

PA44 Ar = iPr

R1

NH Cbz

R2

O

H

H

transition state:

NHCbz

CHONH

Cbz

Me

CHO

NHCbz

Me

CHO

Bn

79%, 99% ee 90%, 98% ee 48%, 98% ee

H

Terada, M. et al. J. Am.Chem.Soc. 2011, 133, 19294.

Multiple Chiral Axis Containing PA

45

N-Phosphoramide Catalysts

O

OP

O

NH

R1

R1

R2

NPA 1, R1 = SiPh3, R2 = Tf

NPA 2, R1 = 1-pyrenyl, R2 = Tf

NPA 3, R1 = 9-anthracenyl, R2 = Tf

NPA 4, R1 = 9-phenanthryl, R2 = Tf

NPA 5, R1 = 9-anthracenyl, R2 = Ts

O

OP

O

NH

Tf

NPA 6, R = HNPA 7, R = OMeNPA 8, R = NO2

R

R

O

OP

O

NH

R2R1

R1

R1

R1R2

Tf

NPA 9, R1 = iPr, R2 = iPr

NPA 10, R1 = iPr, R2 = Ad

O

OP

O

NH

Ar

Ar

P

O

CF3

CF3

NPA 11

Ar = 2,4,6-iPrC6H2

46

N-Phosphoramide Catalysts

Yamamoto, H. et al. J. Am.Chem.Soc. 2006, 128, 9626.

Et

O

RMe

OSi

Me

R

Et

O

SiO

+(S)-NPA 9 (5 mol%)

toluene, -78 C, 12h

Si = TBS, TIPS

8 examples35-99% yield

82-92% ee

O

Et

SiO

R

Me

PO

O

N

O

Tf*

H

transition state:

Me

Me

Et

O

TBSO

Me

Me

Et

O

TIPSO

Me

Bn

Et

O

TIPSO

43%, 92% ee 95%, 92% ee 99%, 85% ee

47

N-Phosphoramide Catalysts

Kim, S. et al. Tetrahedron Lett. 2009, 50, 3345.

Ph

N

Ar H

Ph

NH

Ar R*

NPA 9 (30 mol%)RI (5 equiv)

TTMSSH (3 equiv)

Et3B/O2toluene, -40 C, 24 h

9 examples31-77% yield

73-84% ee

N

HAr1

PO

O

N

O

Tf*

H Ar2

transition state:

R

Ph

NH

Ph Et

Ph

NH

Ph tBu

Ph

NH

Et

MeO

56 %, 83% ee 36 %, 80% ee 77 %, 73% ee

48

N-Phosphoramide Catalysts

List, B. et al. Angew. Chem. Int. Ed. 2010, 49, 9749.

OH

O

NH2R1

O

NH

O

R2

R1

(S)-NPA 11 (10 mol%)R2CHO (8 equiv)

5Å MStoluene, 50 C, 96 h

21 examples50-97% yield

51-97% ee

Proposed interaction of N-phosphinyl catalyst:

O

OP

O

NP

CF3

O

CF3

N

O

H R

OH

re

12

49

N-Thiophosphoramide Catalysts

O

OP

S

NH

Ar

Ar

N

NTA 1Ar = 3,5-CF3C6H3

O

OP

S

NH

Ar

Ar

Tf

NTA 2

Ar = 2,4,6-(iPr)3C6H2

NTA 3

Ar = 4-tBu-2,6-(iPr)2C6H2

50

N-Thiophosphoramide Catalysts

Yamamoto, H. et al. J. Am.Chem.Soc. 2008, 130, 9246.

OTMS

R

O

R(S)-NTA 3 (5 mol%)PhOH (1.1 equiv)

tolunene, rt

n n12 examples95-97% yield

54-90% ee

OMe

OCl

O

96%, 94% ee 95%, 84% ee 99%, 88% ee

51

Spiro PA

R

R

O

O PO

OH

O

O PO

OH

O

O PO

OH

R

R

R

R

R

R

R

R

R

R

O

O PO

NH

R

R

R

R

R

R

Tf

PA 1, R = 9-anthracenylPA 2, R = 2-naphthyl SPA 3, R = CF3

NPA 4, R = iPr N-SPA 1, R = iPr

Resolving agents / Promoters of rhodium catalyst / Organocatalysts

Brøsted acidic site / Lewis basic site

Functional-group-modified for steric / acidity / solubility

Summary

52

R

O

O

R

PO

X H

Brønsted acidorganocatalysis

R

O

O

R

PX

O

M+

Lewis acidmetal catalysis

mono-dual-

bifunctional-activation

Mechanisms studies are still required for further progress.

Low catalyst loadings.

To grow the ability and scope of these catalysts.

Combined with other catalysis such as metals or light activation.

Looking Forward

53

Prof. Huang

Jiean Chen

All members here

Thanks for your attention!

Acknowledgment

54

[H8]-PA 10

55Located transition state structures with distance parameters in angstroms and relative energies in enthalpy and free Energy in parentheses.

PA 2

56Located transition state structures with distance parameters in angstroms and relative energies in enthalpy and free Energy in parentheses.

NTA 3

57

HA + PhOH [PhOH2][A]

oxonium ion pair

O

R

TMSO

R

TMS

H[A]

O

RH

+ HA

a [aH][A]

[PhOH2][A]

Ph OH Ph OTMS

b

intermediary chiral ion pair HA: Chiral Brønsted Acid

or HA

Yamamoto, H. et al. J. Am.Chem.Soc. 2008, 130, 9246.

Proposed mechanism of Brønsted acid catalyzed asymmetric protonations of silyl enol ethers

top related