¾at hä d ik atmosphären: dynamik - dlr.de · sources of dynamical variability in the earth‘s...

Post on 14-Aug-2019

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

ÜRingvorlesung „Planeten und Leben im Überblick“

Oberflächen …..

At hä D ikWasser …..Atmosphären: DynamikAtmosphären: ChemieAtmosphären: Chemie

Atmosphären: Klimaentwicklungp gInneres …..

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Atmosphären: Dynamik

Dynamik und TransportprozesseDynamik und Transportprozesse in Planetenatmosphären

Prof Dr Ulrike LangematzProf. Dr. Ulrike LangematzInstitut für Meteorologie, Freie Universität Berlin

Ulrike.Langematz@met.fu-berlin.de

Dr. Lee GrenfellZentrum für Astronomie und Astrophysik, Technische Universität Berlin

Institut für Meteorologie, Freie Universität Berlin

Zentrum für Astronomie und Astrophysik, Technische Universität Berlin

D i l tDynamical aspects f ‘of the Earth‘s

atmosphere

Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen.1 The sun as energy source

Dynamical aspects of the Earth‘s atmosphere

Differential solar heating1. The sun as energy source Differential solar heatingTemperature gradients

Dynamics

Factors affecting dynamics:• Orbital parameters

11-year Schwabe-Zyklus• Orbital parameters • Rotation of planet • Variability of energy input

0 1 %0.1 %Maunder Minimum

http://www.pmodwrc.ch/solar_const/solar_const.html1645-1715 Hoyt und Schatten, 1993, updated

2 Chemical composition of Earth‘s atmosphere

Dynamical aspects of the Earth‘s atmosphere

Substance Fraction [V%]

2. Chemical composition of Earth s atmosphere

Nitrogen (N2) 78,08

Oxygen (O2) 20,95

Argon (Ar) 0,93g ( ) ,

Carbondioxid (CO2) 0,033

Neon (Ne) (+ Noble gases) 90%

10%dry

Factors affecting dynamics:moist• chemical compositionJanuary, ppmv

Dynamical aspects of the Earth‘s atmosphere

Short wave solar heating ratedue to absorption by ozone and

Temperaturein °Cdue to absorption by ozone and

molecular oxygenin K/day

in C

January

KW

W

KK

K

Dynamical aspects of the Earth‘s atmosphere

1. Radiative equilibrium in the stratosphere in summer.

Zonal gemittelte Temperatur

2. zonally symmetric irradiance

→ 2-d approximation valid

1. Dynamical disturbances in the winter stratosphere and in the mesosphere

2. longitudinal dependence

→ 3-d dynamics

Theoretical concept of zonal mean background state with imposed

summer winter

Theoretical concept of zonal mean background state with imposed dynamical effects by wavelike disturbances

Temperature and zonal windDynamical aspects of the Earth‘s atmosphere

E

Temperature and zonal wind

January, zonal means

How does the corresponding zonal wind field look like?

W ESPARC climatology(http://sparc.sunysb.edu)

Polar night jet

With the assumption of geostrophic balance: WE

Polar night jet

Equilibrium between Coriolis force (due to Earth rotation) and pressure gradient force in the large scale):

W

Egradient force in the large scale):

Geostrophic wind:

u = −1/(ρf) δp/ δyu 1/(ρf) δp/ δy

Thermal wind:

δ /δ δT/δ

W W

δu/δz = ~ − δT/δy

Stratospheric mean circulationDynamical aspects of the Earth‘s atmosphere

winter

Geopotential height, long-term mean, northern hemisphere

Stratospheric mean circulation

summerwinter summer

H

T H

Episodic occurrences of Major Stratospheric Warmings

Dynamical aspects of the Earth‘s atmosphere

Episodic occurrences of Major Stratospheric Warmings

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Arctic high in summer Stratospheric warming im Januar 2006

2d-approximation valid 3d-dynamics)tz(u)tz(u ϕ≈ϕλ )tz('u)tz(u)tz(u ϕλ+ϕ=ϕλ

Institut für Meteorologie, Freie Universität Berlin

)t,z,(u)t,z,,(u ϕ≈ϕλ )t,z,,(u)t,z,(u)t,z,,(u ϕλ+ϕ=ϕλ

Zwischenjährliche Variabilität in der StratosphäreDynamical variability of the stratosphere in winterDynamical aspects of the Earth‘s atmosphere

j py y pSeasonal evolution of stratospheric North Pole temperature

Sources of dynamical variability in the Earth‘s atmosphere I

Dynamical aspects of the Earth‘s atmosphere

Sou ces o dy a ca a ab y e a s a osp e e

Excitation of large-scalePlanetary wavesPlanetary wavesRossby wavesKelvin wavesKelvin waves

at the surface byh• orography

• land-sea contrast

or in-situ atmospheric instability

stationary or transient

dependent on ωdependent on ωLaboratory experiments in a water tank with different rotational speed(Hide and Mason, 1975)

Sources of dynamical variability in the Earth‘s atmosphere II

Dynamical aspects of the Earth‘s atmosphere

Sources of dynamical variability in the Earth s atmosphere II

Excitation of

Gravity wavesGravity waves

at the surface by• orography• orography

in the atmosphere byconvection• convection

• shear winds

Equator-to-Pole Transport Cells

PolarE th FerrelEarth

H dlHadley(not to scale)

Dynamical aspects of the Earth‘s atmosphere

Shaded:Area with strong wave dissipation: Surf zone

Breaking planetary and gravity waves in

Wave driven pump Surf zoneand gravity waves in

the upper stratosphere drive the

pump

mean meridional circulation.

in the stratosphere in winter

Holton und Alexander (2000)

Equator Winter Pole

M idi l i l ti (MMC)

Dynamical aspects of the Earth‘s atmosphere

Mean meridional circulation (MMC)Brewer-Dobson-Zirkulation (BDC)

70km

10km10km

summer winter

The BDC describes the net meridional mass transport in the atmosphere.

Transport characteristics from long-lived trace gasesDynamical aspects of the Earth‘s atmosphere

p g g

HALOE t llit d tHALOE satellite data

2

1

1. Tropical upwelling

2. Downwelling at high latitudes

3

latitudes

3. Flat gradients in surf-zone due to redistribution by waves

4. : Polar, subtropical transport barriers

Randel (2001)HF: Wasserstoff-Fluorid

Quelle: Stratosphäre

transport barriers

Randel (2001)Quelle: Stratosphäre

Another example: Ozone

Dynamical aspects of the Earth‘s atmosphere

Another example: OzoneSBUV: Jahresmittel von 1980-89, Ozon (DU/km)

Ozone is transported from photochemical source regions in the upper tropical stratosphere to high latitudes in the lower stratosphere by the BDC.

Zunahme der Gesamtozonsäule in hohen Breiten im WinterDynamical aspects of the Earth‘s atmosphere

infolge Transport mit der Brewer-Dobson-Zirkulation(Dobson et al., Proc. Roy. Soc. London, 1929)

Specific transport

Dynamical aspects of the Earth‘s atmosphere

Specific transport phenomena: The tropical QBOThe tropical QBO

QBO: Quasi-biennial Oscillation

of the tropical zonal wind in the middle stratosphere

F d f th l t hForced from the lower atmosphere by vertically propagating waves

Transport of trace gases with the atmospheric circulationp g p

WMO (1999)WMO (1999)

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Dynamical regimes y a ca eg esof other planetsof other planets

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Mars Venus andMars, Venus and othersothers

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

VENUS – EARTH - MARS

Planetary Data

Radius(km) 6052 6360 3395Mass (kg) 4.87x1024 5.97x1024 6.42x1023

Gravity (m/s2) 8 87 9 81 3 71Gravity (m/s2) 8.87 9.81 3.71Distance from Sun (AU) 0.72 1.0 1.52Obliquity (degrees) 177.4 23 25.2L th Y (E th d ) 224 7 365 25 687 0Length Year (Earth days) 224.7 365.25 687.0Length Day (Earth days) -243.0 1.0 1.03Number of Satellites 0 1 2Eccentricity 0.0067 0.0167 0.093Inclination (degrees) 3.4 0.0 1.9Visual Albedo 0.65 0.4 0.15

Institut für Meteorologie, Freie Universität Berlin

Surface T (K) 735 288 220Surface P (bars) 93 1.0 0.006

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Mars Orbit and ClimateMars Orbit and Climate

Mars is ~half the size of Earth and only ~11% of the mass! Weaker gravity has resulted in stronger escape

1.38AU 1.65AU

resulted in stronger escape hence a thin atmosphere.

Mars’ orbit is more eccentric45% change

Mars orbit is more eccentric compared with the Earth so strong climate effects are

in solar input

gexpected.

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Mars Orbit and Climatea s O b a d C a e

Mars Orbit not only eccentric but also large

Institut für Meteorologie, Freie Universität Berlin

variations in obliquity – strong climate changes

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Martian Surface – Mercator Viewa a Su ace e ca o e

Vastitas Borealis (~-4km)OlympusAlbaPhoenix ( )Olympus

MonsPatera

Viking 2

ElysiumViking 1

SyrtisPathfinder

Tharsis (~+4km)Hellas

SpiritMajor

Opportunity

Argyre

HellasBasin

gy

Institut für Meteorologie, Freie Universität Berlin

Mars Orbiter Surface Altimeter (MOLA)

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Mars’ Atmosphere

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Mars: Atmospheric T P ProfileMars: Atmospheric T-P Profile

Atmosphere is thin (6mb) and cold (~250K) at surface

Water frozen out of atmosphereatmosphere

Dusty Climate

Mainly CO2 (95.3%)

Seasonal Pressure Cycle

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Martian Seasonal Pressure Cycley

CO2 condenses in polar regions in winter leads to

Institut für Meteorologie, Freie Universität Berlin

20% variation in atmospheric pressure (cf 1% on Earth)

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

M ti At h i D iMartian Atmospheric Dynamics

Important Principles

No ocean (strong heat sink on Earth)strong cyclical variations

e g temperature driven by changes ine.g. temperature driven by changes insolar insolation and

Obliquity and eccentricity are strongly variable affect Martian climate

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Martian Daily Temperature CycleMartian Daily Temperature Cycle

Driven by solar input and radiative properties of surface.

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Seasonal Temperature Changes on Mars

VIKING 1 (~20N)

VIKING 2 (~50N)

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Seasonal Temperature Changes on MarsLarge Dust Storm causes weakening of T amplitude

Seasonal Temperature Changes on Mars

VIKING 1 (~20N)

VIKING 2 (~50N)

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Hadley Cell on MarsHadley Cell on Mars

• smaller Coriolis force• smaller Coriolis force• single, giant Hadley cellcan form

• Faster on MarsMars – 100 daysEarth – 1 year

Cell is “slowed” byheat absorption fromheat absorption fromoceans on Earth

Institut für Meteorologie, Freie Universität Berlin

Mars• smaller Coriolis force• single giant Hadley cell

Mars• single, giant Hadley cellcan form

• Faster on MarsMars – 100 daysEarth – 1 year

Cell is “slowed” byheat absorption fromheat absorption fromoceans on Earth

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009Modelling the Martian Hadley Cell

Modern Mars

Vary Orbit Parameters

R O hRemove OrographyBIGGEST EFFECT!

Institut für Meteorologie, Freie Universität Berlin Richardson and Wilson (2002)

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

3D (GCM) Zonal mean Temperature of Mars3D (GCM) Zonal mean Temperature of Mars

W i iWarm region arisesdue to atmospheric waves formed near the surfaceformed near the surfacetravelling polewards,breaking and depositing heat

Winter Summer

Source: Mars Atmosphere Observation and Modelling

Institut für Meteorologie, Freie Universität Berlin

Source: Mars Atmosphere Observation and Modelling

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

GCM Si l ti f M l i dGCM Simulation of Mars zonal wind

strong wintertimepolar vortex developspolar vortex developsdue to meridional flow

WinterSummer

Institut für Meteorologie, Freie Universität Berlin

WinterSummer

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Atmospheric Dynamics on VenusAtmospheric Dynamics on

Cyclostrophic flow – Coriolis force weak -

VenusCyclostrophic flow Coriolis force weak Pressure force balanced by centrifugal force

CentrifugalForce

Coriolis and small CentrifugalF

Wind

PressureGradient Force

Wind

Force PressureGradient Force

d

V E thVenusZonal Cyclostrophic Wind

EarthZonal Geostrophic Wind

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Meridional Transport on Earth and VenusMeridional Transport on Earth and Venus

LESS HEAT ABSORBED BY VENUSLESS HEAT ABSORBED BY VENUSBECAUSE ALBEDO=0.6 (Earth=0.4)

Institut für Meteorologie, Freie Universität Berlin

Weak meridional heat gradient on VenusSource: LASP

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Venus N-S transport from single giant Hadley Cell

Earth – fast rotationt C i li fstrong Coriolis force

“breaks” circulationinto three cells(Hadley, Ferrel, Polar)

Venus slow rotationVenus – slow rotation,thick atmosphere – singleHadley cell is stabley

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Venus N-S transport from single giant Hadley Cell

Earth – fast rotationt C i li fstrong Coriolis force

“breaks” circulationinto three cells(Hadley, Ferrel, Polar)

Venus slow rotationVenus – slow rotation,thick atmosphere – singleHadley cell is stable

Venus Express Missionhas updated knowledge in this region y-the Hadley cell extends only up to-60o THEN there is a double (dipole) vortex

Institut für Meteorologie, Freie Universität Berlin

Venus e us

• Vertically overlappingcellscells

• Twin polar vortices• Superrotation ofatmosphere

Source: Ruslike 2007

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Venus has “superrotation”Venus has superrotation

wind slower near poles

St i d

E W Winds ~100ms-1 at

Strong windsat cloud topsin tropicsE W Winds 100ms-1 at

~60km 60 timesfaster than planet in tropics

Weak surfacewinds

p

tropicsi.e. SUPERROTATION

winds

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

St di f V ’ S t tiStudies of Venus’ Superrotation

Problem – to simulate superrotation needs a mechanismto transfer angular momentum from surface to atmosphere.Difficult for models!!! Some examples of model studies:

• Hourdin et al (1992) – produced superrotation inHourdin et al. (1992) produced superrotation innon-forced LMD (French) GCM

•Del Genio et al. (1993) – superrotation from upper tropospherecloud radiative effect in GCM

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Titan

Institut für Meteorologie, Freie Universität Berlin

Source: Cassini Source:Huygens

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Why study Titan’s atmosphere?

Only body in solar system other than Earth withOnly body in solar system other than Earth with thick (1.5 bar) nitrogen atmosphere

Conditions are thought to resemble the early Earth so understanding Titan could shed light on earthlike atmosphere development andearthlike atmosphere development and conditions favouring life

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Titan's atmosphereTitan s atmosphere

Surface T=94KSurface T 94KSurface P=1.5bar97% N23% CH4

Resembles EarlyResembles Early Earth

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Titan GCM Studies

(Superrotation in upper atmosphere)( p pp p )

Source: Samuelson (2002)

Institut für Meteorologie, Freie Universität Berlin

Source: Samuelson (2002)

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Summary of atmospheric dynamical regimesy p y g

Institut für Meteorologie, Freie Universität Berlin

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Saturn’s Hexagonal Vortex at high Northern latitudes…g g

S CSource: Cassini

Feature is long-lived

Institut für Meteorologie, Freie Universität Berlin

observed by Voyager and recently by Cassini

Jupiter’s global atmospheric dynamicsTemperature (K)Temperature (K)

Values oscillate with4 i d (Q i4-5 year period (QuasiQuadrennial Oscillation (QQO)

equator colder thanmid-lats!

(QQO)

Zonal Wind (u,ms-1)

mid-lats!

( )from thermal windrelation (i.e. u

proportional to dT/dlat)

Source:Fl t l (2004)

proportional to dT/dlat)strong jet

Flasar et al. (2004)Cassini data

Ringvorlesung „Planeten und Leben im Überblick“, TU Berlin, 28. Mai 2009

Jupiter’s hotspot at 1mbat 1mb

1mbHOTSPOT Purple = 160K

Red = 185KRed = 185K

SSource:Flasar et al. (2004)

Cassini data4mb

NO HOTSPOT

Institut für Meteorologie, Freie Universität Berlin

O O S O

Atmospheric Transport on the Early Earthy

What do we know:

• Thick atmosphere (~1-10 bar)• High CO2 (~x100 present from sediment data)• ~30% weaker sun (stellar models) (but UV probably higher)

CO H H O CH f i d l t di• CO, H2, H2O, CH4 from previous model studies• Earth spun about 50% faster

Moon was up to 15 times closer• Moon was up to 15 times closer

ATMOSPHERE PROBABLY V DYNAMICALLY PERTURBED!!ATMOSPHERE PROBABLY V. DYNAMICALLY PERTURBED!!

top related