behaviors of individual microtubules and microtubule ... · 3 abstract the concept of critical...

Post on 16-Nov-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Behaviorsofindividualmicrotubulesandmicrotubulepopulationsrelativetocriticalconcentrations:Dynamicinstabilityoccurswhencriticalconcentrationsaredrivenapartbynucleotidehydrolysis

ErinM.Jonassona,d,1†,AvaJ.Mauroa,b,e,2†,ChunleiLib,3,EllenC.Norbya,4,ShantM.Mahserejianb,5,JaredP.Scripturea,IvanV.Gregorettia,6,MarkS.Alberb,f,

andHollyV.Goodsona,c*

aDepartmentofChemistryandBiochemistry;bDepartmentofAppliedandComputationalMathematicsandStatistics;cDepartmentofBiologicalSciences

UniversityofNotreDame,NotreDame,IN46556;dDepartmentofNaturalSciences,SaintMartin’sUniversity,Lacey,WA98503

eDepartmentofMathematicsandStatistics,UniversityofMassachusettsAmherst,AmherstMA,01003

fDepartmentofMathematics,UniversityofCalifornia,Riverside,CA92521

Keywords:microtubule,dynamicinstability,criticalconcentration,steady-statepolymerShortTitle:Microtubulecriticalconcentrations

PresentAffiliations:1DepartmentofNaturalSciences,SaintMartin’sUniversity,Lacey,WA985032DepartmentofChemistryandBiochemistry,UniversityofNotreDame,NotreDame,IN465563AML,Apple,Sunnyvale,CA940854BiophysicsProgram,StanfordUniversity,Stanford,CA943055PacificNorthwestNationalLaboratory,Richland,WA993526CellSignalingTechnologies,Danvers,MA01923

*Authorforcorrespondence:HollyGoodsonDepartmentofChemistryandBiochemistry251NieuwlandScienceHallNotreDame,IN46556hgoodson@nd.edu(574) 631-7744

†Co-firstauthors

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

2

ARTICLEFILE

TableofContents

Abstract...................3

Articlemaintext........4–31

Acknowledgements........31

References...........32–35

Tables...............36–39

FigureswithLegends...40–56

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

3

ABSTRACT

Theconceptofcriticalconcentration(CC)iscentraltounderstandingbehaviorsofmicrotubulesandothercytoskeletalpolymers.Traditionally,thesepolymersareunderstoodtohaveoneCC,measuredmultiplewaysandassumedtobethesubunitconcentrationnecessaryforpolymerassembly.However,thisframeworkdoesnotincorporatedynamicinstability(DI),andthereisworkindicatingthatmicrotubuleshavetwoCCs.Weuseourpreviouslyestablishedsimulationstoconfirmthatmicrotubuleshave(atleast)twoexperimentallyrelevantCCsandtoclarifythebehaviorsofindividualsandpopulationsrelativetotheCCs.AtfreesubunitconcentrationsabovethelowerCC(CCIndGrow),growthphasesofindividualfilamentscanoccurtransiently;abovethehigherCC(CCPopGrow),thepopulation’spolymermasswillincreasepersistently.OurresultsdemonstratethatmostexperimentalCCmeasurementscorrespondtoCCPopGrow,meaning“typical”DIoccursbelowtheconcentrationtraditionallyconsiderednecessaryforpolymerassembly.Wereportthat[freetubulin]atsteadystatedoesnotequalCCPopGrow,butinsteadapproachesCCPopGrowasymptoticallyas[totaltubulin]increasesanddependsonthenumberofstablemicrotubuleseeds.WeshowthatthedegreeofseparationbetweenCCIndGrowandCCPopGrowdependsontherateofnucleotidehydrolysis.Thisclarifiedframeworkhelpsexplainandunifymanyexperimentalobservations.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

4

INTRODUCTION

Theconceptofcriticalconcentration(CC)isfundamentaltoexperimentalstudiesofbiologicalpolymers,includingmicrotubules(MTs)andactin,becauseitisusedtodeterminetheamountofsubunitneededtoobtainpolymerandtointerprettheeffectsofpolymerassemblyregulators.Inthestandardframeworkforpredictingthebehaviorofbiologicalpolymers,thereisonecriticalconcentrationofsubunitsatwhichpolymerassemblycommences(e.g.,(Albertsetal.,2015;Mirigianetal.,2013)).However,asindicatedbyotherwork(HillandChen,1984;Walkeretal.,1988),thisframeworkfailstoaccountforthedynamicinstability(DI)displayedbymicrotubulesandotherDIpolymers(e.g.,PhuZ,ParM)(MitchisonandKirschner,1984a;Garneretal.,2004;Erbetal.,2014).OnepurposeoftheworkpresentedhereistoexaminethemanyexperimentalandtheoreticaldefinitionsofCCinordertoshowhowthedefinitionsrelatetoeachother.AnotherpurposeistoclarifyhowthebehaviorsofindividualdynamicallyunstablefilamentsandtheirpopulationsrelatetoeachotherandtotheexperimentalmeasurementsofCC.Toaddresstheseproblems,wecomputationallymodeledsystemsofdynamicmicrotubuleswithoneofthetwoendsofeachMTfixed(e.g.,asoccursforMTsgrowingfromcentrosomes)andperformedanalysesthataredirectlycomparabletothoseusedinexperiments.Asignificantadvantageofcomputationalmodelingforthisworkisthatitallowssimultaneousexaminationofthebehaviorsofindividualsubunits,individualmicrotubules,andthepopulation’sbulkpolymermass.

TraditionalunderstandingofCriticalConcentration(CC)basedonequilibriumpolymersTraditionally,“thecriticalconcentration”isunderstoodtobetheconcentrationofsubunitsneededforpolymerassemblytooccur(CCPolAssem,measuredbyQ1inFigure1A,D);equivalently,theCCisdefinedastheconcentrationoffreesubunitsleftinsolutiononcepolymerassemblyhasreachedasteady-statelevel(CCSubSoln,measuredbyQ2inFigure1A,D).Thissetofideasisbasedonearlyempiricalobservationswithactin(Oosawaetal.,1959).TheseobservationswereinitiallygivenatheoreticalframeworkbyOosawaandcolleagues,whoexplainedthebehaviorofactinbydevelopingatheoryfortheequilibriumassemblybehaviorofhelicalpolymers(OosawaandKasai,1962;Oosawa,1970).ThisequilibriumtheorywasextendedtotubulinbyJohnsonandBorisy(JohnsonandBorisy,1975).

Forequilibriumpolymers,theCCiscommonlydefinedaskoff/kon=KD,wherekonandkoffaretherateconstantsforattachment/detachmentofasubunitto/fromafilamenttip;polymerwillthenundergonetassemblywhenkon*[freesubunit]isgreaterthankoff(Table1).Theideathatpolymerassemblycommencesatthecriticalconcentrationisnowusedroutinelytodesignandinterpretexperimentsinvolvingcytoskeletalpolymers(e.g.(Amayedetal.,2002;Bueyetal.,2005;Wieczoreketal.,2015;Díaz-Celisetal.,2017;Schummeletal.,2017;Concha-Marambioetal.,2017)),anditisastandardtopicincellbiologytextbooks(e.g.,(Albertsetal.,2015;Lodishetal.,2016)).Overtime,asetofexperimentalmeasurementsanddefinitionsofcriticalconcentrationhaveemerged(Table1,Figure1),allofwhichwouldbeequivalentforanequilibriumpolymer.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

5

NucleotidehydrolysisallowsmicrotubulestoexhibitdynamicinstabilityMicrotubules(composedofsubunitscalledtubulindimers)aresteady-statepolymers,notequilibriumpolymers,becausetheyrequireaconstantinputofenergyintheformofGTP(guanosinetriphosphate)nucleotidestomaintaina(highly)polymerizedstate.Microtubulesexhibitabehaviorknownasdynamicinstability(DI),inwhichtheystochasticallyswitchbetweenphasesofgrowthandshorteningviatransitionsknownascatastropheandrescue(Figure1E)(MitchisonandKirschner,1984a;Walkeretal.,1988).TheDIbehaviorofMTsisdrivenbyGTPhydrolysis(conversionofGTP-tubulintoGDP-tubulin):tubulinsubunitscontainingGTPassembleintoMTs,whiletubulinsubunitscontainingGDPdonot(thekonandkoffvaluesforGTP-tubulindifferfromthoseforGDP-tubulin).Incontrast,tubulinsubunitscontainingnon-orslowly-hydrolyzableGTPanalogs(e.g.,GMPCPP)assembleintostableMTsthatdonotdisplayDI(Hymanetal.,1992).ThoughsomedetailsaboutthemechanismofDIremainunclear,theconsensusexplanationforDIbehavioristhatgrowingMTshaveacapofGTP-tubulinsubunits(the“GTPcap”)thatstabilizestheunderlyingGDP-tubulinlattice.TheMTsswitchtorapiddisassembly(i.e.,undergocatastrophe)whentheylosetheirstabilizingcap,exposingtheunstableGDP-tubulinlatticebelow.WhenMTsregaintheircap,theyundergorescue(transitionfromshorteningtogrowth)(reviewedin(GoodsonandJonasson,2018)).Onthesurface,itmayseemreasonabletoapplythetraditionalcriticalconcentrationframeworkasoutlinedabove(seealsoTable1)tounderstandingDIpolymerslikemicrotubulesbecausethisframeworkisfoundedontheory(albeitequilibriumpolymertheory)andappearstobeconsistentwithmanyexperimentalresults(Howard,2001).AproblemwiththisapproachisthatitleavesopenvariousquestionsregardinghowdynamicinstabilityandenergyutilizationfitintothetraditionalCCframework.Forexample,howdoestheDIbehaviorofanindividualfilamentinFigure1B,Erelatetothepopulation-levelbehaviorinFigure1A,C?Isthereoneexperimentallyrelevantcriticalconcentration(asassumedfromequilibriumpolymertheory)ormorethanone?Ifmorethanone,howmany?Morebroadly,whydosomesteady-statepolymers(e.g.,microtubules)displaydynamicinstability,whileothers(e.g.,actin)donot?Asonemightimagine,thesequestionshavebeenstudiedpreviously,butambiguityinunderstandingcriticalconcentrationstillexists.AbriefsummaryofsomekeypreviouseffortsonCCforMTsisasfollows:•Inthe1980s,Hillandcolleaguesinvestigatedsomeofthequestionsoutlinedaboveandworkedtodevelopatheoryofsteady-statepolymerassembly.Theirconclusionsincludedtheideathatgrowthofmicrotubulesisgovernedbytwodistinctcriticalconcentrations:alowerCCatwhich“themeansubunitfluxperpolymer”during“phase1”(growthphase)equalszeroandanupperCCatwhich“themeannetsubunitfluxperpolymer”iszero(similartoFigure1C)(e.g.,(HillandChen,1984),elaboratedonin(Hill,1987)).However,thepublishedworkdidnotclarifyforreadersthebiologicalsignificanceofthesetwoCCsnorhowtheyrelatetothebehaviorsofindividualfilamentsandtheirpopulations.•Laterinthe1980s,Walkeretal.usedvideomicroscopytoanalyzeindetailthebehaviorofindividualMTsundergoingdynamicinstability.Theydemonstratedthatmicrotubulesobservedinvitrohavea“criticalconcentrationforelongation”(CCelongation),whichtheydescribedastheconcentrationatwhichtherateoftubulinassociation(!ongrowth[freetubulin])isequaltotherate

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

6

ofdissociation(!offgrowth)duringtheelongationphase(Walkeretal.,1988)(Figure1B;Table1anditsfootnotes).Consequently,attubulinconcentrationsbelowCCelongation,thereisnoelongation.Laterinthissamepaper,theauthorsdiscussedtheexistenceofahighercriticalconcentrationabovewhichapopulationofpolymerswillundergo“netassembly”.Thus,theanalysisinthismanuscriptclearlyindicatesthatmicrotubuleshavetwocriticalconcentrations.However,thisconclusionisnotstatedexplicitly,andthemanuscriptdoesnotaddressthequestionofhoweitherofthetwoWalkeretal.CCsrelatestothetwoCCspredictedbyHill.•Inthe1990s,Dogterometal.andFygensonetal.usedacombinationofmodeling(DogteromandLeibler,1993)andexperiments(Fygensonetal.,1994)toshowthatthereisa“criticalvalueofmonomerdensity,c=ccr”,abovewhichmicrotubulegrowthis“unbounded”(i.e.,theaveragelengthincreasesindefinitelyanddoesnotleveloffwithtime)(DogteromandLeibler,1993;Fygensonetal.,1994;Dogterometal.,1995).Hereafter,werefertothisccrasCCunbounded.Dogterometal.alsoprovidedequations(similartothoseproposedinitiallyby(HillandChen,1984)and(Walkeretal.,1988))thatcanbeusedtorelateCCunbounded,whichisapopulation-levelcharacteristic,tothedynamicinstabilityparameters(Figure1E-F),whichdescribeindividual-levelbehaviors.OneofthemanysignificantoutcomesofthesepaperswasthattheyencouragedreaderstothinkabouthowsmallchangestoDIparameters(e.g.,ascausedbyregulatorychangestoMTbindingproteins)couldchangethebehaviorofasystemofMTs,especiallyinacellularcontext.However,theimplicationsofthesearticlesforunderstandingcriticalconcentrationsmorebroadlyremainedpoorlyappreciatedbecausetheydidnotexplicitlyrelateCCunboundedtothemoreclassicalCCdefinitionsandmeasurementsinTable1ortothosediscussedby(HillandChen,1984)and(Walkeretal.,1988).Thus,althoughdynamicinstabilityhasbeenstudiedformorethan30years,confusionremainsabouthowthetraditionallyequivalentdefinitionsofcriticalconcentrationandtheinterpretationofCCmeasurementsshouldbeadjustedtoaccountfordynamicinstability.Remarkably,theliteratureasyetstilllacksacleardiscussionofhowtheCCelongationandCCunboundedmentionedaboverelatetoeachother,totheCCspredictedbyHill,ortotheclassicalexperimentalmeasurementsofCCdepictedinFigure1A.HowmanydistinctCCsareproducedbythedifferentexperimentallymeasurablequantities(Qvalues,Figure1andTable1),whatisthepracticalsignificanceofeach,andwhichmeasurementsyieldwhichCC?Howdoanyofthesevaluesrelatetobehaviorsatthescalesofsubunits,individualmicrotubules,andthebulkpolymermassofpopulationsofmicrotubules?HowdoesdynamicinstabilitybehaviorrelatetotheseparationbetweendistinctCCs?Undoubtedly,manyresearchershaveanintuitiveunderstandingoftheanswerstoatleastsomeofthesequestions.However,theobservationthatevenrecentliteraturecontainsmanyreferencesto“the”CCformicrotubuleassembly(e.g.,(Wieczoreketal.,2015;Alfaro-AcoandPetry,2015;Hussmannetal.,2016;Schummeletal.,2017)indicatesthatthisproblemdeservesattention.Whiletheseissuesareinterestingfromabasicscienceperspective,theyalsohavesignificantpracticalrelevance:properdesignandinterpretationofexperimentsthatinvolveperturbingmicrotubuledynamics(e.g.,characterizationofMT-directeddrugsorproteins)requiresanunambiguousunderstandingofcriticalconcentrationsandhowtheyaremeasured(e.g.,(Verdier-Pinardetal.,2000;Bonfilsetal.,2007;Hussmannetal.,2016;CytoskeletonInc.).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

7

ComputersimulationsasanapproachtoaddressingthesequestionsToinvestigatetheconceptofcriticalconcentrationasitappliestodynamicallyunstablepolymers,wehaveusedcomputationalmodeling.Computationalmodelsareidealforaddressingthistypeofproblembecausethebiochemistryofthereactionscanbeexplicitlycontrolledand"experiments"canbeperformedquicklyandeasily.Furthermore,itispossibletosimultaneouslyfollowthebehaviorofthesystematallrelevantscales:addition/lossofindividualsubunitsto/fromthefreeend,dynamicinstabilityofindividualfilaments,andanychangesinpolymermassofthepopulationoffilaments.Incomparison,itischallengingtoaddressthesequestionsusingphysicalsystemsbecauseexperimentshavethusfarbeenlimitedtechnicallytomeasurementsatone(oratmosttwo)ofthesescalesatatime.Asdescribedmorebelow(Resultssubsection“ComputationalModels”andFigure2),therulesandconditionscontrollingoursimulationscorrespondtothosethatwouldbesetbytheintrinsicpropertiesofthebiologicalsystem(e.g.,kineticrateconstants)orbytheexperimenter(e.g.,totaltubulinconcentration).Typicalexperimentalresults(DIparameters,concentrationsoffreeandpolymerizedtubulin)areemergentpropertiesofthesystemofbiochemicalreactions,justastheywouldbeinaphysicalexperiment.SummaryofConclusionsUsingthesesystemsofsimulatedmicrotubules,weshowthatclassicalinterpretationsofexperimentssuchasthoseinFigure1canbemisleadingintermsofunderstandingthebehaviorofindividualMTs.Inparticular,weusethesimulationstoillustratethefactthatdynamicallyunstablepolymerslikemicrotubulesdohave(atleast)twomajorexperimentallydistinguishablecriticalconcentrations,asoriginallyproposedbyHillandcolleagues(summarizedin(Hill,1987)).WeclarifyhowtheCCsrelatetobehaviorsofindividualMTsandpopulationsofMTs.At[freetubulin]abovethelowerCC,extendedgrowthphasesofindividualfilamentscanoccurtransiently.At[freetubulin]abovethehigherCC,thepolymermassofalargepopulationwillincreasesteadily,evenwhileindividualfilamentsinthepopulationpotentiallystillexhibitdynamicinstability.WeshowthatthelowercriticalconcentrationcorrespondstoCCelongationasmeasuredbyWalkeretal.(Table1;(Walkeretal.,1988)),whichcanbedescribedasthefreetubulinconcentrationabovewhichindividualMTsareabletoelongateduringthegrowthphase.ThisCCcanbemeasuredbyexperimentalquantityQ3inFigure1B.ThehigherCCcorrespondstoCCunboundedasidentifiedbyDogterometal.,i.e.,theconcentrationoffreetubulinabovewhich“unboundedgrowth”occurs(Table1;(DogteromandLeibler,1993;Fygensonetal.,1994;Dogterometal.,1995).ThisupperCCcanbemeasuredbyQ1,Q2,andQ4inFigure1A,C.ToclearlydistinguishthesetwoCCsandavoidconfusingeitherwithasituationwhereaphysicalboundaryisinvolved,wesuggestcallingthemCCIndGrowandCCPopGrow,respectively.1InadditiontothesetwoexperimentallyaccessibleCCs,therearetwomoreCCs(perhapsnotexperimentallyaccessible)thatcorrespondtotheKDfor

1ThismanuscriptfocusesonsystemscomposedofMTswithoneendfreeandtheotherendanchored,suchaswouldexistforMTsgrowingfromcentrosomes.Inothercases,microtubulescanhavetwofreeends(plusandminus).ForeachofCCIndGrowandCCPopGrow,thenumericalvalueattheplusendcouldpotentiallydifferfromthevalueattheminusend.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

8

theGTPandGDPformsoftubulinsubunits.WesuggestcallingtheseCCKD_GTPandCCKD_GDP,respectively.Whileourstudiesfocusonmicrotubules,wesuggestthatthesecriticalconcentrationdefinitionsandinterpretationscanapplytosteady-statepolymersmoregenerallybutareespeciallysignificantforthosethatexhibitdynamicinstability.Weshowthatmostexperimentsintendedtomeasure“theCC”actuallymeasureCCPopGrow(i.e.,thehigherCC).Thisconclusionmeansthat“typical”microtubuledynamicinstability(whereMTsgrowanddepolymerizebacktotheseed)islimitedtoconcentrationsbelowwhathastraditionallybeenconsidered"the"CCneededforpolymerassembly.Furthermore,weshowthatincompetingsystems(i.e.,closedsystemswhereMTscompeteforalimitedtotalnumberoftubulinsubunits),theconcentrationoffreetubulinatsteadystate([freetubulin]SteadyState)doesnotequalCCPopGrowaswouldbeexpectedfromtraditionalinterpretationsofclassicCCexperiments(Figure1A).Instead,[freetubulin]SteadyStateasymptoticallyapproachesCCPopGrowas[totaltubulin]increases.Inaddition,wedemonstratethatthedegreeofseparationbetweenCCIndGrowandCCPopGrowdependsontheGTPhydrolysisrateconstant(kH).WealsoshowthatCCIndGrowcandifferfromCCKD_GTP,contrarytopreviousassumptionsthatgrowingMTsalwayshaveGTP-tubulinattheirtips(topmostsubunits)(e.g,(Bowne-Andersonetal.,2015)).Finally,wedemonstratethatdynamicinstabilityitselfcanproduceresults(e.g.,sigmoidalseedoccupancyplots)previouslyinterpretedasevidencethatgrowthfromstableseedsrequiresanucleationstep. RESULTSComputationalModelsInthiswork,weusedbotha“simplified”modelofMTdynamics,inwhichMTsaremodeledassimplelinearpolymers(Gregorettietal.,2006),anda“detailed”model,wheremicrotubulesarecomposedof13protofilaments,withlateralandlongitudinalbondsbetweensubunits(tubulindimers)modeledexplicitly(Margolinetal.,2011;Margolinetal.,2012)(Figure2).Thesimulationsweredesignedtobeintuitivelyunderstandabletoresearchersfamiliarwithbiochemicalaspectsofcytoskeletalpolymers.Consequently,therulesgoverningthesimulationscorresponddirectlytobiochemicalreactionkinetics.KeyelementsofthesemodelsaredescribedinBox1.Weutilizeboththesimplifiedanddetailedcomputationalmodelsbecauseeachhasparticularstrengthsforaddressingproblemsrelatedtomicrotubuledynamics.Thesimplifiedsimulationhasfewerkineticparameters,allofwhicharedirectlycomparabletoparametersintypicalanalyticalmodels(i.e.,mathematicalequations).Thus,thesimplifiedsimulationisusefulfortestinganalyticalmodelpredictionsrelatingbiochemicalpropertiestoindividualfilamentlevelandbulkpopulationlevelbehaviors.Incontrast,theincreasedresolutionofthedetailedmodelisimportantfortestingthegeneralityandrelevanceofconclusionsderivedfromthesimplifiedmodel.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

9

Inaddition,theinputtedkineticrateconstantsinthetwomodelsweretunedtoproducedynamicinstabilitybehaviorthatisquantitativelydifferentbetweenthetwomodels,soitfollowsthatthespecificnumericalvaluesforcriticalconcentrationsextractedfromthesetwosimulationswillbedifferent.However,asdiscussedmorebelow,thebehavioralchangesthatoccurateachCCarequalitativelysimilarinthetwomodels.Thus,thesetwomodelsenableustodeterminewhichconclusionsaregeneralandtoavoidmakingconclusionsthatarespecifictoparticularparametersetsorpolymertypes.

Box1:Keyelementsofthetwocomputationalmodels(simplifiedanddetailed)usedinthisstudy

•Subunitaddition/lossandGTPhydrolysis(bothmodels)andlateralbondformation/breaking(detailedmodelonly)aremodeledasstochasticeventsthatoccuraccordingtokineticrateequationsbasedonthebiochemistryoftheseprocesses(Figure2)(Gregorettietal.,2006;Margolinetal.,2012).

•Theuser-defined(adjustable)parameterscorrespondtothefollowing:(a)thebiochemistryoftheproteinsbeingstudied(i.e.,kineticrateconstantsforthereactionslistedabove);and(b)attributesoftheenvironmentthatwouldbesetbyeithertheexperimenterorthecell(e.g.,theconcentrationoftubulininthesystem,whetherthesystemiscompeting(closed)ornon-competing(open),thenumberofstableseeds,andthesystemvolume).

•Asinphysicalexperiments,emergentpropertiesofthesimulatedsystemsincludethedynamicinstabilityparameters(Vg,Vs,Fcat,Fres,seeFigure1E-F)andtheconcentrationsoffreeandpolymerizedtubulinatsteadystate.Inparticular,transitionsbetweengrowthandshortening(catastropheandrescue)arespontaneousprocessesthatoccurwhenthestabilizingGTPcaphappenstobelostorregainedasaresultofthebiochemicalreactionsdescribedabove.

•Becausemicrotubulesincellsandinmanyinvitroexperimentsgrowfromstableseeds(nucleationsitessuchascentrosomes,axonemes,orGMPCPPseeds),oursimulationsassumethatoneendofeachMTisfixed(aswouldbethecaseforgrowthfromcentrosomes),andthatalladditionandlossoccuratthefreeend.Inoursimulations,theseedsarecomposedofnon-hydrolyzableGTP-tubulin.Exceptwhereotherwisenoted,thenumberofstableseedswassetto100inthesimplifiedmodeland40inthedetailedmodel.

•Bothsimulationsspontaneouslyundergothefullrangeofdynamicinstabilitybehaviors(includingrescue),andtheycansimulatesystemsofdynamicmicrotubulesforhoursofsimulatedtime(Gregorettietal.,2006;Margolinetal.,2012).

•Thebehaviorsoftheevolvingsystemsofdynamicmicrotubulescanbefollowedatthescalesofsubunits,individualfilaments,orpopulationsoffilaments.

•ThekineticrateconstantsusedasinputparametersforthedetailedmodelwerepreviouslytunedtoapproximatetheDIparametersofmammalianbrainMTsinvitro(Margolinetal.,2012).Thesimplifiedmodelparametersusedherearemodifiedfromthoseof(Gregorettietal.,2006)andwerechosenforuseherebecausetheyproduceDIbehaviorthatisquantitativelydifferentfromthatofthedetailedmodel.

Thesumoftheseattributesmakethesesimulationsidealforstudyingtherelationshipsbetweentheconcentrationoftubulin,thebehaviorsofindividualMTs,andbehaviorsofsystemsofdynamicMTs.SeetheMethods,SupplementaryInformation,and(Gregorettietal.,2006;Margolinetal.,2012)foradditionaldetailsincludinginputparameters.

ApproachtounderstandingtherelationshipbetweenmicrotubulebehaviorsandcriticalconcentrationsToclarifytheconceptofcriticalconcentrationasitappliestomicrotubules,weexaminedwhichofthecommonlyusedcriticalconcentrationdefinitions(outlinedinTable1)aremeaningfulwhenstudyingmicrotubules,andforthesetthataremeaningful,whichareequivalent.The

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

10

termcriticalconcentrationcanhaveaspecificthermodynamicmeaningasthesoluteconcentrationatwhichaphasechangeoccurs.Herewedefinethetermoperationally,astheconcentrationatwhichabehavioralchangeoccurs.TodeterminehowthevariousCCdefinitionsrelatetoeachotherandtodynamicinstability,weusedthesimulationstosimultaneouslyexaminethebehaviorsofindividualMTsandpopulationsofMTs.Morespecifically,weransetsofsimulationsforboththesimplifiedanddetailedmodelsatvarioustubulinconcentrationsinbothcompetingsystems(closedsystemswithconstant[totaltubulin],asmighthappeninatesttube)andnon-competingsystems(opensystemswithconstant[freetubulin],similartowhatmighthappeninamicroscopeflowcell).Thisapproachmimicsvariousexperiments(Table2)thatareclassicallyusedtomeasuremicrotubulecriticalconcentration(Table1).Wethenassessedandcomparedthebehaviorsoftheindividualmicrotubules(e.g.,DIparameters),population-levelproperties(e.g.,[freetubulin]atsteadystate),andcriticalconcentrationsasdeterminedbythetraditionaldefinitions(Table1).Fortheworkpresentedhere,itisimportanttorecognizethattherelevantobservationsarethebehaviorsofthesystemsatdifferentscalesandtheconcurrence(ordisagreement)betweenthevaluesofCCthatresultfromvariousdefinitionsormeasurementapproaches;thespecificnumericalCCvaluesobservedaresimplyoutcomesoftheparticularinputkineticrateconstantsusedandsoarenotbythemselvessignificant.ThissituationisanalogoustophysicalMTs,whereDIparametersandCCvaluesdependontheproteinsequences,temperatures,andbufferconditionsused(e.g.,(Williamsetal.,1985;Gildersleeveetal.,1992;Fygensonetal.,1994;Hussmannetal.,2016;Schummeletal.,2017)).WeusethetermsQ1,Q2,etc.torefertospecificexperimentallymeasurablequantities(i.e.,valuesobtainedthroughexperimentalapproachesasindicatedinthefigures),andthetermsCCKD,CCPolAssem,CCSubSoln,etc.torefertotheoreticalvalues(concepts)thatmayormaynotcorrespondtoparticularexperimentallymeasurablequantitiesandmayormaynotbeequivalent.Table1summarizestraditionalcriticalconcentrationdefinitionsandmeasurementsusedintheliterature.Table3summarizesourclarificationsofcriticalconcentrationdefinitionsandadditionalQvaluemeasurementsbasedontheresultsthatwillbepresentedinthiswork.Addressingtheideathat“the”criticalconcentrationiskoff/kon(CCKD)Theideathat“theCC”istheKDforadditionofsubunitstopolymer(i.e.,CC=koff/kon=KD;CC=CCKD;Table1)isaseriousoversimplificationwhenappliedtomicrotubules.Thoughthisformulaisfrequentlystatedintextbooks,itiswell-recognizedthatthisrelationshipcannotbeappliedinastraightforwardwaytopopulationsofdynamicmicrotubules,ortosteady-statepolymersmoregenerally(Albertsetal.,2015).Morespecifically,experimentallyobservedcriticalconcentrationsforsystemsofdynamicMTs(howevermeasured)cannotbeequatedtosimplekoff/kon=KDvaluesbecausetheGTPandGDPformsoftubulinhavesignificantlydifferentvaluesofkoff/kon.Forexample,thecriticalconcentrationforGMPCPP(GTP-like)tubulinhasbeenreportedtobelessthan1µM(Hymanetal.,1992),whilethatforGDP-tubulinisveryhigh,perhapsimmeasurablyso(Howard,2001).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

11

ExactlyhowthemeasuredCCvalue(s)forasystemofdynamicmicrotubulesrelatetotheKDvaluesforGTP-andGDP-tubulinhasnotpreviouslybeenestablished.However,intuitionsuggeststhatanyCCsmustliebetweentherespectiveKDvaluesforGTP-andGDP-tubulin(Howard,2001).Consistentwiththisidea,experimentallyreportedvaluesformammalianbraintubulinCCtypicallyliebetween~1and~20µM(Verdier-Pinardetal.,2000;Bonfilsetal.,2007;Mirigianetal.,2013;Wieczoreketal.,2015).NotethatwhiletheideathatCC=KDcannotapplyinasimplewaytoasystemofdynamicmicrotubules,itcanapplytotubulinpolymersintheabsenceofhydrolysis,whereassemblyisanequilibriumphenomenon.ExamplesincludesystemscontainingonlyGDP-tubulin(whenpolymerizedwithcertaindrugs)ortubulinboundtonon-/slowly-hydrolyzableGTPanalogs(e.g.,GTP-γS,GMPCPP)(Hymanetal.,1992;Díazetal.,1993;Bueyetal.,2005).

DIpolymersgrowatconcentrationsbelowstandardexperimentalquantitiescommonlythoughttomeasurethecriticalconcentrationforpolymerassemblyAtypicalwaytomeasure“thecriticalconcentration”formicrotubuleassemblyistodeterminethe[totaltubulin]atwhichpolymerassemblesinacompeting(closed)experimentsuchasthatportrayedinFigure1A,whereQ1measurestheCCforpolymerassembly(CCPolAssem)(seee.g.,(Mirigianetal.,2013)).Analternativeapproachtreatedasequivalentistomeasuretheconcentrationoffreetubulinleftinsolutiononcesteady-statepolymerassemblyhasoccurred(Figure1A,Q2),traditionallyconsideredtoyieldCCSubSoln(Mirigianetal.,2013).Inotherwords,theexpectationisthatQ1≈Q2,andthattheseexperimentallyobtainedquantitiesprovideequivalentwaystomeasurethecriticalconcentrationforpolymerassembly,whereCCPolAssem=CCSubSoln(Table1).WetestedthesepredictionsbyperformingsimulationsofcompetingsystemswhereindividualMTsgrowingfromstableseedscompeteforalimitedpooloftubulin(i.e.,[totaltubulin]isconstant).Thissituationisanalogoustoatest-tubeexperimentinwhichmicrotubulesgrowfrompre-formedMTseeds,andboth[polymerizedtubulin]and[freetubulin]aremeasuredafterthesystemhasreachedpolymer-masssteadystate(FigureS1A-D).2Atfirstglance,thebehaviorofthesystemsofsimulatedmicrotubulesmightseemconsistentwiththatexpectedfromcommonunderstanding(Figure1A):significantpolymerassemblywasfirstobservedat[totaltubulin]≈Q1,andQ1≈Q2(Figure3A-B).However,closerexaminationofthesedatashowsthatthereisnosharptransitionateitherQ1orQ2(Figure3A-B),astraditionallyexpected(Figure1A).Significantly,smallbutnon-zeroamountsofpolymerexistat[totaltubulin]belowreasonableestimatesforQ1(Figure3A-B,S1E-F).Inaddition,thesteady-stateconcentrationoffreetubulin([freetubulin]SteadyState)isnotconstantwithrespectto[totaltubulin]for[totaltubulin]>Q1asisoftenassumed.Instead, 2Polymer-masssteadystatedescribesasituationwherethepolymermasshasreachedaplateauandnolongerchangeswithtime(otherthansmallfluctuationsaroundthesteady-statevalue)(FigureS1A-D).Systemsofdynamicmicrotubulescanalsohaveothersteadystates(e.g.,polymer-lengthsteadystate)(seealso(Mourãoetal.,2011)).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

12

[freetubulin]SteadyStateapproachesanasymptoterepresentedbyQ2(Figure3A-B).Nonetheless,Q1isstillapproximatelyequaltoQ2.3Consistentwiththeseobservations,examinationofindividualMTsinthesesimulationsshowsMTsgrowingandexhibitingdynamicinstabilityat[totaltubulin]belowQ1≈Q2(Figure3C-D;comparetoFigure3A-B).Thesedata(Figure3)suggestthatoneofthemostcommonlyacceptedpredictionsoftraditionalcriticalconcentrationunderstandingisinvalidwhenappliedtosystemsofdynamicmicrotubules:insteadofbothQ1andQ2providinganexperimentalmeasureoftheminimumconcentrationoftubulinneededforpolymerassembly(CCPolAssem),neitherdoes,sinceMTsexhibitingdynamicinstabilityappearatconcentrationsbelowQ1≈Q2.Correspondingly,theresultsinFigure3A-BindicatethatthecriticalconcentrationcalledCCSubSolnwouldbemoreaccuratelydefinedastheasymptoteapproachedbythe[freetubulin]SteadyStateas[totaltubulin]increases,notthevalueof[freetubulin]SteadyStateitself(Figure1A).ThenumberofstableMTseedsimpactsthesharpnessofthetransitionatQ1andQ2.WhyisthetransitionatQ1andQ2inFigure3A-BmoregradualthanthetheoreticaltransitionasdepictedinFigure1A?Previousresultsofoursimplifiedmodel(Gregorettietal.,2006)andothermodels(e.g.,(VorobjevandMaly,2008;Mourãoetal.,2011))indicatethat[freetubulin]SteadyStatedependsonthenumberofstableMTseeds.Therefore,weinvestigatedhowchangingthenumberofstableMTseedsaffectstheshapeofthecurvesinclassicalCCplots.Examinationoftheresults(Figure4A-B,zoom-insinFigure4C-D)showsthatchangingthenumberofMTseedsdoeschangethesharpnessofthetransitionatQ1andQ2.Morespecifically,whenthenumberofMTseedsissmall,arelativelysharptransitionisseenatbothQ1andQ2ingraphsofsteady-state[freetubulin]and[polymerizedtubulin];littleifanybulkpolymerisobservedat[totaltubulin]belowQ1(Figure4,fewerseeds,darkestcurves;similartoFigure1A).Incontrast,whenthenumberofMTseedsishigh,measurableamountsofpolymerappearatconcentrationswellbelowQ1,andconsequently[freetubulin]SteadyStateapproachestheQ2asymptotemoregradually(Figure4,moreseeds,lightestcurves).Moreover,thedataforvariousnumbersofseedsallapproachthesameasymptotes(greydashedlines,Figure4).TheseobservationsindicatethatthenumberofMTseedsdoesnotimpactthevalueofQ1≈Q2,butdoesaffecthowsharplysteady-state[freetubulin]approachestheQ2asymptote.

3Sincethetransitionsarenotsharp,itcanbedifficulttodeterminetheexactvaluesofQ1andQ2.Dependingonhowthemeasurementsareperformed,thevaluesofQ1andQ2mightappeardifferentfromeachother.However,Q1=Q2doesholdifthemeasurementsareperformedasfollows:Q2isthevalueofthehorizontalasymptotethat[freetubulin]SteadyStateapproachesas[totaltubulin]increases;Q1isthe[polymerizedtubulin]=0interceptofthelinewithslope1that[polymerizedtubulin]approachesas[totaltubulin]increases(Figure3A-B).NotethatQ1wouldbeexactlyequaltoQ2inasystemwithnomeasurementerror,nonoise,andnonon-functionaltubulin,butforaphysicalexperimentthesefactorscaninterferewiththemeasurements.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

13

Theobservationsthusfarraiseaquestion:SinceCCSubSolnisnottheminimumtubulinconcentrationneededforpolymerassembly(CCPolAssem),whatisthesignificanceofQ1≈Q2≈CCSubSolnformicrotubulebehavior?AcriticalconcentrationforpersistentgrowthofMTpopulations(CCPopGrow)ToinvestigatethesignificanceofQ2,i.e.,theasymptoteapproachedby[freetubulin]SteadyStateas[totaltubulin]isincreased(Figures3A-B,4),weexaminedthedependenceofMTbehaviorontheconcentrationoffreetubulininnon-competingsimulations.Forthesestudies,wefixed[freetubulin]atvariousvaluesinsteadofallowingpolymergrowthtodepletethefreetubulinovertime.ThissetofconditionsisanalogoustoalaboratoryexperimentinvolvingMTspolymerizingfromstableseedsinaconstantlyreplenishingpooloffreetubulinataknownconcentration,suchasmightexistinaflowcell.Asdescribedabove,Q1andQ2fromcompetingsystemsdonotyieldthecriticalconcentrationforpolymerassembly(CCPolAssem)asexpectedfromtraditionalunderstanding.Instead,comparisonwiththenon-competingsimulations(Figure5)showsthatQ1andQ2correspondtoadifferentCC,whichcanbedescribedasthe[freetubulin]abovewhichindividualMTswillexhibitnetgrowthoverlongperiodsoftime(Figure5A-B).Equivalently,thisCCcanbedescribedasthe[freetubulin]abovewhichthepolymermassofalargepopulationofMTswillgrowpersistently(weusethisterminologybasedontheexperimentally-observed“persistentgrowth”in(Komarovaetal.,2002)).Asdiscussedmorebelow,thisCCisthesameasthatpreviouslyidentifiedbyDogterometal.astheCCatwhichthetransitionfrom“boundedgrowth”to“unboundedgrowth”4occurs(DogteromandLeibler,1993;Fygensonetal.,1994;Dogterometal.,1995),byWalkeretal.astheCCfor“netassembly”(Walkeretal.,1988),andbyHilletal.astheCCwherenetsubunitfluxequalszero(HillandChen,1984).Toavoidimplyingthataphysicalboundaryisinvolved,wesuggestidentifyingthisCCasthecriticalconcentrationforpersistentmicrotubulepopulationgrowth(CCPopGrow).CCPopGrowcanbemeasuredbyQ5a,the[freetubulin]atwhichthenetrateofchangeinaverageMTlength(Figure5C-D,leftaxes)orinpolymermass(Figure5C-D,rightaxes)transitionsfromequalingzerotobeingpositive.AdditionalapproachestomeasuringCCPopGrowarediscussedlater.HowMTbehaviorsrelatetoCCPopGrow.ExaminationofFigure5showsthatMTpolymerizationbehaviorinnon-competingconditions(i.e.,where[freetubulin]isconstant)canbedividedintotworegimes:Polymer-masssteadystate:AtconcentrationsoffreetubulinbelowCCPopGrow(measuredby

Q5a),boththeaverageMTlengthand[polymerizedtubulin]withinapopulationreachsteady-statevaluesthatincreasewith[freetubulin]butareconstantwithtime(Figures5C-D,S3A-B).Individualmicrotubulesinthesesystemsexhibitwhatmightbecalled“typical”

4Note:Herea“bounded”systemreferstoonethathasaconstantsteady-statepolymermassoraverageMTlength;“unbounded”referstoasystemwherethepolymermassoraverageMTlengthexhibitsnetgrowthovertime(DogteromandLeibler,1993;Dogterometal.,1995).ThissituationshouldnotbeconfusedwithoneinwhichthesystemofMTsexperiencesaphysicalboundary(e.g.,MTsincells).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

14

dynamicinstability:theyundergoperiodsofgrowthandshortening,buttheyeventuallyandrepeatedlydepolymerizebacktothestableMTseed(Figure5A-B).

Polymer-growthsteadystate:AtCCPopGrow,thepopulationsofdynamicMTsundergoamajor

changeinbehavior:theybegintogrowpersistently.Morespecifically,when[freetubulin]isabovelabelQ5ainFigure5C-D,thereisnopolymer-masssteadystatewhere[polymerizedtubulin]isconstantovertime(FigureS3A-B).Instead,thesystemofMTsarrivesatadifferenttypeofsteadystatewhere[polymerizedtubulin]increasesataconstantrate(Figures5C-D,S3A-B).IndividualMTswithinthesepopulationsstillexhibitdynamicinstability(exceptperhapsatveryhigh[freetubulin]),buttheyexhibitunboundedgrowth(DogteromandLeibler,1993)(alsodescribedasnetassembly(Walkeretal.,1988))iftheirbehaviorisassessedoversufficienttime(Figure5A-B).

Significantly,forbothsimulations,Q5a(Figure5C-D)liesatapproximatelythevalueofQ1≈Q2(Figures3A-B).Thisobservationindicatesthatsteady-state[freetubulin]incompetingsystemsasymptoticallyapproachesthesame[freetubulin]atwhichmicrotubulesbegintoexhibitnetgrowth(i.e.,unboundedgrowth)innon-competingsystems.Inotherwords,thesedatashowthatCCSubSoln≈CCPopGrow.Thisconclusionmeansthatclassicalmethodsformeasuring“theCCforpolymerassembly”donotyieldtheCCatwhichindividualDIpolymersappear(astraditionallyexpected),butinsteadyieldtheCCatwhichpopulationsofpolymersgrowpersistently.OtherexperimentalmethodsformeasuringCCPopGrowAsnotedabove,DogteromandcolleaguespreviouslypredictedtheexistenceofacriticalfreetubulinconcentrationCCunbounded,atwhichMTswilltransitionfromexhibiting“boundedgrowth”toexhibiting“unboundedgrowth”4(DogteromandLeibler,1993;Dogterometal.,1995).ThispredictionwasexperimentallyverifiedbyFygensonetal.(Fygensonetal.,1994).Dogteromandcolleagues(Verdeetal.,1992;DogteromandLeibler,1993)usedanequationfortherateofchangeinaverageMTlengthasafunctionoftheDIparameterstocharacterizeboundedandunboundedgrowth(notethatJisatypicalabbreviationforflux):

JDI=steady-staterateof

changeinaverageMTlength=

0duringboundedgrowthVg Fres – Vs Fcat

Fcat+ Fres >0duringunboundedgrowth (Equation1)

Dogterometal.identifiedCCunboundedasthe[freetubulin]atwhichVgFres=|Vs|Fcat (seelabelQ5binFigure5C-D).Significantly,CCunboundedaspredictedbyQ5bfromthisequationevaluatedwithourDIparametermeasurementsmatchesQ5a(compare+symbolstoosymbolsinFigure5C-D).Hence,CCPopGrowcorrespondstoCCunbounded,andpolymer-masssteadystateandpolymer-growthsteadystatecorrespondto“boundedgrowth”and“unboundedgrowth”respectively.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

15

Thus,CCPopGrowcanbemeasuredclassically,bydeterminingQ1orQ2,butitcanalsobedeterminedbymeasuringDIparametersforindividualMTsatdifferent[freetubulin]andinputtingthemintotheequationforrateofchangeinaverageMTlength(Equation1).Havingsaidthis,determiningDIparametersacrossarangeofconcentrationsrequiresextended(>tensofminutes)analysisofmanyindividualMTsandsoislaboriousandtimeconsuming.

AnalternativeapproachtomeasuringCCPopGrowthatmaybemoretractableexperimentallyistousevideomicroscopytosimultaneouslyanalyzethebehaviorofmanyindividualMTswithinapopulationaccordingtothedriftparadigmofBorisyandcolleagues(Vorobjevetal.,1997;Vorobjevetal.,1999;Komarovaetal.,2002).5ThedriftcoefficientisthemeanrateofchangeinpositionoftheMTends(forplusorminusendsseparately),alsodescribedasthemeanvelocityofdisplacementoftheMTends.Incaseswhereoneendisfixed,asinoursimulations,thedriftcoefficientisequivalenttotherateofchangeinaverageMTlength.Hereweusedamethodbasedon(Komarovaetal.,2002),whichcalculatesthedriftcoefficientfromthedisplacementsofMTendsoversmalltimesteps,e.g.,betweenconsecutiveframesofamovie(seeSupplementalMethodsforadditionalinformation).AscanbeseeninFigures5E-F(xsymbols)andS3G-H(allsymbols),apopulationofMTsatsteady-stateexhibitszerodriftat[freetubulin]belowQ5c(i.e.,inthisstate,theaveragelengthofMTsinthepopulationisconstantwithtime)butexhibitspositivedriftat[freetubulin]aboveQ5c(i.e.,theaverageMTlengthincreaseswithtime;thepopulationgrowspersistently)(Komarovaetal.,2002).Asonemightintuitivelypredict,Q5a≈Q5b≈Q5c(Figure5C-F).TheevidentsimilaritybetweenthedifferentmeasurementsinFigure5C-FsuggeststhatDogterom’sequationusingDIparameters(+symbolsinFigure5C-D)(Verdeetal.,1992;DogteromandLeibler,1993)andtheequationofKomarovaetal.usingshort-termdisplacements(xsymbolsinFigure5E-F)(Komarovaetal.,2002)equationsaresimplytwodifferentrepresentationsofthesamerelationship.Indeed,bothyieldtherateofchangeinaverageMTlengthasfunctionsofexperimentallyobservedgrowthanddepolymerizationbehaviors.Additionally,variousformsofthisequationwerepresentedearlierbyHillandcolleagues(HillandChen,1984;Hill,1987)andWalkeretal.(Walkeretal.,1988),andhavesincebeenusedinotherwork(e.g.,(Bicout,1997;Gliksmanetal.,1992;Maly,2002;VorobjevandMaly,2008;Mourãoetal.,2011;Mahrooghyetal.,2015;Aparnaetal.,2017)).Thus,experimentalistsshouldbeabletousewhicheveranalysismethodistractableandappropriatefortheirexperimentalsystem.MeasuringCCPopGrowusingpopulationdilutionexperiments.NextwetestedifCCPopGrowisthesameastheCCobtainedfromthepopulationdilutionexperimentsusedinearlystudiesofsteady-statepolymers(e.g.,(Carlieretal.,1984b;Carlieretal.,1984a);seeQ4inTable1andFigure1C).Theseexperimentsmeasuretherateofchangein[polymerizedtubulin],whichisalsodescribedtheflux(typicallyabbreviatedasJ)oftubulinintooroutofpolymer.ThismeasurementisperformedafterapopulationofMTsatsteadystateisdilutedintoalargepool 5Foramathematicalexplanationofhowmicrotubulebehaviorcanbeapproximatedbyadrift-diffusionprocess,see(Maly,2002;VorobjevandMaly,2008).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

16

offreetubulinatanewconcentration.6ThemeasureddatafromthedilutionexperimentsarethenusetoproduceJ(c)plots,whereJisplottedasafunctionofsubunitconcentration“c”(Figure6A-B).Intheseplots,“theCC”isidentifiedasthedilution[freetubulin]atwhichJ=0(i.e.,wheretheplottedcurvecrossesthehorizontalaxis,Q4).Atthisconcentration,individualMTsundergoperiodsofgrowthandshortening,butthepopulation-levelfluxesintoandoutofpolymerarebalanced(i.e.,netgrowthiszero).WerefertotheCCmeasuredviaJ(c)plotsasCCflux(Table1).CCfluxcorrespondstooneoftheCCsthatwasidentifiedbyHillandcolleagues,variouslynamedcoin(HillandChen,1984;ChenandHill,1985b)anda!in(Hill,1987).Significantly,thevalueofCCfluxasmeasuredbyQ4inthedilutionsimulationscorrespondstoCCPopGrow(greydashedline,Figure6A-B)asmeasuredbyQ1≈Q2inthecompetingsimulations(Figures3A-B)andbyQ5abcinthenon-competingsimulations(Figure5C-F).Notealsothatfordilution[freetubulin]aboveCCPopGrow,theJ(c)curveobtainedfromthedilutionsimulationsissuperimposablewiththenetrateofchangeinaverageMTlengthobtainedfromtheconstant[freetubulin]simulations(Figure6C-D).Thisobservationmightseemsurprisinggiventhedifferencesintheexperimentalapproaches;however,itmakessensebecauseineachcasethemeasurementisperformedduringatimeperiodwhen[freetubulin]isconstantandtherateofchangehasreacheditssteady-statevalueforeach[freetubulin](FiguresS3A-BandS4E-F).Thus,alloftheexperimentalapproachesformeasuringcriticalconcentrationdiscussedthusfaryieldthecriticalconcentrationforpersistentpopulationgrowth(CCPopGrow).Thisconclusionleavesuswithanunresolvedquestion:WhatisthesignificanceoftheremainingcommonexperimentalCCmeasurementQ3(obtainedfromexperimentsmeasuringgrowthvelocityduringgrowthphasesforindividualMTsasafunctionof[freetubulin],seeFigure1B,Table1)?Acriticalconcentrationfortransientelongation(growth)ofindividualfilaments(CCelongation=CCIndGrow)Q3(Figure1B)haspreviouslybeenusedasameasureofthe“criticalconcentrationforelongation”(CCelongation)(Walkeretal.,1988).Accordingtostandardmodels,CCelongationisthefreesubunitconcentrationwheretherateofsubunitadditiontoanindividualfilamentinthegrowthphaseexactlymatchestherateofsubunitlossfromthatindividualfilament,meaningthatindividualfilamentswouldbeexpectedtogrowatsubunitconcentrationsaboveQ3≈CCelongation(seeTable1anditsfootnotes).TodeterminethevalueofQ3inoursimulations,weusedthestandardapproachforMTsasoutlinedinTable1(experimentsin(Walkeretal.,1988);seealsotheoryin(HillandChen,1984;Hill,1987)).Weplottedthegrowthvelocity(Vg)ofindividualfilamentsobservedduringthe

6Inthephysicalexperiments,therewasnormallyadelayofafewsecondsafterthedilutionandbeforethedatawererecorded(Carlieretal.,1984a).AnalysisofoursimulatedJ(c)experimentsincorporatesasimilardelay.Thisdelaymayhavebeennecessaryfortechnicalreasonsinthephysicalexperiments,butitalsoservesapurposeinallowingthestabilizingGTPcaptoredistributetoitssteady-statesize(Duellbergetal.,2016).SeeFigureS4forplotsof[freetubulin]and[polymerizedtubulin]asfunctionsoftimeinthedilutionsimulations.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

17

growthphaseofdynamicinstabilityasafunctionof[freetubulin],andextrapolatedalinearfitbacktothe[freetubulin]atwhichtoVgiszero.7Inadditiontoperformingthesemeasurementsontheconstant[freetubulin]simulations(Figure7A-B),wealsousedthegrowthphasesthatoccurredinthedilutionexperimentstoobtainameasurementofCCelongation(Q6inFigure7C-D).ComparingthesemeasurementsofCCelongationinFigure7A-DtothedatainFigures3-6showsthatinbothsimulationsCCelongation(asdeterminedbyQ3≈Q6)iswellbelowCCPopGrowasmeasuredbyanyoftheotherapproaches(Q1≈Q2≈Q4≈Q5abc).8

ThisobservationdemonstratesthatQ3≈Q6providesinformationaboutMTbehaviornotprovidedbytheothermeasurements.Specifically,sinceQ3andQ6aredeterminedfrommeasurementsofthegrowthvelocityofindividualsduringthegrowthphaseofdynamicinstability,Q3andQ6provideestimatesofthe[freetubulin]abovewhichindividualfilamentscangrowtransiently(i.e.,toextendduringthegrowthphaseofdynamicinstability).Whethergrowthphaseswilloccuralsodependsonavarietyofotherfactors,suchasrescuefrequencyandfrequencyofinitiatinggrowthfromseeds.ConsistentwiththeidentificationoftheupperCCasCCPopGrowforpopulationgrowth,wesuggestreferringtoCCelongationasCCIndGrowforindividualfilamentgrowth.ComparisonofFigure7withofFigures5-6leadstoadditionalconclusionswithpracticalsignificanceformeasuringtheCCs.Figure8A-BshowsthattheVgdatafromindividualgrowthphasesinFigure7A-BandthenetrateofchangeinaverageMTlengthdatafrompopulationsinFigure5C-D(orequivalentlythepopulationdriftcoefficientinFigure5E-F)overlayeachotherwhen[freetubulin]issufficientlyhigh(i.e.,farenoughaboveCCPopGrowthatcatastropheisrare).Thismakessensebecausewhencatastropheisunlikely,almostallMTswillbegrowing,someasurementsofindividualsandpopulationsshouldgiveapproximatelythesameresults.Thus,linearextrapolationfromthenetrateofchangeinaverageMTlengthdataathigh[freetubulin]toobtainQ7asshowninFigure8C-DyieldsapproximatelythesamevalueforCCIndGrowasQ3≈Q6.Additionally,sincethenetrateofchangeinaverageMTlengthdatafromtheconstant[freetubulin]experimentsandJ(c)fromthedilutionexperimentsmatcheachotherathigh[freetubulin](Figure6C-D),theQ7extrapolationcanalsobeperformedontheJ(c)datatomeasureCCIndGrow.Thus,bothconstant[freetubulin]experimentsanddilutionexperimentscanbeusedtoobtainnotonlyCCPopGrow(viaQ4≈Q5abc)butalsoCCIndGrow(viaQ3≈Q6≈Q7).

7ThisVgversus[freetubulin]relationshipisexpectedtobelinearonthebasisoftheassumptionthatgrowthoccursaccordingtotheequationVg=kTonT[freetubulin]–kToffT,wherethefirsttermcorrespondstotherateatwhichGTP-tubulinattachestoaGTPtip,andthesecondtermcorrespondstotherateatwhichGTP-tubulindetachesfromaGTPtip(Bowne-Andersonetal.,2015).Wereturntothisrelationshiplaterinthemaintext.8WhilethenumericalvaluesoftheCCsinthesimplifiedmodelshouldberegardedasarbitrary,thedetailedmodelCCIndGrowandCCPopGrownumericalvaluescloselymatchthoseobtainedbyWalkeretal.(Walkeretal.,1988).ThisisnotablebecausewetunedthedetailedmodelparameterstomatchWalker’sDIparametersat[freetubulin]=10µMbutdidnottunetotheCCvalues.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

18

CCIndGrowisnotCCPolAssemTheinformationaboveleadstothestraightforwardconclusionthatCCIndGrowrepresentsalowerlimitformicrotubulegrowth.OnemightbetemptedtousethisideatopredictthatCCIndGrowistheconcentrationoffreetubulinatwhichpolymerappears(i.e.,thatCCIndGrow=CCPolAssem).However,thispredictionfails.Contrarytotraditionalexpectation,thereisnototalorfreetubulinconcentrationatwhichpolymerassemblycommencesabruptly.Instead,theamountofpolymerinitiallyincreasesinaslowandnonlinearwaywithrespectto[freetubulin],increasingmorerapidlyonlyas[freetubulin]approachesCCPopGrow(FigureS3A-F).Thesameconclusionisreachedwhetherexaminingpolymermass(FigureS3A-B),averageMTlength(FigureS3A-F),ormaximalMTlength(FigureS3C-F).9Theseobservationsindicatethatmicrotubules(andDIpolymersmorebroadly)donothaveacriticalconcentrationforpolymerappearance(CCPolAssem)astraditionallyunderstood.CCIndGrowisthetubulinconcentrationabovewhichextendedgrowthphasescanoccur,butsignificantamountsofpolymerdonotaccumulateinexperimentswithbulkpolymeruntil[freetubulin]nearsorexceedsCCPopGrow(Figures3,S1-S3).Thesebehaviorsmightseemcounterintuitive,buttheycanbeexplainedbythefollowingreasoning.First,when[freetubulin]isjustaboveCCIndGrow,thegrowthvelocityduringthegrowthphaseislow(Vg=0atQ3)andthefrequencyofcatastrophe(Fcat)ishigh.Undertheseconditions,individualmicrotubuleswillbebothshort(Figure5A-B,S3A-F)andshort-lived(Figure5A-B),andthusdifficulttodetect.As[freetubulin]rises,MTswillexperiencegrowthphasesthatlastlonger(becauseFcatdrops)andalsohavefastergrowthvelocity(Figure7).Thecombinedimpactofthesetwoeffectscreatesanonlinearrelationshipbetween[freetubulin]and[polymerizedtubulin]orequivalentlytheaverageMTlengthobservedatsteadystate;itsimilarlycreatesanonlinearrelationshipbetween[freetubulin]andmaximalMTlengthasobservedwithinaperiodoftime(FigureS3C-F).MeasurementofCCIndGrowbyQ3,Q6,orQ7isapproximateCCIndGrowandCCPopGrowareintrinsicpropertiesofasystem(i.e.,aparticularproteinsequenceinaparticularenvironment),whereastheexperimentalmeasurements(Qvalues)aresubjecttomeasurementerrorsandarethereforeapproximate.ThemeasurementsofCCIndGrowbyQ3,Q6,orQ7canbeparticularlysensitivetomeasurementerrorsandnoisebecausetheyarebasedonextrapolations.Morespecifically,sinceQ3andQ6aredeterminedbyextrapolationsfromregressionlinesfittedtoplotsofVgversus[freetubulin],smallchangesintheVgdata(e.g.,fromnoise)canbeamplifiedwhenextrapolatingtotheVg=0intercept.Additionally,inthesimulationresults,nonlinearitiesareobservedintheVgversus[freetubulin]plotsinbothsimulations.Inthepresenceofnoiseand/ornonlinearities,thevaluesofQ3andQ6willdependonthe[freetubulin]rangewheretheregressionlinesarefittedtotheVgplots. 9NotethatHillandChenconcludedthatevenequilibriumpolymershavesomeassemblybelowtheCC,butthattheaveragelengthisverysmalluntil[freesubunit]is“extremelyclose”totheCC(HillandChen,1984).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

19

Thedeviationfromlinearityinthesimulationplotsisexplainedinpartbymeasurementbias:atthelowest[freetubulin],therearefewgrowingMTs,allofwhichareshort(Figures5A-B,S3C-F).ThemeasuredVgdataisbiasedtowardsthoseMTsthathappenedtogrowfastenoughandlongenoughtobedetected(seemaximumMTlengthdatainFigureS3C-F).ThisindicatesthatthelowestconcentrationsshouldnotbeusedinthelinearextrapolationtoidentifyQ3orQ6.Toourknowledge,suchdeviationsfromlinearityatlowconcentrationshavenotbeendetectedexperimentally.However,thesimulationsgeneratemuchmoredataandatsmallerlengththresholdsthanispossiblewithtypicalexperiments.Becausemeasurementbiascouldalsobeaprobleminphysicalsystems,wespeculatethatsimilareffectsmayeventuallybeseenexperimentally.Giventhenonlinearitiesandthemeasurementbiasdescribedabove,onemightbeconcernedthatdetectionthresholdswouldaffectthemeasuredvalueofCCIndGrow.WethereforecomparedtwodifferentanalysismethodsfordeterminingVg(Figure7).Specifically,fortheDIanalysismethod(Figure7,+symbols),wesetathresholdof25subunits(200nm)oflengthchangetodetectgrowthorshorteningphases(wesetthisthresholdtobecomparabletotypicallengthdetectionlimitsinlightmicroscopyexperiments).Incontrast,forthetime-stepmethod(Figure7,squaresymbols),wedidnotimposeathresholdonthelengthchangeduringeachtimestep(seeSupplementalMethods).TheVgresultsfromthetwomethodsagreewellwitheachotherinthe[freetubulin]rangeusedtodetermineCCIndGrow(i.e.,therangewhereVgisapproximatelylinear).Thus,whenimplementingVganalysistoestimateCCIndGrow,theregressionlinesshouldbefittedtothelinearregiontoavoidtheeffectofdetectionthresholds.IftheregressionlinesarenotfittedinthetubulinrangewhereVgislinear,thenQ3andQ6willbelessaccurateapproximationsofCCIndGrow.Dependingonthespecificsystem,Q7maybealessaccurateapproximationthanQ3orQ6.Q7isobtainedfromtherateofchangeinaverageMTlengthatfreetubulinconcentrationsthataresufficientlyhighthat(almost)allMTsaregrowing(i.e.,whereVgandtherateofchangeinaverageMTlengthoverlapwitheachother,Figure8).SincetheQ7extrapolationisperformedfromhigherconcentrationsthantheQ3orQ6extrapolations,measurementerrorsornoiseinthedatacanbefurtheramplified.Moreover,VgandtherateofchangeinaverageMTlengthmaynotoverlapuntiltubulinconcentrationsaresohighthatexperimentalmeasurementsmaynolongerbefeasible(e.g.,becauseofproblemssuchasfreenucleation).InboththedetailedmodelandinphysicalMTs,anadditionalfactorcancauseVgtohavenonlinearitiesasafunctionof[freetubulin]andthereforelikelyinterfereswiththeaccuracyofidentifyingCCIndGrowviaQ3,Q6,orQ7.PreviousworkhasprovidedexperimentalandtheoreticalevidencethattheGTP-tubulindetachmentratedependsonthetubulinconcentration(Gardneretal.,2011),contrarytotheassumptionsclassicallyusedtodetermineCCelongation.Thisobservationhasbeenexplainedbytheoccurrenceofconcentration-dependentchangesintheMTtipstructure(Coombesetal.,2013).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

20

Thus,bothdetectionissuesandactualstructuralfeaturescanpotentiallymakeobservedVgmeasurementsnonlinearwithrespectto[freetubulin].Asaresult,thevalueobtainedforCCIndGrowfromQ3≈Q6≈Q7maydependonwhat[freetubulin]rangeisusedforthelinearfit.Theseobservationsmeanthatthesevalues(Q3,Q6,Q7)provideatbestapproximatemeasurementsofCCIndGrow.Effectofhydrolysisrateconstant(kH)onCCIndGrowandCCPopGrow.TheresultsaboveshowthatCCIndGrowisobtainedfrommeasurementsofindividualMTsthatareinthegrowthphase,whileCCPopGrowisobtainedfrommeasurementsperformedonpopulations(oronindividualsoversufficienttime)thatincludebothgrowthandshorteningphases(seealso(Hill,1987;Walkeretal.,1988)).Thus,theco-existenceofbothgrowthandshorteningphases(i.e.,dynamicinstabilityitself)occursinconjunctionwiththeseparationbetweenCCIndGrowandCCPopGrow.Dynamicinstabilityinturndependsonnucleotidehydrolysis,sinceGTP-tubulinispronetopolymerizationandGDP-tubulinispronetodepolymerization.Therefore,todevelopanimprovedunderstandingoftheseparationbetweenCCIndGrowandCCPopGrowinDIpolymers,wenextexaminedtheeffectofthehydrolysisrateconstantkHonCCIndGrowandCCPopGrow.Toallowastraightforwardcomparisonbetweentheobservedbehaviorsandtheinputkineticparameters,weutilizedthesimplifiedmodel.Morespecifically,weransimulationsinthesimplifiedmodelunderconstant[freetubulin]conditionsacrossarangeofkHvalues,whileholdingtheotherbiochemicalkineticparametersconstant.FromthesedatawedeterminedCCIndGrowasmeasuredbyQ3andCCPopGrowasmeasuredbyQ5a(Figures9,S5).WhenthehydrolysisrateconstantkHequalszero,onlyGTP-tubulinsubunitsarepresent.Aswouldbeexpected,thebehavioristhatofanequilibriumpolymer:noDIoccurs(seelengthhistoriesinFigureS6A),andallobservedCCvaluescorrespondtotheKDforGTP-tubulinasdefinedbytheinputrateconstants.Inotherwords,whenkHiszero,CCIndGrow=CCKD_GTP=kToffT/kTonT=CCPopGrow(Figure9A).WhenkHisgreaterthanzerointhesesimulations,bothGTP-andGDP-tubulinsubunitscontributetopolymerdynamics,concurrentwiththeappearanceofdynamicinstability(FigureS6B-F).AskHincreases,CCIndGrow(Q3)andCCPopGrow(Q5a)bothincreaseanddivergefromeachother(Figures9,S5),anddynamicinstabilityoccursoverawiderrangeof[freetubulin](FigureS6).CCIndGrowcandifferfromCCKD

InadditiontoshowingthatnucleotidehydrolysisdrivesCCIndGrow(Q3)andCCPopGrow(Q5a)apartfromeachother,theresultsinFigure9alsoshowthathydrolysisdrivesbothawayfromCCKD_GTP(x-interceptofgreydashedlineinFigure9A-F;greydashedlineinFigure9G).Inparticular,whiletherelationshipCCKD_GTP=kToffT/kTonTisindependentofkH,weobservethatCCIndGrowchangeswithkH.ThiscouldbeviewedassurprisingbecauseonemightexpectCCIndGrowtoequalCCKD_GTPeveninthepresenceofDI.Thereasoningbehindthisexpectationisasfollows.First,therateofgrowthofanindividualMTduringthegrowthstateisassumedtochangelinearlywith[freetubulin]accordingtotherelationship,

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

21

Vg=kongrowth[freetubulin]–koff

growth, (Equation2)10 (Walkeretal.,1988)wherekoff

growthandkongrowth(calledk-1e+andk2e+in(Walkeretal.,1988))areeffective(observed)

rateconstantsforadditionandlossofGTP-tubulinsubunitsonagrowingtip.By“effective”wemeanthattheyareemergentquantitiesextractedfromtheVgdata,asopposedtodirectlymeasuredkineticrateconstants.Morespecifically,thevaluesofkon

growthandkoff growthare

measuredfromtheslopeandthey-interceptrespectivelyofaregressionlinefittedtoVgdata,giventheequationabove.SinceCCIndGrowismeasuredasthevalueof[freetubulin]atwhichVgiszero,settingEquation2equaltozeroandsolvingfor[freetubulin]leadstotheconclusionthatCCIndGrow=koff

growth/kongrowth.Thisratiokoff

growth/kongrowthismeasuredasthex-interceptofthe

regressionline(Equation2)(Walkeretal.,1988).Second,itiscommonlyassumedthatrapidlygrowingtipshaveonlyGTP-subunitsattheend(e.g.,(Howard,2001;Bowne-Andersonetal.,2015)).Underthisassumption,andalsoassumingthatallunpolymerizedtubulinisboundtoGTP,Equation2becomes Vg=kTonT[freetubulin]–kToffT, (Equation3)whichleadstothepredictionthatCCIndGrow=kToffT/kTonT=CCKD_GTP.Instead,theresults(Figures9A-F,S5A)showthatEquation3fitsthedatawellonlywhenkHisclosetozero.AskHincreases,theVgregressionlineandCCIndGrowdivergeawayfromvaluesthatwouldbepredictedfromEquation3.11Morespecifically,whenkHisgreaterthanzero,theeffective!ongrowthand!offgrowth(slopeandinterceptofVginEquation2)inthesimulationsdivergefromkTonTandkToffT;inthiscase,VgdoesnotsatisfyEquation3,andCCIndGrowdivergesfromCCKD_GTP.TheseobservationsindicatethatGDP-subunitscaninfluencebehaviorduringgrowthphases.PossiblemechanismsforexposureofGDP-tubulinatgrowingMTtips.TherearestrongreasonstoexpectthatGDP-subunitswillinfluencegrowthbehaviorinphysicalMTs.TheideathatgrowingMTtipscouldhaveGDP-tubulinsubunitsmightseemsurprising,butGDP-tubulinsubunitscouldbecomeexposedonthesurfaceofagrowingtipeitherbydetachmentofasurfaceGTP-subunitfromaGDP-subunitbelowitorbydirecthydrolysis.ThefirstmechanismconflictswithearlierideasthatGTP-subunitsrarelydetach,butisconsistentwithrecentexperimentaldataindicatingrapidexchange(attachmentanddetachment)ofGTP-subunitsonMTtips(Gardneretal.,2011;Coombesetal.,2013);seealso(Margolinetal.,2012)).

10Thesymbol≈maybemoreappropriatethan=becausethisequationassumes(i)thatVgincreaseslinearlywith[freetubulin]and(ii)thatthedetachmentrateisindependentof[freetubulin].OurVgresultspresentedaboveindicatethatassumption(i)maybeinaccurate.See(Gardneretal.,2011)forevidenceagainstassumption(ii).11Recallthatthekineticrateconstants(e.g.,kTonT,kH)inoursimulationsareinputtedbytheuser.Incontrast,thevaluesofVgandCCIndGrowareemergentpropertiesofthesystem.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

22

TheideathatGDP-tubulincannotbeexposedatMTtipsduringgrowthphasesmaybearemnantofvectorialhydrolysismodels,12whereGDP-tubulinwouldbecomeexposedonlywhentheGTPcapisentirelylost(atleastforsingleprotofilamentmodels).However,variousauthorshaveshownthatvectorialhydrolysisisneithersufficient(Flyvbjergetal.,1994;Flyvbjergetal.,1996; Padinhateerietal.,2012)nornecessary(Margolinetal.,2012;Padinhateerietal.,2012)toexplainMTdynamicinstabilitybehavior.Additionally,Hillandcolleaguesexaminedbothvectorialandrandomhydrolysismodels.Inthevectorialhydrolysismodel,thegrowthvelocitysatisfiedanequationequivalenttoEquation2above,whichassumesonlyGTPtipsduringgrowth(Hill,1987).Intheirrandomhydrolysismodel,theobserved(emergent)slopeandinterceptofVgdidnotequaltheinputrateconstantsforadditionandlossofGTP-subunits,asexplicitlypointedoutin(Hill,1987;HillandChen,1984).ThisconclusionfromHill’srandomhydrolysismodelisconsistentwiththeresultsofourmodel,whichalsohasrandomhydrolysis.TheconclusionabovethatCCIndGrow≠CCKDalsohelpsexplaintheobservationfromearlierinthepaperthatthereisnoconcentrationatwhichpolymerassemblyabruptlycommences(i.e.,thereisnoCCPolAssem).Instead,theamountofpolymerincreasesslowlywithincreasing[freetubulin](FigureS3A-F).Morespecifically,althoughtheMTstypicallyreachexperimentallydetectablelengths(e.g.,>200nm,dependingonthemethodused)atsomeconcentrationaboveCCIndGrow(FigureS3A-F),smallamountsofgrowthcanoccurevenbelowCCIndGrow(FigureS3E-F;squaresymbolsinFigure7).When[freetubulin]isaboveCCKD_GTP,attachmenttoaGTP-subunitwillbemorefavorablethandetachment;thus,smallamountsofgrowthcanoccur.Incontrast,asnotedabove,CCIndGrowisthe[freetubulin]necessaryforamicrotubuletoexhibitextendedgrowthphases.ThedependenceofCCIndGrowonkHindicatesthatattachmentmustinsomesenseoutweighbothdetachmentandhydrolysisofGTP-subunitsinorderforextendedgrowthphasestooccur.DynamicinstabilitycanproducerelationshipspreviouslyinterpretedasevidenceofanucleationprocessforgrowthfromstableseedsPreviously,twoexperimentalobservationshavebeeninterpretedasevidencethatgrowthofMTsfromstabletemplates(e.g.,centrosomes,axonemes,GMPCPPseeds)involvesanucleationprocess(e.g.,conformationalmaturationorsheetclosure)(Wieczoreketal.,2015;RoostaluandSurrey,2017).First,MTsaregenerallynotobservedgrowingat[freetubulin]nearCCIndGrow.Second,whenthefractionofseedsoccupiedisplottedasfunctionof[freetubulin],theshapeoftheresultingcurveissigmoidal,suggestingacooperativeprocessand/orathermodynamicbarrier.Inthissectionweshowthatthesetwonucleation-associatedbehaviorsareobservedinoursimulations,whichisnotablebecauseneithersimulationincorporatesanexplicitnucleation

12Invectorialhydrolysismodels,hydrolysisoccursonlyattheinterfacebetweentheGDP-tubulinlatticeandtheGTP-tubulincap(e.g.,(Carlieretal.,1987;Hill,1987)).Incontrast,inrandomhydrolysismodels,anyinternalGTP-subunitcanhydrolyze(terminalGTP-subunitsmayalsohydrolyzedependingonthemodel).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

23

step(ourseedsarecomposedofnon-hydrolyzableGTP-tubulin).Weshowthatbothexperimentallyobservedrelationshipscanresultfromdynamicinabilityincombinationwithlengthdetectionthresholds.ThebehaviorsofDIpolymersrelativetoCCIndGrowandCCPopGrow,asdescribedabove(e.g.,Figures5A-B,S3A-F),canthereforebehelpfulinunderstandingtheserelationships.FailuretodetectMTgrowtheventsinexperimentsat[freetubulin]nearCCIndGrowcanresultfromphysicaldetectionlimitationscoupledwithDI.Asdescribedabove,when[freetubulin]isnearCCIndGrow,VgissmallandFcatishigh,meaningthatMTsareshort(FigureS3A-F)andshort-lived(Figure5A-B);theaverageMTlengthremainssmalluntil[freetubulin]isclosertoCCPopGrow(FigureS3A-F).Thisbehaviorcoupledwithlengthdetectionthresholds(suchaswouldbeimposedbyphysicalexperiments)couldmakeitdifficulttodetectMTsat[freetubulin]nearCCIndGrow.Totestthishypothesis,weusedthesimulations(whichoutputtheMTlengthwithoutanydetectionthreshold)toexaminetheeffectofimposinglengthdetectionthresholdssimilartothosepresentinphysicalexperiments.Indeed,whenweimposeda200nmdetectionthreshold(comparabletolightmicroscopy)onthelengthchangeneededforagrowthphasetoberecognized(Figure7,+symbols),wesawthatMTgrowththatwasdetectedintheabsenceofthisthreshold(Figure7,squaresymbols)isnolongerdetected.TheseresultsindicatethatfailuretoobserveMTsgrowingfromstableseedsat[freetubulin]nearCCIndGrowcanresultfromusingexperimentalmethodsthathavelengthdetectionlimitations,providingevidencethatsuchbehaviorcanresultfromprocessesotherthannucleation.AsigmoidalPocccurveispredictablefromdetectionthresholdsandMTpopulationlengthdistributionsresultingfromDI.PoccistheproportionofstableMTtemplates/seedsthatareoccupiedbya(detectable)MT(Figure10A-B).PreviousexperimentalworkhasshownthatPocchasasigmoidalshapewhenplottedasafunctionof[freetubulin](e.g.,(MitchisonandKirschner,1984b;Walkeretal.,1988;Wieczoreketal.,2015)).ThisshapehasbeeninterpretedasevidencethatstartinganewMTfromaseedisharderthanextendinganexistingMTandthusthatgrowthfromseedsinvolvesanucleationprocess(Walkeretal.,1988;Fygensonetal.,1994;Wieczoreketal.,2015)(compareFigure11Ato11B).However,theVganalysisdescribedaboveledustohypothesizethatthissigmoidalPoccshapecanalsoresultfromthecombinationoflengthdetectionthresholdsandDI.Totestthishypothesis,weexaminedPoccasafunctionof[freetubulin]withvaryingdetectionthresholds(Figures10C-D,S7).Theresultsshowthatateach[freetubulin](belowCCPopGrow),asthedetectionthresholdisincreased,thedetectedPoccdecreases(i.e.,fewerMTsarelongerthanthethreshold).Thisresultsinasigmoidalshapeemergingintheplotsforbothsimulationsasthelengthdetectionthresholdisincreased.Thesteepnessofthesigmoiddependsstronglyonthedetectionthreshold.Theseobservationsindicatethatthesigmoidalshapecanresultsimplyfromimposingalengthdetectionthresholdonasystem(suchasdynamicMTs)wheresomeofthefilamentsareshorterthanthedetectionthreshold.InthepresenceofDIwith

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

24

completedepolymerizationsbacktotheseeds(asoccursbelowCCPopGrow),MTswillnecessarilybebelowanynon-zerodetectionthresholdforatleastsomeamountoftime.ThePocccurvereaches1at[freetubulin]nearCCPopGrow.TheresultsinFigures10andS7provideanotherobservationrelevanttounderstandingcriticalconcentrations:inbothsimulations,Poccapproaches1as[freetubulin]approachesCCPopGrow(exceptpossiblyatverysmallthresholds,wherePoccnears1atlower[freetubulin]).Thisresultispredictable,withorwithoutanucleationprocess,becauseonlyat[freetubulin]aboveCCPopGrow(wherethepopulationundergoesnetgrowth)wouldallactiveseedsbeoccupiedbyMTslongerthananarbitrarilychosenlengththreshold.Thisfulloccupancywouldoccurifsufficienttimeisallowed,becauseat[freetubulin]aboveCCPopGrow,MTswilleventuallybecomelongenoughtoescapedepolymerizingbacktotheseed.Thus,theideathatPocc=1at[freetubulin]aboveCCPopGrowaftersufficienttimemayprovideapracticalwaytoidentifyCCPopGrowexperimentally(seealso(ChenandHill,1985a;Fygensonetal.,1994;Dogterometal.,1995)).Takingallthisinformationtogether,weproposethatacombinationofdynamicinstabilityitselfandtheexistenceofdetectionthresholdscontributestophenomena(failuretoobservegrowingMTsat[freetubulin]nearCCIndGrow,Figure7;andsigmoidalPoccplots,Figures10,S7)thathavepreviouslybeeninterpretedasevidencethatgrowthofMTsfromstableseedsinvolvesanucleationprocess(Fygensonetal.,1994;Wieczoreketal.,2015).Infact,anyprocessthatmakesgrowthfromaseedmoredifficultthanextensionofagrowingtip(i.e.,anucleationprocesssuchassheetclosure)wouldmakethePocccurvemorestep-like,notlessso(Figure11,comparepanelsBandC).Whilewecannotexcludetheexistenceofnucleationprocessessuchasconformationalmaturationorsheetclosureinphysicalmicrotubules,ourworksuggeststhatneithersigmoidalPocccurvesnorabsenceofdetectableMTsonseedsat[freetubulin]nearCCIndGrowaresufficientevidencetoconcludethatgrowthfromtemplates(e.g.,centrosomes,stableseeds)involvesaphysicalnucleationprocess.DISCUSSIONThebehaviorofMTsisgovernedbytwomajorcriticalconcentrationsUsingthedynamicmicrotubulesinourcomputationalsimulations,weexaminedtherelationshipsbetweensubunitconcentrationandpolymerassemblybehaviorsfordynamicinstability(DI)polymers.OurresultsshowthatthereisnotrueCCPolAssemastraditionallydefined,meaningthatthereisnoconcentrationwhereMTsabruptlycomeintoexistence.Instead,thereareatleasttwomajorcriticalconcentrations.ThereisalowerCC(CCIndGrow),abovewhichindividualfilamentscangrowtransiently,andanupperCC(CCPopGrow),abovewhichapopulationoffilamentswillgrowpersistently(Figure12B,D).For[freetubulin]aboveCCPopGrow,individualMTsmaystillundergodynamicinstability(Figure12D,bluelengthhistory),butwillexhibitnetgrowthovertime(Figure12D,blueandgreenlengthhistories).Whatmightbeconsidered“typical”or“bounded”dynamicinstability(whereindividualMTsrepeatedly

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

25

depolymerizebacktotheseeds)occursat[freetubulin]betweenCCIndGrowandCCPopGrow(Figure12D,purplelengthhistory;Figure12C).CCIndGrowisestimatedbyQ3,Q6,andQ7,andCCPopGrowisestimatedbyQ1,Q2,Q4,andQ5abc(Figure12A-B,Table3).Classicalcriticalconcentrationmeasurements(e.g.,Figure1AQ1andQ2)donotyieldthetraditionallyexpectedCCPolAssem,butinsteadyieldCCPopGrow(Figure12AQ1andQ2).Importantly,[freetubulin]SteadyStateinacompetingsystemdoesnotequalCCPopGrow,butapproachesCCPopGrowasymptoticallyas[totaltubulin]increasesanddependsonthenumberofstableseeds(Figure12A,comparedarkandlightgreenlines).BulkpolymerexperimentscancreatetheillusionthatCCPopGrowcorrespondstoCCPolAssem.TheaboveconclusionthatMTsgrowtransientlyat[tubulin]betweenCCIndGrowandCCPopGrowmightappeartoconflictwithexperimentalobservationsreportingthatbulkpolymerisdetectableonlyaboveQ1(Figure1A,seee.g.,(JohnsonandBorisy,1975;Mirigianetal.,2013)).Asdiscussedabove,Q1providesameasureofCCPopGrow,butistraditionallyexpectedtoprovidethecriticalconcentrationforpolymerassembly,CCPolAssem.ThisapparentconflictbetweentheseobservationsandtheconclusionsabovecanberesolvedbyrecognizingthatthefractionoftotalsubunitsconvertedtopolymerwillbelowuntilthefreetubulinconcentrationnearsCCPopGrow.Thus,for[totaltubulin]<CCPopGrow,[freetubulin]willbeapproximatelyequalto[totaltubulin](Figure12A,darkgreenline),unlesstherearemanystableseeds(Figure12A,lightgreenline).Incontrast,for[totaltubulin]>CCPopGrow,allfreetubulininexcessofCCPopGrowwillbeconvertedfromfreetopolymerizedformifsufficienttimeisallowed(FigureS1A-D).13ThisconversionwillhappenbecausetheaverageMTfilamentwillexperiencenetgrowthuntil[freetubulin]fallsbelowCCPopGrow(Figure12C,compareearlyintimetolaterintime).Theoutcomeoftheserelationshipsisthatinbulkpolymerexperiments,littleifanyMTpolymermasswillbedetected14untilthetotaltubulinconcentrationisaboveCCPopGrow(Figure12A,darkblueline),eventhoughdynamicindividualMTfilamentscantransientlyexistattubulinconcentrationsbelowCCPopGrow(Figure3C-D).Thus,theexperimentalquantitiesQ1andQ2maylookliketheexpectedcriticalconcentrationforpolymerassembly(CCPolAssem),buttheyactuallyrepresentthecriticalconcentrationforpersistentpopulationgrowth(CCPopGrow).Poccplotscancreatetheillusionthatthereisa[freetubulin]atwhichMTassemblycommencesabruptly,i.e.,thatCCPolAssemexists.Poccplotswithlengthdetectionthresholds(suchasthresholdsintrinsictomicroscope-basedexperiments)(Figure10A-B)mayhaveledtotheconclusionthatthereisaCCPolAssem,atwhichPoccfirstbecomespositive.However,atlow

13Moreprecisely,asindicatedbytheearlierdiscussionofFigure3A-B,allsubunitsinexcessofthesteady-state[freetubulin]willbeconvertedtopolymer;thesteady-state[freetubulin]isnecessarilybelowbutperhapsclosetoCCPopGrow.14Theamountofpolymerpresentdependsonthekineticrateconstantsoftheparticularsystemandthenumberofstableseeds(Figure4).Theamountofpolymerdetecteddependsontheamountofpolymeractuallypresentandonwhattheexperimentalsetupcandetect.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

26

[freetubulin],MTsareshortandshort-livedasaresultoflowVgandhighFcat,asdescribedabove,andthereforecanbeundetectablebystandardmicroscopy.Byvaryingthelengthdetectionthresholdimposedonsimulationdata(Figure10C-D),itcanbeseenthatthe[freetubulin]atwhichPoccfirstbecomespositivedependsonthethreshold.Theseresults,togetherwiththepolymermass,averagelength,andmaximallengthdata(FiguresS1C-F,S3A-F)indicatethatthereisnoconcentrationatwhichassemblyofDIpolymerscommencesabruptly.TwoadditionalCCshelpdefinepolymerbehaviors.InadditiontothemajorCCs(CCIndGrowandCCPopGrow),thereareatleasttwoadditionalCCsthatimpactMTassembly.ThefirstoftheseisCCKD_GTP=kToffT/kTonT,whichcorrespondstotheKDforbindingofafreeGTP-tubulinsubunittoaGTP-tubulinataMTtip.ThesecondadditionalCCistheKDforbindingofafreeGDP-tubulinsubunittoaGDP-tubulinataMTtip,CCKD_GDP=kDoffD/kDonD.SinceCCKD_GTPandCCKD_GDPprovidebiochemicallimitsonthebehaviorsofGTP-tubulinandGDP-tubulin,anyCCsmustliebetweenthesetwonucleotide-specificCCs(CCKD_GTP≤CCIndGrow≤CCPopGrow≤CCKD_GDP).CCKD_GTPisthe[freetubulin]abovewhichGTP-tubulinpolymerswillgrowintheabsenceofhydrolysisandprovidesthelowerlimitforshort-termassemblyofpolymersinthepresenceofhydrolysis.Asthehydrolysisrateconstantincreases,CCIndGrow(the[freetubulin]abovewhichextendedgrowthphasescanoccur)candivergefromCCKD_GTP(Figure9G,compareyellowCCIndGrowlinetogreyCCKD_GTPline).UnlikeCCKD_GTP,CCKD_GDPisnotstraightforwardlymeasurableforMTs,becauseGDP-tubulinsubunitsalonedonotpolymerizeintomicrotubules(Howard,2001),butcouldberelevanttoothersteady-statepolymers(e.g.,actin).SeparationbetweentheCCsiscreatedbyGTPhydrolysis.ByrunningsimulationsinthesimplifiedmodelatdifferentkHvalues,weshowthatincreasingkHcausesCCIndGrowandCCPopGrowtodivergefromeachotherandfromCCKD_GTP(Figure12E).WeexpectthatthemagnitudeoftheseparationbetweenthevariousCCswilldependnotonthevalueofkHperse,noronanyindividualrateconstants,butratherontherelativerelationshipsbetweenthevariousrateconstants.Thisisatopicofongoinginvestigation.WespeculatethattheseparationbetweentheCCshassignificanceforunderstandingthedifferencebetweenactinandtubulin,asdiscussedmorebelow.Relationshiptopreviouswork.Asdiscussedabove,theideathatMTsandothersteady-state(energy-using)polymershavetwomajorcriticalconcentrationswasfirstinvestigatedindepthbyHillandcolleagues,whostudiedthebehaviorofthesesystemsusingacombinationoftheory,computationalsimulations,andexperiments(HillandChen,1984;Carlieretal.,1984a;Hill,1987).Theirc1(alsoreferredtobyothernamesincludinga1)correspondstoourCCIndGrow;theirc0(alsocalledaα)correspondstoourCCPopGrow(HillandChen,1984;Hill,1987).Moreover,HillandChenconcludedthatMTsgrowatconcentrationsbelowwhattheyreferredtoasthe“real”CC(correspondingtoourQ4inFigure1C)(HillandChen,1984).However,thesignificanceofthisworkforMTDIbehaviorwasnotfullyincorporatedintotheCCliterature,perhapsbecauseitwasnotclearhowtheirtwoCCsrelatedtoclassicalCCmeasurements(e.g.,Q1andQ2inFigure1A).Walkeretal.’sseminal1988manuscriptondynamicinstabilityparametersincludedmeasurementsoftwodifferentcriticalconcentrationsthattheytermedtheCCforelongation(CCIndGrowinournotation)andtheCCfornetassembly(ourCCPopGrow)

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

27

(Walkeretal.,1988).TheycalculatedtheirvalueoftheCCfornetassemblyfromtheirmeasuredDIparametersusingaversionoftheJDIequation(seeequationonpage1445of(Walkeretal.,1988)).However,perhapsbecausethemanuscriptfocusedonCCelongationanddidnotdirectlyrelateeitheroftheseCCstothosepredictedbyHillandcolleagues,theideathatMTshavetwoCCsstilldidnotbecomewidelyacknowledged.Soonthereafter,themanuscriptsofDogterometal.andFygensonetal.wereimportantinshowingclearlyandintuitivelyhowthebehaviorofMTschangesattheCCforunboundedgrowth(ourCCPopGrow),whichtheydescribedusingtheJDIequationshowninEquation1(DogteromandLeibler,1993;Fygensonetal.,1994;Dogterometal.,1995).However,theseauthorsdidnotrelatetheirCCforunboundedgrowthtotheCCsdiscussedbyHillorWalkeretal.ortomoreclassicalCCs(Table1,Figure1).Someofthecontinuedconfusionaboutcriticalconcentrationmayhaveresultedfromthefactthatthepublishedexperimentalworktypicallyinvolvedeithercompetingconditionsornon-competingconditionsbutnotboth.Morespecifically,classicalexperimentsfordetermining“thecriticalconcentration”(e.g.,Figure1A)involvedcompetingconditions,butmuchofthepreviousworkdescribedabovewasperformedunderconditionsofconstant[freetubulin](e.g.,Figure1B-C).Walkeretal.(Walkeretal.,1988)didnoteintheirDiscussionsectionthattheconcentrationoffreetubulinatsteadystateintheircompetingsystemwasbelowtheircalculatedCCfornetassembly(i.e.,CCPopGrow),contrarytotheexpectationthat[freetubulin]SteadyStatewouldequaltheCCfornetassembly.Theyattributedthisdifferenceto“uncertaintiesinherentin[their]assumptionsandmeasurements”(Walkeretal.,1988).Instead,asshownabove,theobservationthat[freetubulin]SteadyStateapproachesCCPopGrowwithoutactuallyreachingitisapredictableaspectofdynamicinstability.Morespecifically,[freetubulin]SteadyStatewillbemeasurablybelowCCPopGrowif[totaltubulin]isnothighenoughrelativetothevalueofCCPopGrowand/orifthenumberofstableseedsislarge(Figures3A-B,4).Morerecently,Mourãoetal.focusedonsystemsofMTsgrowingundercompetingconditions(Mourãoetal.,2011).UsingstochasticsimulationsandmathematicalanalysistostudyMTgrowthfromstableseeds,theyexaminedaquantitythattheycalled“abaselinesteadystatefreesubunitconcentration(MDSS)”,whichisconceptuallysimilartoourCCSubSoln(measuredbyQ2).Theyconcludedthat[freetubulin]SteadyStateisnotequaltoMDSSbutbelowit;ourresultsareconsistentwiththisconclusion.Inparticular,theydemonstratedhowtheseparationbetween[freetubulin]SteadyStateandMDSSdependsonvariousfactorsincludingthenumberofstableMTseeds.ThedependenceofMTbehavioronsubunitconcentrationwasnottheirprimaryfocus,sotheydidnotexplicitlyshowthat[freetubulin]SteadyStateasymptoticallyapproachesMDSS=CCPopGrowas[totaltubulin]increases(Figures3A-B,4);however,theydidperformsimulationsatthreedifferentvaluesof[totaltubulin]andtheirresultsareconsistentwithourconclusions.Additionally,thecriterionthattheyusedtodeterminethevalueofMDSSisthatMDSSisthefreetubulinconcentrationatwhichVg/|Vs|=Fcat/Fres.Wenotethatthisequationisalgebraicallyequivalentto|Vs|Fcat=VgFres,whichwasthecriteriongivenbyDogterometal.(DogteromandLeibler,1993)foridentifyingtheCCforunboundedgrowth(equivalenttoourCCPopGrow).Thus,therehasbeenaneedforaunifiedunderstandingofhowcriticalconcentrationsrelatetoeachotherandtoMTbehaviorsatdifferentscales.Ourworkfillsthisgapbyclearlyshowing

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

28

howthebehaviorsofindividualMTsandpopulationsofMTsrelatetoeachother,to[freesubunit]and[totalsubunit],andtoarangeofdifferentexperimentalmeasurementsinbothcompetingandnon-competingsystems(conclusionssummarizedinFigure12andTable3).Takentogether,oursimulationsandanalysesshouldprovideamoresolidfoundationforunderstandingthebehaviorofMTsandotherDIpolymersundervariedconcentrationsandexperimentalconditions.ConcurrencebetweendifferentapproachesformeasuringMTbehaviorhaspracticalsignificanceAsshowninFigure5C-F,thereisremarkableconcurrencebetweenthreeseeminglydisparatewaysofmeasuringandanalyzingMTbehavior:(i)thenetrateofchangein[polymerizedtubulin](Figure5C-F,osymbols),whichisabulkpropertyobtainedbyassessingthemassofthepopulationofpolymersatdifferentpointsintime(e.g.,across15minutes);(ii)theJDIequation(Figure5C-D,+symbols),whichusesDIparametersextractedfromindividualfilamentlengthhistoryplotsobtainedovertensofminutes;(iii)thedriftcoefficient(Figures5E-F,xsymbols;S3G-H,allsymbols)asmeasuredfromobservingindividualMTsinapopulationofMTsforshortperiodsoftime(e.g.,2-secondtimestepsacrossaslittleasoneminute).Theseapproachesdifferinattributesincludingphysicalscale,temporalscale,andexperimentaldesign.Whilethesimilarityofthedataproducedbythesedifferentapproachesmayinitiallybesurprising,itcanbeshownthatthesemeasurementsshouldyieldthesamevaluesbecausetheequationsunderlyingthemarealsoalgebraicallyequivalentifcertainassumptionsaremet(reviewarticleinpreparation).InadditiontoyieldingmeasurementsofCCPopGrow(Q5abc,Figure5),thesethreeexperimentalapproachescanalsoprovideapproximatemeasurementsofCCIndGrow(Q7,Figure8).Theagreementbetweentheresultsofthesemeasurementsindicatesthattheexperimentallymoretractabletime-stepapproach(Komarovaetal.,2002)(seeSupplementalMethods)canbeusedtomeasurebothCCIndGrowandCCPopGrowandshouldbeusedmorefrequentlytoquantitativelyassessMTassemblybehaviorinthefuture.BiologicalsignificanceofhavingtwomajorcriticalconcentrationsTheunderstandingofcriticalconcentrationaspresentedaboveshouldhelpresolveapparentlycontradictoryresultsinthemicrotubuleliterature.Inparticular,ourresultsindicatethatreportedmeasurementsof“the”criticalconcentrationforMTpolymerizationvaryatleastinpartbecausesomeexperimentsmeasureCCIndGrow(e.g.(Walkeretal.,1988;Wieczoreketal.,2015)),whileothersmeasureCCPopGrow(e.g.,(Carlieretal.,1984a;Dogterometal.,1995;Mirigianetal.,2013)).Thisclarificationshouldhelpindesignandinterpretationofexperimentsinvolvingcriticalconcentration,especiallythoseinvestigatingtheeffectsofMTbindingproteins(e.g.(Amayedetal.,2002;Wieczoreketal.,2015;Hussmannetal.,2016)),osmolytes(e.g,(Schummeletal.,2017))ordrugs(e.g.(Bueyetal.,2005;Vermaetal.,2016)).Additionally,theseideascanbeappliedtohelpclarifythebehaviorofMTsinvivo.MTsinmanyinterphasecelltypesgrowpersistently(perhapswithcatastropheandrescue,butwithnetpositivedrift)untiltheyreachthecelledge,wheretheyundergorepeatedcyclesofcatastropheandrescuewithrarecompletedepolymerizations(Komarovaetal.,2002).Weshowed

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

29

previouslythatthispersistentgrowthisapredictableoutcomeofhavingenoughtubulininaconfinedspace:ifsufficienttubulinispresent,theMTsgrowlongenoughtocontactthecellboundary,whichcausescatastrophe;thisdrivesthe[freetubulin]aboveitsnaturalsteady-statevalue,whichreducescatastrophe,enhancesrescue,andinducesthepersistentgrowthbehavior(Gregorettietal.,2006).Inlightofthecurrentresults,wecannowphrasethispreviousworkmoresuccinctly:persistentgrowthofMTsininterphasecellsoccurswhencatastrophesinducedbythecellboundarydrive[freetubulin]aboveCCPopGrow.Incontrast,atmitosis,whentheMTsaremorenumerousandthusshorter,[freetubulin]remainsbelowCCPopGrow.Seealso(Dogterometal.,1995;Gregorettietal.,2006;VorobjevandMaly,2008;Mourãoetal.,2011)forrelevantdataanddiscussions.Furthermore,itisimportanttoemphasizethatCCIndGrowandCCPopGrowarefundamentalattributesofaspecifictypeoftubulininaparticularenvironment,similartothewayaKDcharacterizesaprotein-proteininteractionoraKMcharacterizesanenzyme-substratereaction.Thus,wesuggestusingCCIndGrow(asmeasuredbyQ3,Q6,orQ7)andCCPopGrow(especiallyasmeasuredbyQ5cfromthetime-stepdriftcoefficientapproach)inadditiontousingdynamicinstabilityparametersasawaytocharacterizetubulin(orotherproteinsthatformpolymers)andtheactivitiesofproteinsthatalterpolymerassembly(seealsothediscussionin(Komarovaetal.,2002)).Relevanceforothersteady-statepolymersThoughthestudiespresentedherewereformulatedspecificallyforMTs,wesuggestthattheycanbeappliedtoanynucleated,steady-statepolymersthatdisplaydynamicinstability,andperhapstosteady-statepolymersmorebroadly.Inparticular,weproposethatthekeycharacteristicthatdistinguishesdynamicallyunstablesteady-statepolymers(e.g.mammalianMTs)fromothersteady-statepolymers(e.g.,mammalianactin)isasfollows:forDIpolymers,CCIndGrowandCCPopGrowareseparablevaluesdrivenapartbyhydrolysis,butforotherpolymers,theyareeitheridentical(asistrueforequilibriumpolymers)orsocloseastobenearlysuperimposed(e.g.,mammalianactin).ThevaluesofCCIndGrowandCCPopGrowareemergentpropertiesofthekineticrateconstants,whichinturnareintrinsicpropertiesoftheproteinsequenceofthesubunits(whichcomesfromthegenesequence)andpost-translationmodifications(whichcomefromthecelltypeandcellularsignaling).WhetherornotdynamicinstabilityisphysiologicallyrelevantforagivenpolymertypeinaspecificcellularenvironmentwilldependonhowthevaluesofCCIndGrowandCCPopGrowrelatetothecellularsubunitconcentration.METHODSSimulations SimplifiedModel(Figure2A):Asdiscussedinthemaintext,thesimplifiedmodelofstochasticmicrotubuledynamicswasdescribedpreviously(Gregorettietal.,2006),buttheimplementationusedherewasupdatedsignificantly.First,thecodewasrewritteninJavaso

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

30

thatitcouldbemoreeasilyimplementedonpersonalcomputers.Second,thetimebetweeneventsisnowsampledusinganexactversionoftheGillespiealgorithm(Gillespie,1976),insteadofanapproximateversionwithafixedtimestep.Thischangeimprovestheaccuracywithwhichthesimulationcarriesouttheunderlyingbiochemicalmodelwithuser-inputtedrateconstants.Third,thesimulationwasadjustedsothateachsimulatedsubunitnowcorrespondstoan8nmMTring(1x13dimers)insteadofa20nmMTbrick(2.5x10dimers)asin(Gregorettietal.,2006).Also,thesimulationsin(Gregorettietal.,2006)hadacelledge,whichlimitedtheMTlengths;thesimulationspresentedherehavenophysicalconstraintsontheMTlengths.ThechangeinsubunitsizeandthelackofphysicalboundaryinthepresentsimulationmeanthatthenumericalvaluesoftheDIparametersandQmeasurements(Figures3-8,leftpanels)arenotdirectlycomparablebetweenthisimplementationandourearlierpublication(Gregorettietal.,2006).However,thegeneralbehaviorofthesimulationisthesame.Theinputparametersusedhereareasfollows:kTonT 2.0µM/sec kineticrateconstantforadditionofGTP-tubulinontoGTP-MTendkTonD 0.1µM/sec kineticrateconstantforadditionofGTP-tubulinontoGDP-MTendkToffT,kToffD 0.0/seckineticrateconstantforlossofGTP-tubulinfromGTP-orGDP-MTendkDoffT,kDoffD 48/seckineticrateconstantforlossofGDP-tubulinfromGTP-orGDP-MTendkh 1/seckineticrateconstantfornucleotidehydrolysis(GTP-tubulin-->GDP-tubulin)Vol 500fLvolumeofsimulationUnlessotherwiseindicated,eachofthesimplifiedmodelsimulationswasrunwithMTsgrowingfrom100stableseedscomposedofnon-hydrolyzableGTP-tubulin.DetailedModel(Figure2B):ThedetailedmodelofstochasticmicrotubuledynamicswithparameterstunedtoapproximateinvitrodynamicinstabilityofmammalianbrainMTswasfirstdevelopedin(Margolinetal.,2011;Margolinetal.,2012)andlaterutilizedin(Guptaetal.,2013;Lietal.2014;Duanetal.,2017).Thecoresimulationisthesameasthatinthesepriorpublications,butthisversionhasminormodificationsincludingtheadditionofadilutionfunctiontoenableproductionofJ(c)plotssuchasthoseinFigure6.Pleasereferto(Margolinetal.,2012)fordetailedinformationonthemodel,itsparametersetC,andhowitsbehaviorcomparestothatofinvitrodynamicinstability.Unlessotherwiseindicated,eachofthedetailedmodelsimulationswasrunwithMTsgrowingfrom40stableseedscomposedofnon-hydrolyzableGTP-tubulininavolumeof500fL.ThenumericalvaluesoftheDIparametersforbothmodelsasmeasuredbyourautomatedDIanalysistool(describedintheSupplementalMethods)areprovidedintheSupplementalExcelfiles.Thevaluesforthedetailedmodelaresimilartothosethatwepublishedpreviouslyforthismodel(Margolinetal.,2012;Duanetal.,2017).AnalysisCCPopGrowisestimatedbydeterminingQ1,Q2,Q4,orQ5(Figures3-6).CCIndGrowisestimated(perhapspoorly)bydeterminingQ3,Q6,orQ7(Figures7-8).SeeTable3BforinformationonhowtoperformeachoftheQmeasurements.Thefigurelegendsprovidedetailsaboutapplyingthemeasurementstothesimulationdata,includinginformationaboutthetimeperiodsduring

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

31

whichmeasurementswereperformed.Thetimeperiodswerechosentoensurethatthevariablebeingmeasured(e.g.,rateofchangeinaveragelength)hasreacheditssteady-statevalue.Formostofthemeasurements,thisoccurswhenthesimulatedsystemhasreachedeitherpolymer-masssteadystate(non-competingsystemswith[freetubulin]<CCPopGrow,FigureS3A-B;andcompetingsystems,FiguresS1A-D)orpolymer-growthsteadystate(non-competingsystemswith[freetubulin]>CCPopGrow,FigureS3A-B).IntheSupplementalMethods,wedescribethetime-stepanalysismethod(basedon(Komarovaetal.,2002))usedtomeasuredriftandVg,aswellasourDIanalysismethodusedtomeasureVg,Vs,Fcat,andFres.CodeAvailabilityThesimulationcodes(writteninJava)andanalysiscodes(writteninMATLAB)areavailableuponrequest.ACKNOWLEDGMENTSThisworkwassupportedbyNSFgrantsMCB-1244593toHVGandMSA,MCB-1817966toHVG,andMCB-1817632toEMJ.PortionsoftheworkwerealsosupportedbyfundingfromtheUniversityofMassachusettsAmherst(AJM)andbyafellowshipfromtheDoloresZohrabLiebmannFund(SMM).WethankthemembersoftheChicagoCytoskeletoncommunityfortheirinsightfuldiscussions,andmembersoftheGoodsonlaboratoryforassistanceineditingthemanuscript.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

32

REFERENCESCITED Alberts,B.,Johnson,A.,Lewis,J.,Morgan,D.,Raff,M.,Roberts,K.,andWalter,P.(2015).MolecularBiologyoftheCell,SixthEdition(NewYork,NewYork:GarlandScience).Alfaro-Aco,R.,andPetry,S.(2015).BuildingtheMicrotubuleCytoskeletonPiecebyPiece.JBiolChem290,17154-17162.Amayed,P.,Pantaloni,D.,andCarlier,M.F.(2002).Theeffectofstathminphosphorylationonmicrotubuleassemblydependsontubulincriticalconcentration.JBiolChem277,22718-22724.Aparna,J.S.,Padinhateeri,R.,andDas,D.(2017).Signaturesofamacroscopicswitchingtransitionforadynamicmicrotubule.SciRep7,45747.Bicout,D.J.(1997).Green’sfunctionsandfirstpassagetimedistributionsfordynamicinstabilityofmicrotubules.PhysicalReviewE56,6656-6667.Bonfils,C.,Bec,N.,Lacroix,B.,Harricane,M.C.,andLarroque,C.(2007).Kineticanalysisoftubulinassemblyinthepresenceofthemicrotubule-associatedproteinTOGp.JBiolChem282,5570-5581.Bowne-Anderson,H.,Hibbel,A.,andHoward,J.(2015).RegulationofMicrotubuleGrowthandCatastrophe:UnifyingTheoryandExperiment.TrendsCellBiol25,769-779.Bowne-Anderson,H.,Zanic,M.,Kauer,M.,andHoward,J.(2013).Microtubuledynamicinstability:anewmodelwithcoupledGTPhydrolysisandmultistepcatastrophe.Bioessays35,452-461.Buey,R.M.,Barasoain,I.,Jackson,E.,Meyer,A.,Giannakakou,P.,Paterson,I.,Mooberry,S.,Andreu,J.M.,andDíaz,J.F.(2005).Microtubuleinteractionswithchemicallydiversestabilizingagents:thermodynamicsofbindingtothepaclitaxelsitepredictscytotoxicity.ChemBiol12,1269-1279.Carlier,M.F.,Didry,D.,andPantaloni,D.(1987).Microtubuleelongationandguanosine5’-triphosphatehydrolysis.Roleofguaninenucleotidesinmicrotubuledynamics.Biochemistry26,4428-4437.Carlier,M.F.,Hill,T.L.,andChen,Y.(1984a).InterferenceofGTPhydrolysisinthemechanismofmicrotubuleassembly:anexperimentalstudy.ProcNatlAcadSciUSA81,771-775.Carlier,M.F.,Pantaloni,D.,andKorn,E.D.(1984b).EvidenceforanATPcapattheendsofactinfilamentsanditsregulationoftheF-actinsteadystate.JBiolChem259,9983-9986.Chen,Y.,andHill,T.L.(1985a).Theoreticaltreatmentofmicrotubulesdisappearinginsolution.ProcNatlAcadSciUSA82,4127-4131.Chen,Y.D.,andHill,T.L.(1985b).MonteCarlostudyoftheGTPcapinafive-starthelixmodelofamicrotubule.ProcNatlAcadSciUSA82,1131-1135.Concha-Marambio,L.,Maldonado,P.,Lagos,R.,Monasterio,O.,andMontecinos-Franjola,F.(2017).ThermaladaptationofmesophilicandthermophilicFtsZassemblybymodulationofthecriticalconcentration.PLoSOne12,e0185707.Coombes,C.E.,Yamamoto,A.,Kenzie,M.R.,Odde,D.J.,andGardner,M.K.(2013).Evolvingtipstructurescanexplainage-dependentmicrotubulecatastrophe.CurrBiol23,1342-1348.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

33

Cytoskeleton,Inc.Tubulinandmicrotubulebasedassays,compoundscreening,drugscreening,pre-clinicaldrugscreenfortubulininhibitorsandmicrotubuleinhibitors.https://www.cytoskeleton.com/custom-services3-compound-screening-tubulin-microtubulesDíaz-Celis,C.,Risca,V.I.,Hurtado,F.,Polka,J.K.,Hansen,S.D.,Maturana,D.,Lagos,R.,Mullins,R.D.,andMonasterio,O.(2017).BacterialTubulinsAandBExhibitPolarizedGrowth,Mixed-PolarityBundling,andDestabilizationbyGTPHydrolysis.JBacteriol199, e00211-17.Díaz,J.F.,Menéndez,M.,andAndreu,J.M.(1993).Thermodynamicsofligand-inducedassemblyoftubulin.Biochemistry32,10067-10077.Dogterom,andLeibler(1993).Physicalaspectsofthegrowthandregulationofmicrotubulestructures.PhysRevLett70,1347-1350.Dogterom,M.,Maggs,A.C.,andLeibler,S.(1995).Diffusionandformationofmicrotubuleasters:physicalprocessesversusbiochemicalregulation.ProcNatlAcadSciUSA92,6683-6688.Duan,A.R.,Jonasson,E.M.,Alberico,E.O.,Li,C.,Scripture,J.P.,Miller,R.A.,Alber,M.S.,andGoodson,H.V.(2017).InteractionsbetweenTauandDifferentConformationsofTubulin:ImplicationsforTauFunctionandMechanism.JMolBiol429,1424-1438.Duellberg,C.,Cade,N.I.,Holmes,D.,andSurrey,T.(2016).ThesizeoftheEBcapdeterminesinstantaneousmicrotubulestability.Elife5,e13470.Erb,M.L.,Kraemer,J.A.,Coker,J.K.,Chaikeeratisak,V.,Nonejuie,P.,Agard,D.A.,andPogliano,J.(2014).AbacteriophagetubulinharnessesdynamicinstabilitytocenterDNAininfectedcells.Elife3,e03197.Flyvbjerg,Holy,andLeibler(1994).Stochasticdynamicsofmicrotubules:Amodelforcapsandcatastrophes.PhysRevLett73,2372-2375.Flyvbjerg,Holy,andLeibler(1996).Microtubuledynamics:Caps,catastrophes,andcoupledhydrolysis.PhysRevEStatPhysPlasmasFluidsRelatInterdiscipTopics54,5538-5560.Fygenson,Braun,andLibchaber(1994).Phasediagramofmicrotubules.PhysRevEStatPhysPlasmasFluidsRelatInterdiscipTopics50,1579-1588.Gardner,M.K.,Charlebois,B.D.,Jánosi,I.M.,Howard,J.,Hunt,A.J.,andOdde,D.J.(2011).Rapidmicrotubuleself-assemblykinetics.Cell146,582-592.Garner,E.C.,Campbell,C.S.,andMullins,R.D.(2004).DynamicinstabilityinaDNA-segregatingprokaryoticactinhomolog.Science306,1021-1025.Gildersleeve,R.F.,Cross,A.R.,Cullen,K.E.,Fagen,A.P.,andWilliams,R.C.(1992).Microtubulesgrowandshortenatintrinsicallyvariablerates.JBiolChem267,7995-8006.Gillespie,D.T.(1976).Ageneralmethodfornumericallysimulatingthestochastictimeevolutionofcoupledchemicalreactions.JCompphys22,403-434.Gliksman,N.R.,Parsons,S.F.,andSalmon,E.D.(1992).Okadaicacidinducesinterphasetomitotic-likemicrotubuledynamicinstabilitybyinactivatingrescue.JCellBiol119,1271-1276.Goodson,H.V.,andJonasson,E.M.(2018).MicrotubulesandMicrotubule-AssociatedProteins.ColdSpringHarbPerspectBiol10,a022608.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

34

Gregoretti,I.V.,Margolin,G.,Alber,M.S.,andGoodson,H.V.(2006).Insightsintocytoskeletalbehaviorfromcomputationalmodelingofdynamicmicrotubulesinacell-likeenvironment.JCellSci119,4781-4788.Gupta,K.K.,Li,C.,Duan,A.,Alberico,E.O.,Kim,O.V.,Alber,M.S.,andGoodson,H.V.(2013).Mechanismforthecatastrophe-promotingactivityofthemicrotubuledestabilizerOp18/stathmin.ProcNatlAcadSciUSA110,20449-20454.Hill,T.L.(1987).LinearAggregationTheoryinCellBiology(NewYork:Springer-Verlag).Hill,T.L.,andChen,Y.(1984).PhasechangesattheendofamicrotubulewithaGTPcap.ProcNatlAcadSciUSA81,5772-5776.Howard,J.(2001).MechanicsofMotorProteinsandtheCytoskeleton(SinauerAssociates).Hussmann,F.,Drummond,D.R.,Peet,D.R.,Martin,D.S.,andCross,R.A.(2016).Alp7/TACC-Alp14/TOGgenerateslong-lived,fast-growingMTsbyanunconventionalmechanism.SciRep6,20653.Hyman,A.A.,Salser,S.,Drechsel,D.N.,Unwin,N.,andMitchison,T.J.(1992).RoleofGTPhydrolysisinmicrotubuledynamics:informationfromaslowlyhydrolyzableanalogue,GMPCPP.MolBiolCell3,1155-1167.Johnson,K.A.,andBorisy,G.G.(1975).Theequilibriumassemblyofmicrotubulesinvitro.SocGenPhysiolSer30,119-141.Komarova,Y.A.,Vorobjev,I.A.,andBorisy,G.G.(2002).LifecycleofMTs:persistentgrowthinthecellinterior,asymmetrictransitionfrequenciesandeffectsofthecellboundary.JCellSci115,3527-3539.Lodish,H.,Berk,A.,Kaiser,C.A.,andKrieger,M.(2016).MolecularCellBiology(NewYork,NewYork:W.H.Freeman).Mahrooghy,M.,Yarahmadian,S.,Menon,V.,Rezania,V.,andTuszynski,J.A.(2015).Theuseofcompressivesensingandpeakdetectioninthereconstructionofmicrotubuleslengthtimeseriesintheprocessofdynamicinstability.ComputBiolMed65,25-33.Maly,I.V.(2002).Diffusionapproximationofthestochasticprocessofmicrotubuleassembly.BullMathBiol64,213-238.Margolin,G.,Goodson,H.V.,andAlber,M.S.(2011).Mean-fieldstudyoftheroleoflateralcracksinmicrotubuledynamics.PhysRevEStatNonlinSoftMatterPhys83,041905.Margolin,G.,Gregoretti,I.V.,Cickovski,T.M.,Li,C.,Shi,W.,Alber,M.S.,andGoodson,H.V.(2012).Themechanismsofmicrotubulecatastropheandrescue:implicationsfromanalysisofadimer-scalecomputationalmodel.MolBiolCell23,642-656.Mirigian,M.,Mukherjee,K.,Bane,S.L.,andSackett,D.L.(2013).Measurementofinvitromicrotubulepolymerizationbyturbidityandfluorescence.MethodsCellBiol115,215-229.Mitchison,T.,andKirschner,M.(1984a).Dynamicinstabilityofmicrotubulegrowth.Nature312,237-242.Mitchison,T.,andKirschner,M.(1984b).Microtubuleassemblynucleatedbyisolatedcentrosomes.Nature312,232-237.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

35

Mourão,M.,Schnell,S.,andShaw,S.L.(2011).Macroscopicsimulationsofmicrotubuledynamicspredicttwosteady-stateprocessesgoverningarraymorphology.ComputBiolChem35,269-281.Oosawa,F.(1970).Sizedistributionofproteinpolymers.JTheorBiol27,69-86.Oosawa,F.,andAsakura,S.(1975).ThermodynamicsofthePolymerizationofProteins(Horecker,B.,Kaplan,NO,Matmur,J.,andScheraga,HA,eds)(NewYork,NewYork,AcademicPress).Oosawa,F.,andKasai,M.(1962).Atheoryoflinearandhelicalaggregationsofmacromolecules.JMolBiol4,10-21.Oosawa,F.,Asakura,S.,Hotta,K.,Imai,N.,andOoi,T.(1959).G-Ftransformationofactinasafibrouscondensation.JournalofPolymerSciencePartA:PolymerChemistry37,323-336.Padinhateeri,R.,Kolomeisky,A.B.,andLacoste,D.(2012).Randomhydrolysiscontrolsthedynamicinstabilityofmicrotubules.BiophysJ102,1274-1283.Roostalu,J.,andSurrey,T.(2017).Microtubulenucleation:beyondthetemplate.NatRevMolCellBiol18,702-710.Schummel,P.H.,Gao,M.,andWinter,R.(2017).ModulationofthePolymerizationKineticsofα/β-TubulinbyOsmolytesandMacromolecularCrowding.Chemphyschem18,189-197.Verde,F.,Dogterom,M.,Stelzer,E.,Karsenti,E.,andLeibler,S.(1992).ControlofmicrotubuledynamicsandlengthbycyclinA-andcyclinB-dependentkinasesinXenopuseggextracts.JCellBiol118,1097-1108.Verdier-Pinard,P.,Wang,Z.,Mohanakrishnan,A.K.,Cushman,M.,andHamel,E.(2000).Asteroidderivativewithpaclitaxel-likeeffectsontubulinpolymerization.MolPharmacol57,568-575.Verma,S.,Kumar,N.,andVerma,V.(2016).Roleofpaclitaxeloncriticalnucleationconcentrationoftubulinanditseffectsthereof.BiochemBiophysResCommun478,1350-1354.Vorobjev,I.A.,andMaly,I.V.(2008).Microtubulelengthanddynamics:Boundaryeffectandpropertiesofextendedradialarray.CellandTissueBiology2,272–281.Vorobjev,I.A.,Rodionov,V.I.,Maly,I.V.,andBorisy,G.G.(1999).Contributionofplusandminusendpathwaystomicrotubuleturnover.JCellSci112,2277-2289.Vorobjev,I.A.,Svitkina,T.M.,andBorisy,G.G.(1997).Cytoplasmicassemblyofmicrotubulesinculturedcells.JCellSci110,2635-2645.Walker,R.A.,O’Brien,E.T.,Pryer,N.K.,Soboeiro,M.F.,Voter,W.A.,Erickson,H.P.,andSalmon,E.D.(1988).Dynamicinstabilityofindividualmicrotubulesanalyzedbyvideolightmicroscopy:rateconstantsandtransitionfrequencies.JCellBiol107,1437-1448.Wieczorek,M.,Bechstedt,S.,Chaaban,S.,andBrouhard,G.J.(2015).Microtubule-associatedproteinscontrolthekineticsofmicrotubulenucleation.NatCellBiol17,907-916.Williams,R.C.,Correia,J.J.,andDeVries,A.L.(1985).Formationofmicrotubulesatlowtemperaturebytubulinfromantarcticfish.Biochemistry24,2790-2798.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

36

Table1:Traditionalcriticalconcentration(CC)definitionsusedintheliterature.Thesedefinitionsofcriticalconcentration(CC)areinterchangeableforequilibriumpolymers,buthavenotallbeencomparedinasingleanalysisforDIpolymers.ForeachCCdefinition,wehaveassignedaspecificabbreviationandprovideanexampleofanearlypublicationwherethatdefinitionwasused.ThetermsCCPolAssem,CCSubSoln,etc.refertotheoreticalvalues(concepts),andQ1,Q2,etc.refertoexperimentallymeasurablequantities(i.e.,valuesobtainedthroughexperimentalapproachesasindicatedinthefigures).AlldefinitionsexceptCCKDcanbeappliedtobothequilibriumandsteady-statepolymers(CCKDassumesthesystemisatequilibriumandthereforecanbeappliedtoonlyequilibriumpolymers).ThetraditionalframeworkinTable1willberevisedintheResultsSection(seeTable3forasummary).Classicalcriticalconcentrationdefinition Abbreviation ExperimentalmeasurementofCCasappliedtoMTsystems

Minimalconcentrationoftotalsubunits(e.g.,tubulindimers)necessaryforpolymerassembly(Oosawa,1970;JohnsonandBorisy,1975).

CCPolAssem CCPolAssemisdeterminedbymeasuringsteady-state[polymerizedtubulin]atdifferent[totaltubulin]inacompetingsystemandextrapolatingbackto[polymerizedtubulin]=0.SeeQ1inFigure1A;alsoFigures3A-B,4.

Concentrationoffreesubunitsleftinsolutiononceequilibriumorsteady-stateassembly15hasbeenachieved(Oosawa,1970;JohnsonandBorisy,1975).

CCSubSoln CCSubSolnisdeterminedbymeasuring[freetubulin]leftinsolutionatsteadystatefordifferent[totaltubulin]inacompetingsystemanddeterminingthepositionoftheplateaureachedby[freetubulin].SeeQ2inFigure1A;alsoFigures3A-B,4.

Dissociationequilibriumconstantforthebindingofsubunittopolymer,i.e.,CC=KD=koff/kon

16(OosawaandAsakura,1975).

CCKD CCKDcanbedeterminedbyseparateexperimentalmeasurementsofkonandkoffforaddition/lossoftubulinsubunitsto/fromMTpolymer,respectively,andcalculatingtheratiokoff/kon.

Concentrationoffreesubunitatwhichtherateofassociationequalstherateofdissociationduringtheelongationphase17(calledSc

ein(Walkeretal.,1988);similartoc1in(HillandChen,1984).

CCelongation CCelongationisdeterminedbymeasuringthegrowthrateduringthegrowthstate(Vg)atavariousvaluesof[freetubulin]andextrapolatingbacktothe[freetubulin]atwhichVg=0.SeeQ3inFigure1B;alsoFigure7A-B.

Concentrationoffreesubunitatwhichthefluxesofsubunitsintoandoutofpolymerarebalanced,i.e.,thenetfluxiszero(e.g.,(Carlieretal.,1984a;HillandChen,1984).

CCflux CCfluxisdeterminedbygrowingMTstosteady-stateatveryhigh[totaltubulin],thenrapidlydilutingtoanew[freetubulin]andmeasuringtheinitialrateofchangein[polymerizedtubulin](i.e.,[polymerizedtubulin]flux).CCfluxisthevalueof[freetubulin]where[polymerizedtubulin]flux=0.SeeQ4inFigure1C;alsoFigure6.

Concentrationoffreesubunitatwhichpolymerstransitionfrom“boundedgrowth”to“unboundedgrowth”(calledccrin(DogteromandLeibler,1993)).

CCunbounded CCunboundedisthe[freetubulin]atwhichtherateofchangeinaverageMTlengthtransitionsfromequalingzerotobeingpositive.SeeQ5inFigure5.CCunboundedcanbeidentifiedbymeasuringDIparametersfromMTlengthhistories(Figure1E-F)acrossarangeofdifferent[freetubulin]anddeterminingthe[freetubulin]atwhichVgFres=|Vs|Fcat.

15Assumingthatassemblystartsfromastatewithnopolymer,maximalpolymerassemblywilloccuratequilibriumforequilibriumpolymers,andatpolymer-masssteadystateforsteady-statepolymers.Steady-statepolymerswillbe(mostly)disassembledatthermodynamicequilibriumbecausethenucleotidesinthesystemwillbe(effectively)entirelyhydrolyzed. 16TheideathatCC=KDforsimpleequilibriumpolymersisderivedasfollows.Thenetrateofpolymerlengthchangeatasinglefilamenttip=rateofaddition–rateofloss.Therateofadditionisassumedtobekon[freesubunit],andtherateoflossisassumedtobekoff.Therefore,therateatwhichnewsubunitsaddtoapopulationofnpolymersisn*kon[freesubunit],andtherateatwhichsubunitsdetachfromapopulationofnpolymersisn*koff.Atequilibrium,rateofpolymerization=rateofdepolymerization,son*kon[freesubunit]=n*koff.Therefore,atequilibrium,[freesubunit]=koff/kon=KD=CCKD.17CCelongationhasbeeninterpretedastheminimalconcentrationoffreesubunitrequiredtoelongatefromagrowingpolymer.ThederivationofCCelongationissimilartothatforCCKD,butconsidersthebehaviorofasinglefilament,notapopulation,andcanapplytosteady-statepolymersbecauseitdoesnotrequireequilibrium.Forpolymersdisplayingdynamicinstability,measurementsofCCelongationareperformedduringthegrowthstateofdynamicinstability.ThederivationofCCelongationassumesthatVgisalinearfunctionof[freesubunit],i.e.,Vg = kongrowth freesubunit -koff growth,where kongrowthandkoff growthareobservedrateconstantsduringgrowth.Then,the[freesubunit]atwhichVg=0iskoff

growth kongrowth =CCelongation.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

37

Table2:TypesofExperiments/Simulations.TypeofExperiment/Simulation

Description

Competing Closedsystemwhere[totaltubulin]isheldconstantandMTscompetefortubulin(e.g.,intesttube)

Non-Competing Opensystemwhere[freetubulin]isheldconstant(e.g.,inaflowcell)

Dilution SystemwhereMTsaregrowntopolymer-masssteadystateundercompetingconditionsatveryhigh[totaltubulin]andthenmovedintonon-competingconditionsatvariousvaluesof[freetubulin]

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

38

Table3A:Revisedunderstandingofcriticalconcentrationfordynamicinstabilitypolymers.Notethatforsteady-statepolymers(includingDIpolymers),CCKD_GTP��CCIndGrow�CCPopGrow��CCKD_GDP,butforequilibriumpolymers,CCKD��CCIndGrow�CCPopGrow.CriticalConcentration

RepresentativeFigures

CriticalConcentrationDescription

Equivalentto(seeTable1)18

Measuredby(seeTable3B)

CCPopGrow 1A,C,3-6 CCabovewhichthepolymermassofapopulationwillincreasepersistently,andindividualfilamentswillundergonetgrowthovertime

CCSubSoln,19CCflux,20CCunbounded

Q1,Q2,Q4,Q5

CCIndGrow 1B,7,8 CCabovewhichindividualfilamentscanexhibittransient,butextended,growthphases

CCelongation Q3,Q6,Q7

CCKD_GTP 9 EquilibriumdissociationconstantforbindingofafreeGTP-subunittoaGTP-subunitatapolymertip

AnyoftheQvaluesaboveunderconditionswhereGTPisnothydrolyzed

CCKD_GDP EquilibriumdissociationconstantforbindingofafreeGDP-subunittoaGDP-subunitatapolymertip

GDP-tubulinalonedoesnotformMTs,soCCKD_GDPisnotstraightforwardlymeasured

18CCPolAssemisnotlistedherebecausethereisnothresholdconcentrationatwhichpolymersabruptlyappear.Instead,themeasurementclassicallyexpectedtoyieldCCPolAssem(seeQ1inTable3B)actuallyyieldsCCPopGrow.19NotethatCCSubSolnisclassicallydefinedasthevalueof[freetubulin]SteadyStateinacompetingsystemwhenever[totaltubulin]isabove“CCPolAssem”(Table1,Figure1A).However,CCSubSolnismoreaccuratelydefinedastheasymptoteapproachedby[freetubulin]SteadyStateas[totaltubulin]isincreased(Q2inFigures3A-B,4).20ItshouldbestressedthatCCfluxisthe[freetubulin]atwhichthepopulation-levelfluxesoftubulinintoandoutofpolymerarebalanced,whileindividualsmaygrowandshortenwhen[freetubulin]=CCflux.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

39

Table3B:Summaryofexperimentallymeasureablequantities(Qvalues)usedtoestimateCCs.SeeTable3AfordescriptionsoftheCCs.Qvalue Representative

FiguresDescriptionofExperimentallyMeasureableQuantity CCestimated

byQQ1 1A,3A-B,4 Q1isthex-interceptoftheline(withslope=1)approachedbysteady-

state[polymerizedtubulin]as[totaltubulin]isincreasedinacompetingsystem.

CCPopGrow

Q2 1A,3A-B,4 Q2isthehorizontalasymptoteapproachedby[freetubulin]SteadyStateas[totaltubulin]isincreasedinacompetingsystem.

CCPopGrow(=CCSubSoln)

Q3 1B,7A-B Q3isthe[freetubulin]atwhichVg=0.Q3isestimatedbyplottingVgasafunctionof[freetubulin],fittingaregressionlinetotheapproximatelylinearpartoftheVgdata,andextrapolatingbacktothe[freetubulin]atwhichVg=0.

CCIndGrow(=CCelongation)

Q4 1C,6 Q4isthe[freetubulin]atwhichtherateofchangein[polymerizedtubulin]equalszeroinadilutionexperiment(J<0whendilution[freetubulin]<Q4;J>0whendilution[freetubulin]>Q4)21.Q4isdeterminedbygrowingMTstopolymer-masssteadystateathigh[totaltubulin],thenrapidlydilutingtoanew[freetubulin]andmeasuringtherateofchangein[polymerizedtubulin]afterashortdelay.22

CCPopGrow(=CCflux)

Q5(a,b,andc)

5C-F Q5isthe[freetubulin]abovewhichtherateofchangeinaverageMTlengthispositiveinanexperimentwhere[freetubulin]isheldconstantandthepopulationhasreachedpolymer-massorpolymer-growthsteadystate(J=0when[freetubulin]<Q5;J>0when[freetubulin]>Q5)23.Q5canalsobedescribedastheconcentrationabovewhichthepopulationdriftcoefficientispositive.WeusethenamesQ5a,Q5b,orQ5cdependingonhowJismeasured.

CCPopGrow(=CCunbounded)

Q5a 5C-F,6C-D Q5aisQ5withJcalculatedfromthenetrateofchangeinapopulation’saverageMTlengthbetweentwotimepoints,i.e.,J=(averagelengthattimeB–averagelengthattimeA)/(timeB–timeA).

Q5b 5C-D Q5bisQ5withJcalculatedfrommeasuredDIparametersusingtheJDIequation(Equation1ofmaintext).Q5bisthe[freetubulin]atwhichVgFres=|Vs|Fcat.

Q5c 5E-F Q5cisQ5withJcalculatedbysummingdisplacementsmeasuredovershorttimesteps(seeSupplementalMethodssubsectiononmeasuringdriftcoefficient).

Q6 7C-D Q6ismeasuredthesamewayasQ3,butusinggrowthphasesfromadilutionexperimentafterthesystemhasbeendilutedintoconstant[freetubulin]conditions(insteadof[freetubulin]beingconstantfortheentireexperimentaswithQ3).

CCIndGrow

Q7 8C-D Q7isthex-interceptofthelineapproachedbyJas[freetubulin]isincreased(note,Japproachesthelinewhen[freetubulin]>>CCPopGrow).

CCIndGrow

21JcanbedefinedintermsofpolymermassoraverageMTlength:J=rateofchangein[polymerizedtubulin]=fluxoftubulinintoandoutofpolymer(e.g.,inµM/s);orJ=rateofchangeinaverageMTlength=driftcoefficient(e.g.,inµm/s).22ThedelayallowstheGTPcapsizetoadjustinresponsetothenew[freetubulin].23Note,thecloser[freetubulin]istoCCPopGrow,thelongeritwilltakeforthesystemtoreachsteadystate.IfJismeasuredbeforepolymer-masssteadystatehasbeenreachedfor[freetubulin]<CCPopGrow,thenJwillappeartobepositivefor[freetubulin]nearbutbelowCCPopGrow;thiswouldmakeitdifficulttoidentitytheprecisevalueofQ5.ThetransitionfromJ=0toJ>0atQ5willbesharperthelongerthesystemisallowedtorun.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/260646doi: bioRxiv preprint

40

FIGURESANDLEGENDS

Figure1:Classicalunderstandingofmicrotubule(MT)polymerassemblybehavior.SeeTable1foradditionaldescriptionofthecriticalconcentrationmeasurementsdepictedhere.[Freetubulin]istheconcentrationoftubulindimersinsolution,[polymerizedtubulin]istheconcentrationoftubulindimersinpolymerizedform,and[totaltubulin]=[freetubulin]+[polymerizedtubulin].(A)Inacompeting(closed)system,[totaltubulin]isheldconstantovertimeandMTscompetefortubulin.Astypicallypresentedintextbooks,thecriticalconcentration(CC)canbe

Figure 1

[Free Tubulin]

C

Ste

ady-

Sta

te [T

ubul

in]

A B

D

Net

Flu

x of

Tub

ulin

in

to a

nd o

ut o

f Pol

ymer

Dilution [Free Tubulin]

Q3 +

Velo

city

of G

row

th

Dur

ing

Gro

wth

Pha

ses

Q4

Experimentally Measureable

Quantity

Traditional Measurement Method (square brackets [ ] represent concentration)

Theoretical Critical Concentration

corresponding to Q

Q1 Determined by measuring steady-state [polymerized tubulin] at different [total tubulin] in a competing (closed) system and extrapolating back to [polymerized tubulin] = 0.

CCPolAssem

Q2 Plateau reached by steady-state [free tubulin] as [total tubulin] is increased in a competing system. CCSubSoln

Q3 [Free tubulin] at which Vg = 0 (where Vg is the growth velocity during growth phases of individuals), measured by plotting Vg as a function of [free tubulin] and extrapolating back to Vg = 0.

CCelongation

Q4 [Free tubulin] at which the flux (measured as the rate of change in [polymerized tubulin]) equals zero in a dilution experiment. CCflux

[Total Tubulin]

Q1

Q2

Free Tubulin Polymerized Tubulin

Competing Non-Competing Dilution

Time

Catastrophe

Rescue

Gro

wth

Shortening

MT

Leng

th

E Length History Abbreviation Definition

DI Dynamic instability (stochastic switching between phases of growth and shortening)

DI parameters

Four measurements commonly used to quantify DI behavior: Vg, Vs, Fcat, and Fres as defined below

Vg Growth velocity during growth phases

Vs Shortening velocity during shortening phases Note: We use Vs to mean shortening velocity (negative number). Some papers use Vs to mean shortening speed (positive number).

Fcat Catastrophe frequency = # of catastrophes / time in growth

Fres Rescue frequency = # of rescues / time in shortening

F

+ +

+

Traditional Measurements of Critical Concentration

41

measuredinacompetingsystembyobservingeithertheconcentrationoftotaltubulinatwhichMTpolymerappears(Q1)ortheconcentrationoffreetubulinleftinsolutiononcetheamountofpolymerhasreachedsteadystate(Q2).(B)Inanon-competing(open)system,[freetubulin]isheldconstantovertime.Insuchasystem,criticalconcentrationisconsideredtobetheminimumconcentrationoftubulinnecessaryforMTpolymerstogrow,whichisestimatedbymeasuringthegrowthrateofindividualfilaments(Vg)andextrapolatingbacktoVg=0(Q3).(C)Indilutionexperiments,MTsaregrownundercompetingconditionsuntilthesystemreachespolymer-masssteadystate,andthendilutedintovarious[freetubulin].Theinitialrateofchangein[polymerizedtubulin]ismeasured.Here,criticalconcentrationistheconcentrationofdilution[freetubulin]atwhichtherateofchangein[polymerizedtubulin]iszero,(i.e.,thedilution[freetubulin]atwhichthenetfluxoftubulinintoandoutofMTpolymeriszero)(Q4).(D)SummarytableofthedefinitionsoftheexperimentallymeasureablequantitiesQ1-4depictedinpanelsA-C.(E)IndividualMTsexhibitabehaviorcalleddynamicinstability(DI),inwhichtheindividualsundergophasesofgrowthandshorteningseparatedbyapproximatelyrandomtransitionstermedcatastropheandrescue.(F)TableofdefinitionsofDIparameters(fourmeasurementscommonlyusedtoquantifyDIbehavior).

42

Figure2:Processesthatoccurinthecomputationalmodels.(A)Inthesimplifiedmodel,microtubulesareapproximatedassimplelinearfilamentsthatcanundergothreeprocesses:subunitaddition,loss,andhydrolysis.Additionandlosscanoccuronlyatthetip.HydrolysiscanoccuranywhereinthefilamentwherethereisaGTP-subunit.(B)Inthedetailedmodel,thereare13protofilaments,whicheachundergothesameprocessesasinthesimplifiedmodelbutalsoundergolateralbondingandbreakingbetweenadjacentprotofilaments.(C)Informationaboutthesubunitsinthemodels.Inbothmodels,thekineticrateconstants(panelD)controllingtheseprocessesareinputtedbytheuser,andtheMTsgrowoffofauser-definedconstantnumberofstableMTseeds(composedofnon-hydrolyzableGTP-tubulin).Thestandarddynamicinstabilityparameters(Vg,Vs,Fcat,Fres;seeFigure1E-F)areemergentpropertiesoftheinputrateconstants,[freetubulin],andotheraspectsoftheenvironmentsuchasthenumberofstableseeds.Formoreinformationaboutthemodelsandtheirparametersets,seeBox1,Methods,SupplementalMethods,and(Gregorettietal.,2006;Margolinetal.,2011;Margolinetal.,2012).

Figure 2

B

detachment attachment

breakage

lateral bond

formation

hydrolysis T D

A

attachment

non-hydrolyzable stable GTP-tubulin seed

Simplified Model Detailed Model

detachment

C Symbol Definition of model subunit

Simplified model subunit, represents a 1 x 13 ring of tubulin dimers

Detailed model subunit, represents one tubulin dimer

Abbreviation Definition of biochemical kinetic rate constant (values inputted by user)

kTonT, kTonD, kDonT, kDonD Kinetic rate constants for attachment (Fig. 2A-B) of a free subunit to a filament tip.

kToffT, kToffD, kDoffT, kDoffD Kinetic rate constants for detachment (Fig. 2A-B) of a subunit from a filament tip.

kH Kinetic rate constant for hydrolysis (Fig. 2A-B) of nucleotide bound to tubulin (conversion of GTP-tubulin to GDP-tubulin).

In the detailed model, there are additional inputs such as kinetic rate constants for lateral bond formation and breakage (Fig. 2B) between adjacent protofilaments (please see (Margolin et al., 2011; Margolin et al., 2012)).

D

x 13 protofilaments

D T

T

Abbreviation Nucleotide state of subunit

T GTP-tubulin subunit (purple), GTP = guanosine triphosphate

D GDP-tubulin subunit (teal), GDP = guanosine diphosphate

hydrolysis

43

Figure3:Behaviorofmicrotubules(populationsandindividuals)underconditionsofconstanttotaltubulin.Leftpanels:simplifiedmodel;rightpanels:detailedmodel;colorsofdatapointsreflecttheconcentrationsoftotaltubulin.(A,B)Classicalcriticalconcentrationmeasurements(comparetoFigure1A).SystemsofcompetingMTsattotaltubulinconcentrationsasindicatedonthehorizontalaxiswereeachallowedtoreachpolymer-masssteadystate(showninFigureS1A-D).Thenthesteady-stateconcentrationsoffree(squares)andpolymerized(circles)tubulinwereplottedasfunctionsof[totaltubulin].(C,D)RepresentativelengthhistoryplotsforindividualMTsfromthesimulationsusedinpanelsA-B.Thevalueof[totaltubulin]foreachlengthhistoryisindicatedinthecolorkeysatthetopofpanelsC-D.Interpretation:Classically,Q1estimatesCCPolAssem,andQ2estimatesCCSubSoln.However,ascanbeseeninpanelC-D,MTsgrowinbothsimulationsat[totaltubulin]belowQ1≈Q2(~2.85µMinthesimplifiedmodeland~11.8µMinthedetailedmodel).Consistentwiththisobservation,themaintextprovidesjustificationfortheideathatCCasestimatedbyQ1≈Q2insteadmeasuresCCPopGrow,theCCforpersistentpopulationgrowth.NotethatthedifferenceinthevaluesofQ1≈Q2betweenthetwosimulationsisexpectedfromthefactthattheinputtedkineticparametersforthesimulationswerechosentoproducequantitativelydifferentDImeasurementsinordertoprovideatestofthegeneralityofconclusionsaboutqualitativebehaviors;theresultsshowthatthebehaviorsareindeedqualitativelysimilarbetweenthetwosimulations.Foradditionaldatarelatedtothesesimulations(e.g.,plotsof[freetubulin]and[polymerizedtubulin]asfunctionsoftime),seeFigureS1.Methods:DatapointsinpanelsA-Brepresentthemean+/-onestandarddeviationofthevaluesobtainedinthreeindependentrunsofthesimulations.Thevaluesfromeachofthreerunsareaveragesover15to30minutesforthesimplifiedmodel(panel3A)andover30to60minutesforthedetailedmodel(panel3B).Thesetimeperiodswerechosensothat[freetubulin]and[polymerizedtubulin]havereachedtheirsteady-statevalues(FigureS1A-D).

A

3.0

2.0

1.0

0.0 Ste

ady-

Sta

te [T

ubul

in] (µM

)

[Total Tubulin] (µM) 0 2 4 6

Simplified Model

Figure 3

Detailed Model

15.0

10.0

5.0

0.0 Ste

ady-

Sta

te [T

ubul

in] (µM

)

[Total Tubulin] (µM) 0 5 15 10 25 20

B 4.0

Q1 Q1

Q2

MT

Leng

th (µ

m)

0.5

1.5

2.0

0.0

C

Time (min) 0

D

MT

Leng

th (µ

m)

2.0

3.0

5.0

0.0

Time (min) 0 2 4 10 8

1 2 2.5 < Q1 ≈ Q2 < 3 5 7 µM

Free Tubulin

Polymerized Tubulin

Q2

15 30 0 1.0

4.0

6

30 60 0 0

70

35

1.0

8

16

0

2 4 10 8 6

Free Tubulin

Polymerized Tubulin

Competing Simulations

9 10 11 < Q1 ≈ Q2 < 12 15 20 µM

44

Figure4:Impactofchangingthenumberofmicrotubuleseeds.Steady-stateconcentrationsoffree(squares)andpolymerized(circles)tubulininacompetingsystemasinFigure3A-B.(A,C)SimplifiedmodelwithMTsgrowingfrom5,100,or500stableMTseeds(datafor100seedsre-plottedfromFigure3A).(B,D)DetailedmodelwithMTsgrowingfrom5,40,or100stableMTseeds(datafor40seedsre-plottedfromFigure3B).Panels4C-Dshowzoom-insofthedataplottedinpanels4A-B,respectively.Thedarkercurveswithsmallersymbolscorrespondtofewerseedsandthelightercurveswithlargersymbolscorrespondtomoreseeds.Interpretation:ThesedatashowthatchangingthenumberofstableMTseedsalterstheapproachtotheasymptotesdeterminingQ1andQ2(dashedgreylinesre-plottedherefromFigure3A-B),butdoesnotchangethevalueofQ1≈Q2.Methods:Datapointsrepresentthemean+/-onestandarddeviationofthevaluesobtainedinthreeindependentrunsofthesimulations.SimilartoFigure3,[freetubulin]and[polymerizedtubulin]fromeachrunwereaveragedoveraperiodoftimeafterpolymer-masssteadystatewasreached.ThetimetoreachthissteadystatedependsonthenumberofstableMTseeds(seeFigureS2).Forthesimplifiedmodel,theaveragesof[freetubulin]and[polymerizedtubulin]weretakenfrom120to150minutesfor5MTseedsandfrom15to30minutesfor100and500MTseeds.Forthedetailedmodel,theaveragesweretakenfrom100to150minutesfor5MTseedsandfrom30to60minutesfor40and100MTseeds.Wewereabletouseahighernumberofseedsinthesimplifiedmodelthaninthedetailedmodelbecauseitismorecomputationallyefficient.

A

9.0

6.0

3.0

0.0 Ste

ady-

Sta

te [T

ubul

in] (µM

)

[Total Tubulin] (µM) 0 10 15 20

Simplified Model

Figure 4

Detailed Model

30.0

20.0

10.0

0.0 Ste

ady-

Sta

te [T

ubul

in] (µM

)

[Total Tubulin] (µM) 0 10 30 20 50 40

B 12.0

Q1 Q1

Q2

Ste

ady-

Sta

te [T

ubul

in] (µM

)

2.0

3.0

0.0

C

[Total Tubulin] (µM) 0 2 4 6

D

Ste

ady-

Sta

te [T

ubul

in] (µM

)

3.0

9.0

12.0

0.0

[Total Tubulin] (µM) 8 10 12 16 14

Q2

Q1

Q2

1.0

5

40.0

Q2

Q1

6.0

Free Tubulin: 5 seeds 100 seeds 500 seeds Polymerized

Tubulin: 5 seeds 100 seeds 500 seeds

Polymerized Tubulin: 5 seeds 40 seeds 100 seeds

Free Tubulin: 5 seeds 40 seeds 100 seeds

Polymerized Tubulin: 5 seeds 100 seeds 500 seeds

Free Tubulin: 5 seeds 100 seeds 500 seeds

Free Tubulin: 5 seeds 40 seeds 100 seeds

Polymerized Tubulin: 5 seeds 40 seeds 100 seeds

Competing Simulations

45

Figure5:Behaviorofmicrotubules(individualsandpopulations)underconditionsofconstantfreetubulin.Leftpanels:simplifiedmodel;rightpanels:detailedmodel;colorsofdatapointsreflecttheconcentrationsoffreetubulin.(A,B)RepresentativelengthhistoryplotsforoneindividualMTateachindicatedconstantfreetubulinconcentration.(C,D)Steady-statenetrateofchange(osymbols)inaverageMTlength(leftaxis)orinconcentrationofpolymerizedtubulin(rightaxis)forthefreetubulinconcentrationsshown.Q5aindicatestheconcentrationatwhichthisratebecomespositive.ThispanelalsoshowsthetheoreticalrateofchangeinaverageMTlength(+symbols)ascalculatedfromtheextractedDImeasurementsusingtheequationJDI=(VgFres–|Vs|Fcat)/(Fcat+Fres)inthe[freetubulin]rangewhereJDI>0(Equation1inthe“unboundedgrowth”regime)(HillandChen,1984;Walkeretal.,1988;Verdeetal.,1992;DogteromandLeibler,1993).Q5bistheconcentrationatwhichJDIbecomespositive.(E,F)Driftcoefficient(Komarovaetal.,2002)ofMTpopulationsasafunctionof[freetubulin](xsymbols).Q5cistheconcentrationabovewhichdriftispositive.Foreaseofcomparison,therateofchangeinaverageMTlength(osymbols)frompanelsCandDisre-plottedinpanelsEandFrespectively.Foradditionaldatarelatedtothesesimulations,seeFigureS3.Interpretation:TheresultsshowthatQ5a≈Q5b≈Q5c,

µM 25.0 20.0 15.0 13.0 12.0 11.8 11.4 11.0 10.8 10.0 9.0

0

Rat

e of

Cha

nge

in

Ave

rage

MT

Leng

th (µ

m/s

ec)

Rat

e of

Cha

nge

in

Ave

rage

MT

Leng

th (µ

m/s

ec)

A Simplified Model Detailed Model

C

Figure 5

20.0

10.0

5.0

0.0

M

T Le

ngth

(µm

) 15.0

B

D

Time (min) 0 5 15 10

40.0

20.0

0.0

M

T Le

ngth

(µm

)

10.0

30.0

Time (min) 0 10 30 20

µM 7.00 5.00 4.00 3.25 3.00 2.75 2.50 2.00 1.50 1.00

E F

[Free Tubulin] (µM) 0 5 10 25 20

0.08

[Free Tubulin] (µM) 0 2 4 6

0.10

0.04

0.00

0.02

0.00

Rat

e of

Cha

nge

in

[Pol

ymer

ized

Tub

ulin

] (µM

/sec

)

0.06

Q5a (o) & Q5b (+)

15

0.010

0.000

0.020

0.005 Rat

e of

Cha

nge

in

[Pol

ymer

ized

Tub

ulin

] (µM

/sec

)

0.025

Q5a (o) & Q5b (+)

0.06

0.02

0.04

0.01

Q5a (o) & Q5c (x)

[Free Tubulin] (µM) 0 2 4 6

[Free Tubulin] (µM) 5 10 25 20 15

Q5a (o) & Q5c (x)

0.09

0.12

0.15

0.06

0.03

0.00

Rat

e of

Cha

nge

in

Ave

rage

MT

Leng

th (µ

m/s

ec)

Rat

e of

Cha

nge

in

Ave

rage

MT

Leng

th (µ

m/s

ec)

50.0

Non-Competing Simulations

Q1≈Q2 Q1≈Q2 Q

1 ≈

Q2

Q1 ≈

Q2

JDI equation

Net rate of change

0.03

0.05

0.08

0.10

0.04

0.00

0.06

0.02

Net rate of change Drift coefficient

Net rate of change Drift coefficient

JDI equation

Net rate of change 0.030

0.015

0.09

0.12

0.15

0.06

0.03

0.00

Q1 ≈

Q2

Q1 ≈

Q2

46

hereafterreferredtoasQ5.AtconcentrationsbelowQ5,populationsofMTsreachapolymer-masssteadystatewheretheaverageMTlengthisconstantovertime(therateofchangeinaverageMTlengthorpolymermassisapproximatelyzero;panelsC-D),andthesystemofMTsexhibitszerodrift(panelsE-F).AtfreetubulinconcentrationsaboveQ5,populationsofMTsreachapolymer-growthsteadystatewheretheaverageMTlengthandpolymermassincreaseovertimeatconstantaverageratesthatdependon[freetubulin](panelsC-D),andsystemofMTsexhibitspositivedrift(panelsE-F).TheaverageMTlengthasafunctionoftimeisshowninFigureS3A-B.NotethattheconcentrationrangebelowQ5correspondstothe“bounded”regimeasdiscussedbyDogterometal.,whilethataboveQ5correspondstothe“unbounded”regime(DogteromandLeibler,1993).Theoverallconclusionsofthedatainthisfigurearethat(i)MTsexhibitnetgrowth(asaveragedovertimeoroverindividualsinapopulation)at[freetubulin]abovethevalueQ5(Q5a≈Q5b≈Q5c);(ii)Q5issimilartothevalueQ1≈Q2(greydashedline)asdeterminedinFigure3A-B.Thus,Q1,Q2,andQ5allprovidemeasurementsofthesamecriticalconcentration,definedasCCPopGrowinthemaintext.Methods:Allpopulationdatapoints(panelsC-F)representthemean+/-onestandarddeviationofthevaluesobtainedinthreeindependentrunsofthesimulations.InpanelsC-D,thenetrateofchangewascalculatedfrom15to30minutes.InpanelsE-F,thedriftcoefficientwascalculatedusingamethodbasedonKomarovaetal.(Komarovaetal.,2002)(SupplementalMethods).

47

Figure6:FluxoftubulinsubunitsintoandoutofMTpolymerasafunctionofdilution[freetubulin](i.e.,aJ(c)plotasin(Carlieretal.,1984)andFigure1C).Leftpanels:simplifiedmodel;rightpanels:detailedmodel.(A,B)Inthedilutionsimulations,competingsystemsofMTsathigh[totaltubulin]wereallowedtopolymerizeuntiltheyreachedpolymer-masssteadystate.TheMTswerethentransferredinto(“dilutedinto”)thefreetubulinconcentrationsshownonthehorizontalaxis.Afterabriefdelay,theinitialflux(rateofchangein[polymerizedtubulin](leftaxis)orinaverageMTlength(rightaxis))wasmeasured,similarto(Carlieretal.,1984).(C,D)Datare-plottedtoshowthattheJ(c)curvesfromthedilutionsimulationsinpanelsA-B(trianglesymbols)andthenetrateofchangeinaverageMTlengthfromtheconstant[freetubulin]simulationsinFigure5C-D(circlesymbols)overlaywitheachotherfor[freetubulin]aboveCCPopGrow.Interpretation:ThesedatashowthatCCasdeterminedbyQ4fromJ(c)plotsisapproximatelythesamevalueasQ1≈Q2(greydashedline),andthusQ4alsoprovidesameasurementofCCPopGrow.Methods:CompetingsystemsofMTsat22µMtotaltubulinwereallowedtoreachpolymer-masssteadystate.Then,atminute10ofthesimulationinthesimplifiedmodelandatminute20ofthesimulationinthedetailedmodel,theMTsweretransferredintothefreetubulinconcentrationsshownonthehorizontalaxis.Aftera5seconddelay,thefluxwasmeasuredovera10secondperiod(seeFigureS4forplotsof[freetubulin]and[polymerizedtubulin]asfunctionsoftime).Notethatthedelayafterdilutionwasnecessaryintheoriginalexperimentsbecauseofinstrumentdeadtime,butitisimportantforobtainingaccurateJ(c)measurementsbecauseitallowsthecaplengthtorespondtothenew[freetubulin](Duellbergetal.,2016;Bowne-Andersonetal.,2013).Foraccuratemeasurements,thepre-dilutionMTsmustbesufficientlylongthatnonecompletelydepolymerizeduringthe15-secondperiodafterthedilution.Datapointsfordifferentconcentrationsofdilution[freetubulin](seecolorkey)representthemean+/-onestandarddeviationofthevaluesobtainedinthreeindependentrunsofthesimulations.

Figure 6

B

D

A Simplified Model

Dilution [Free Tubulin] (µM)

2 4 6

Q4

0.10

0.05

-0.05

[Pol

ymer

ized

Tub

ulin

] Fl

ux (µ

M/s

ec)

-0.15

-0.10

-0.20

-0.25

0.18

0.00

-0.09

-0.18

-0.27

-0.45

-0.36

Rat

e of

Cha

nge

in

Ave

rage

MT

Leng

th (µ

m/s

ec)

0.00

0.09

CC

Pop

Gro

w

(fro

m Q

1 ≈

Q2)

C

[Free Tubulin] (µM) (Dilution or Constant)

2 4 6

Q4 ( ) & Q5a (o)

0.10

0.05

-0.05

[Pol

ymer

ized

Tub

ulin

] Fl

ux (µ

M/s

ec)

-0.15

-0.10

-0.20

-0.25

Rat

e of

Cha

nge

in

Ave

rage

MT

Leng

th (µ

m/s

ec)

0.00

0.18

0.00

-0.09

-0.18

-0.27

-0.45

-0.36

0.09 Non-Competing

Dilution

Detailed Model

Dilution [Free Tubulin] (µM)

5 10 20 15

Q4 0.04

0.00

-0.04

[Pol

ymer

ized

Tub

ulin

] Fl

ux (µ

M/s

ec)

-0.12

-0.08

0.0

-0.1

Rat

e of

Cha

nge

in

Ave

rage

MT

Leng

th (µ

m/s

ec) 0.1

-0.3

-0.5

0.02

-0.02

-0.06 -0.2

-0.10 -0.4

-0.6 -0.14

[Free Tubulin] (µM) (Dilution or Constant)

5 10 20 15

0.04

0.00

-0.04 [P

olym

eriz

ed T

ubul

in]

Flux

(µM

/sec

)

-0.12

-0.08

0.02

-0.02

-0.06

-0.10

-0.14

0.0

-0.1

Rat

e of

Cha

nge

in

Ave

rage

MT

Leng

th (µ

m/s

ec)

0.1

-0.3

-0.5

-0.2

-0.6

-0.4

Q4 ( ) & Q5a (o)

Non-Competing

Dilution

8.00 9.00 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 15.00 20.00 25.00

µM

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 6.00 7.00

µM

Dilution (and Non-Competing) Simulations

CC

Pop

Gro

w

(fro

m Q

1 ≈

Q2)

CC

Pop

Gro

w

(fro

m Q

1 ≈

Q2)

CC

Pop

Gro

w

(fro

m Q

1 ≈

Q2)

48

Figure7:GrowthvelocityofindividualMTsduringthegrowthstateasafunctionof[freetubulin].Leftpanels:simplifiedmodel;rightpanels:detailedmodel;colorsofdatapointsreflecttheconcentrationsoffreetubulin.(A-D)Growthvelocity(Vg)measuredusinggrowthphasesfromeithertheconstant[freetubulin]simulationsofFigure5(panels7A-B)orthedilutionsimulationsofFigure6A-B(panels7C-D).EachofpanelsA-DshowsVgasmeasuredbyastandardDI-basedanalysismethod(+symbols)andatime-stepbasedmethod(squaresymbols).Regressionlines(solidblack)werefittedtothelinearrangeofthesedata,andextrapolatedbacktoVg=0toobtainQ3fortheconstant[freetubulin]simulations(panelsA-B)andQ6forthedilutionsimulations(panelsC-D).Interpretation:ThesedatashowthattheCCasmeasuredbyQ3isapproximatelyequaltothatmeasuredbyQ6andisdifferentfromCCPopGrow(greydashedline)asmeasuredbyQ1≈Q2(≈Q4≈Q5)fromFigures3-6.ThemaintextprovidesjustificationfortheideathatQ3andQ6estimateCCIndGrow,theCCforextended,buttransient,growthphasesofindividualfilaments.Methods:InpanelsA-B(constant[freetubulin]),theVgmeasurementsweretakenduringthetimeperiodfromminute15tominute30ofthesimulations(chosensothatthesystemhasreachedeitherpolymer-massorpolymer-growthsteadystate).InpanelsC-D(dilutionsimulations),theVgdatawereacquiredfrom5to15secondsafterthedilution,i.e.,theJ(c)measurementperioddescribedinFigure6.FortheDI-basedanalyses(panelsA-D,+symbols),weusedacustomMATLABprogramtoidentifyandquantifygrowthphasesbyfindingpeaksinthelengthhistorydata.Thetime-stepbasedmethod(panelsA-D,squaresymbols)divideseachlengthhistoryinto2-secondintervalsandidentifiesintervalsduringwhichthereisapositivechangeintheMTlength.SeeSupplementalMethodsformoreinformationaboutbothmethods.Regressionlineswerefittedtothetime-stepmeasurementsofVgfor[freetubulin]inrangeswheretheVgdataareapproximatelylinearasafunctionof[freetubulin]:from3to7µMforthesimplifiedmodel(panelsA,C)andfrom7to15µMforthedetailedmodel(panelsB,D).Alldatapointsrepresentthemean+/-onestandarddeviationofthevaluesobtainedinthreeindependentrunsofthesimulations.

0.00

Figure 7

Non-Competing Simulations Non-Competing Simulations B 0.10

0.08

0.04

0.06

0.02

0.00

[Free Tubulin] (µM) 2 4 6

[Free Tubulin] (µM) 5 15 20 0 0 10

Q3 Q3

Gro

wth

Vel

ocity

dur

ing

Gro

wth

Pha

ses

(µm

/sec

)

Gro

wth

Vel

ocity

dur

ing

Gro

wth

Pha

ses

(µm

/sec

)

Dilution [Free Tubulin] (µM) 2 4 6 0

Q6

Gro

wth

Vel

ocity

dur

ing

Gro

wth

Pha

ses

(µm

/sec

)

C

A

0.00

D

Dilution [Free Tubulin] (µM) 5 15 20 0 10

Q6

Gro

wth

Vel

ocity

dur

ing

Gro

wth

Pha

ses

(µm

/sec

)

0.12

0.10

0.04

0.06

0.02

Simplified Model Detailed Model

Dilution Simulations Dilution Simulations

DI analysis Time-step analysis Extrapolation

DI analysis Time-step analysis Extrapolation

0.10

0.08

0.04

0.06

0.02

CC

Pop

Gro

w

(fro

m Q

1 ≈

Q2)

DI analysis Time-step analysis Extrapolation

DI analysis Time-step analysis Extrapolation

CC

Pop

Gro

w

(fro

m Q

1 ≈

Q2)

CC

Pop

Gro

w

(fro

m Q

1 ≈

Q2)

0.08

0.00

0.12

0.10

0.04

0.06

0.02

CC

Pop

Gro

w

(fro

m Q

1 ≈

Q2)

0.08

49

Figure8:AnalternativemethodformeasuringCCIndGrow.Leftpanels:simplifiedmodel;rightpanels:detailedmodel.Inallpanels,thegreydashedlinesrepresentCCIndGrowasmeasuredbyQ3(Figure7A-B)andCCPopGrowasmeasuredbyQ1≈Q2(Figure3A-B).(A,B)OverlayofVgfromthetime-stepanalysisofgrowingindividualMTs(squaresymbols;re-plottedfromFigure7A-B)andthenetrateofchangeinaverageMTlengthoftheMTpopulation(circlesymbols;re-plottedfromFigure5C-D),bothfromtheconstant[freetubulin]simulations.InterpretationofpanelsA,B:Thesedatashowthatathigh[freetubulin],thenetrateofchangeinaverageMTlengthapproachestheVgofindividualMTs.Thesetwodatasetsconvergebecauseatsufficientlyhigh[freetubulin]individualMTsaregrowing(nearly)allthetime,asseeninthelengthhistories(Figure5A-B).Thus,CCIndGrow,whichwasobtainedfromVginFigure7,shouldalsobeobtainablebyextrapolatingfromthenetrateofchangedata.(C,D)ExtrapolationtoobtainQ7fromthenetrateofchangeinaverageMTlength.InterpretationofpanelsC,D:Ineachofthemodels,thevalueofQ7isapproximatelyequaltoQ3≈Q6(Figure7).Thus,Q7providesanotherwayofanestimatingofCCIndGrow.Methods:RegressionlineswerefittedtothenetrateofchangeinaverageMTlengthfor[freetubulin]inrangeswherethenetrateofchangedataisapproximatelylinearasafunctionof[freetubulin]:from6to7µMforthesimplifiedmodel(panelC)andfrom14to20µMforthedetailedmodel(panelD).Q7isthex-interceptoftheregressionline.Notethatthe[freetubulin]rangesusedfordeterminationofQ7arehigherthanthoseusedforQ3andQ6becausetheQ7extrapolationrequiresconditionswhereallMTsinthepopulationaregrowing(nodepolymerizationphases).

Figure 8 Non-Competing Simulations

Simplified Model 0.12

0.10

0.08

0.04

0.06

0.02

0.00

[Free Tubulin] (µM) 2 4 6 0

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

[Free Tubulin] (µM) 2 4 6 0

Q7

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

A

C

Rate of change in avg. length (J)

Vg from time-step analysis -0.02

-0.04

Rate of change in avg. length (J)

Extrapolation from J at high Tu

0.12

0.10

0.08

0.04

0.06

0.02

0.00

-0.02

-0.04

CC

Pop

Gro

w

(Q1 ≈

Q2)

CC

IndG

row

(Q3)

CC

Pop

Gro

w

(Q1 ≈

Q2)

CC

IndG

row

(Q3)

Detailed Model B

[Free Tubulin] (µM) 5 15 20 0 10

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

D

[Free Tubulin] (µM) 5 15 20 0 10

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

Rate of change in avg. length (J)

Vg from time-step analysis

Q7

0.12

0.08

0.04

0.00

-0.04

Rate of change in avg. length (J)

Extrapolation from J at high Tu

CC

IndG

row

(Q3)

CC

Pop

Gro

w

(Q1 ≈

Q2)

0.12

0.08

0.04

0.00

-0.04

CC

IndG

row

(Q3)

CC

Pop

Gro

w

(Q1 ≈

Q2)

0.010

0.000

0.020

0.005

Rat

e of

Cha

nge

in

[Pol

ymer

ized

Tub

ulin

] (µM

/sec

)

0.025

-0.005

0.015

0.010

0.000

0.020

0.005

Rat

e of

Cha

nge

in

[Pol

ymer

ized

Tub

ulin

] (µM

/sec

)

0.025

-0.005

0.015

Rat

e of

Cha

nge

in

[Pol

ymer

ized

Tub

ulin

] (µM

/sec

)

0.02

0.00

0.06

0.04

0.01

0.03

0.05

-0.01

-0.02

Rat

e of

Cha

nge

in

[Pol

ymer

ized

Tub

ulin

] (µM

/sec

)

0.02

0.00

0.06

0.04

0.01

0.03

0.05

-0.01

-0.02

50

Figure9(legendonnextpage)

Figure 9

A B

D C

E F

G H

Q3

Q3 Q3

Q3 Q3

Q5a

Q5a

Q5a

Q5a

Q5a

Q3, Q5a

kTonT [Free Tu] – kToffT

Rate of Change in Average Length

Growth Velocity (Vg) Vg Extrapolation

kTonT [Free Tu] – kToffT

Rate of Change in Average Length

Growth Velocity (Vg) Vg Extrapolation

kTonT [Free Tu] – kToffT

Rate of Change in Average Length

Growth Velocity (Vg) Vg Extrapolation

kTonT [Free Tu] – kToffT

Rate of Change in Average Length

Growth Velocity (Vg) Vg Extrapolation

kTonT [Free Tu] – kToffT

Rate of Change in Average Length

Growth Velocity (Vg) Vg Extrapolation

kTonT [Free Tu] – kToffT

Rate of Change in Average Length

Growth Velocity (Vg) Vg Extrapolation

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

0.005 0.005

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

0.010

0.015

0.000

0.020

0.010

0.015

0.000

0.020

0.020

0.040

0.060

0.000

0.080

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

Rat

e of

Cha

nge

in

MT

Leng

th (µ

m/s

ec)

0.04

0.08

0.12

0.00

0.4

0.8

1.2

0.0

0.4

0.6

0.2

0.0

2 4 6 0 [Free Tubulin] (µM)

kH = 10 sec-1 kH = 5 sec-1

kH = 0.1 sec-1 kH = 0 sec-1

kH = 0.5 sec-1 kH = 1 sec-1 [Free Tubulin] (µM) [Free Tubulin] (µM)

[Free Tubulin] (µM)

[Free Tubulin] (µM) [Free Tubulin] (µM)

Varying kH Varying kH

kH (sec-1) kH (sec-1)

Crit

ical

C

once

ntra

tion

(µM

)

Crit

ical

C

once

ntra

tion

(µM

)

20 40 60 0 10 20 30 0

1 2 3 0 4

1 5 0 10 1 0.1 10 0.5 5

0.5

1

5

0.1

10

5

10

15

0

20

CCKD_GTP = kToffT/kTonT

0.25 0.5 0.75 0 1 0.25 0.5 0.75 0 1 Growth Velocity (Vg)

Growth Velocity (Vg)

Growth Velocity (Vg)

kTonT [Free Tu] – kToffT

Growth Velocity (Vg)

Growth Velocity (Vg)

Growth Velocity (Vg)

kH colors: 0 0.1 0.5 1 5 10 sec-1

Simplified Model, Non-Competing Simulations

kH colors: 0.1 0.5 1 5 10 sec-1

51

Figure9:Effectofvaryingtherateconstantfornucleotidehydrolysis(kH)inthesimplifiedmodel.Non-competingsimulationsofthesimplifiedmodelwereperformedforvariousvaluesofkH(allotherinputkineticrateconstantsarethesameasintheotherfigures).EachofpanelsA-FcorrespondstoadifferentvalueofkH,rangingfrom0to10sec-1,asindicatedinthepaneltitles.(A-F)Thegrowthvelocityduringgrowthphases(Vg)(+symbols;colorcodedbykHvalue)andtherateofchangeinaverageMTlength(colorandsymbolvarybykHvalue)asfunctionsof[freetubulin].WealsoplotthetheoreticalequationforVgthatassumesthatgrowingendshaveonlyGTP-tubulinatthetips(greydashedline).NotethatthescalesoftheaxesvaryamongpanelsA-F;fordatare-plottedatthesamescale,seeFigureS5.(G,H)CCIndGrowandCCPopGrowasfunctionsofkH,withCCIndGrowandCCPopGrowmeasuredrespectivelybyQ3andQ5afrompanelsA-F.TheaxeshavelinearscalesinpanelGandlogscalesinpanelH.TheverticalseparationbetweenCCIndGrowandCCPopGrowateachkHinthelog-logplot(panelH)representstheirratioCCPopGrow/CCIndGrow.Interpretation:WhenkHiszero(panelG;seealsopanelA),CCIndGrowandCCPopGrowareequaltoeachotherandtoCCKD_GTP.AskHincreases(panelsGandH;seealsopanelsB-F),thevaluesofCCIndGrowandCCPopGrowincrease,anddivergefromeachotherandfromCCKD_GTP.Thus,theseparationsbetweenCCKD_GTP,CCIndGrow,andCCPopGrowdependonkH.ToseehowDIbehaviorsrelatetotheCCs,seeFigureS6forrepresentativelengthhistoryplotsofindividualMTsateachkHvaluepresentedhere.Methods:Thesimulationswereperformedusingthesimplifiedmodelwith50stableMTseeds.VgwasmeasuredusingtheDIanalysismethod(SupplementalMethods).Thesteady-staterateofchangeinaverageMTlengthwasmeasuredfromthenetchangemethod(seeQ5a,Table3).Allmeasurementsweretakenfrom40to60minutes.Regressionlines(blacksolidline)werefittedtotheVgdatapointsinthe[freetubulin]rangeaboveCCPopGrowandthenextrapolatedbacktoVg=0.

52

Figure10:RelationshipbetweenPocc(proportionofstableMTseedsthatareoccupied)and[freetubulin].SimplifiedmodelinpanelsA,C;detailedmodelinpanelsB,D.Therawdataanalyzedinthisfigurearefromthesamenon-competing(constant[freetubulin])simulationsusedinFigures5,6C-D,7A-B,and8.Inallpanels,thegreydashedlinesrepresentCCIndGrow(Q3fromFigure7A-B)andCCPopGrow(Q1,Q2fromFigure3A-B).(A,B)

Figure 10

B A

[Free Tubulin] (µM) 2 4 6 0

1.0

0.8

0.4

0.6

0.2

0.0

1.0

0.8

Pro

porti

on o

f See

ds O

ccup

ied

by M

T of

at l

east

200

nm

0.4

0.6

0.2

0.0

[Free Tubulin] (µM) 5 15 20 0 10

Pro

porti

on o

f See

ds O

ccup

ied

by M

T of

at l

east

200

nm

C

[Free Tubulin] (µM) 1 3 5 0

1.0

0.8

0.4

0.6

0.2

0.0 Pro

porti

on o

f See

ds O

ccup

ied

by M

T ≥

Leng

th T

hres

hold

Length Threshold:

8.0 9.0 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 15.0 20.0 µM

D

[Free Tubulin] (µM) 2 6 16 0

1.0

0.8

0.4

0.6

0.2

0.0 Pro

porti

on o

f See

ds O

ccup

ied

by M

T ≥

Leng

th T

hres

hold

1 subunit = 8 nm 2 subunits = 16 nm 3 subunits = 24 nm 4 subunits = 32 nm 5 subunits = 40 nm 10 subunits = 80 nm 25 subunits = 200 nm 50 subunits = 400 nm 75 subunits = 600 nm 100 subunits = 800 nm 125 subunits = 1 µm

Length Threshold:

18 20 4 8 12 14 10

1 subunit = 8 nm 2 subunits = 16 nm 3 subunits = 24 nm 4 subunits = 32 nm 5 subunits = 40 nm 10 subunits = 80 nm 25 subunits = 200 nm 50 subunits = 400 nm 75 subunits = 600 nm 100 subunits = 800 nm 125 subunits = 1 µm

4 2

Simplified Model Detailed Model

Simplified Model

Detailed Model

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 6.00 7.00

µM

Non-Competing Simulations

CC

Pop

Gro

w (

from

Q1 ≈

Q2)

CC

IndG

row

(fr

om Q

3)

CC

Pop

Gro

w (

from

Q1 ≈

Q2)

CC

IndG

row

(fr

om Q

3)

CC

Pop

Gro

w (

from

Q1 ≈

Q2)

CC

IndG

row

(fr

om Q

3)

CC

IndG

row

(fr

om Q

3)

CC

Pop

Gro

w (

from

Q1 ≈

Q2)

53

Proportionofstableseedsbearing“experimentally-detectable”MTs(Pocc)asafunctionof[freetubulin].HeredetectableMTsarethosewithlength≥25subunits=200nm(chosenbecausetheAbbediffractionlimitfor540nm(green)lightina1.4NAobjectiveis~200nm).(C,D)Poccwithdetectionthresholdsvariedfrom1subunit(8nm)to125subunits(1000nm).Thedatawiththe25subunitthresholdisre-plottedfrompanelsA-B.Interpretation:ThedatainpanelsA-Bshowthatwithadetectionthresholdsimilartothatintypicalfluorescencemicroscopyexperiments,littlepolymerisobservedgrowingoffoftheGTP-tubulinseedsineithersimulationuntil[freetubulin]iswellaboveCCIndGrow.Morespecifically,withthis200nmthreshold,Poccdoesnotreach0.5until[freetubulin]ismorethanhalfwayfromCCIndGrowtoCCPopGrow.Notethatthelowestvalueof[freetubulin]atwhich100percentoftheseedshaveadetectableMTcorrespondsto~CCPopGrow(seealso(Fygensonetal.,1994;Dogterometal.,1995)).ThedatainpanelsC-DindicatethatshortMTs(withlengthsbelowthe200nmdetectionthresholdfrompanelsA-B)arepresentatfreetubulinconcentrationsnearCCIndGrow.Additionally,wenotethatthePocccurveofthedetailedmodelissteeperthanthatofthesimplifiedmodelwhenthesamethresholdiscompared.Wesuggestthatthisresultsfromthemorecooperativenatureofgrowthinthedetailed(13-protofilament)model,whichisanoutcomeofinteractionsbetweenprotofilaments.Methods:Alldatapointsrepresentthemean+/-onestandarddeviationofthePoccvaluesobtainedinthreeindependentrunsofthesimulations.Thevaluesfromeachrunareaveragesfrom25to30minutes,chosensothatPocchasreacheditssteady-statevalue.MTlengthismeasuredasthenumberofsubunitsofabovetheseed.Notethatinthedetailedmodel,theMTlengthistheaverageofthe13protofilamentlengthsandcanthereforehavenon-integervalues;seesupplementalFigureS7forfractionalthresholdsbelow2subunits,whichfillinthelargegapbetween1and2subunits.

54

Figure11:HypotheticalPoccvs.[freetubulin]curves,wherePoccistheproportionofseedsthatareoccupiedbyMTs.ItmighthavebeenexpectedthatGTP-likeseedsshouldstartgrowingonce[freetubulin]isaboveCCIndGrow,andthatPoccwouldthereforeincreaseabruptlyfrom0to1when[freetubulin]isatorjustaboveCCIndGrow,similartothestepfunctioninpanelA.Incontrast,sigmoidalPocccurves,similartopanelB,havebeenobservedexperimentally(MitchisonandKirschner,1984b;Walkeretal.,1988;Dogterometal.,1995;Wieczoreketal.,2015).Obtainingasigmoidalshape(B)insteadofastepfunction(A)hasbeeninterpretedasevidenceofanucleationprocessthatmakesgrowthofMTsfromstableseedsmoredifficultthanextensionfromagrowingend(Fygensonetal.,1994;Wieczoreketal.,2015).However,asdiscussedinthemaintext,thissigmoidalshapecanbeaconsequenceofDIincombinationwithexperimentallengthdetectionlimitations,andthereforeisnotnecessarilyevidenceofanucleationprocess.NotethatanucleationprocessthatmakesgrowthfromseedsmoredifficultwouldleadtoaPocccurvethatincreasesmorerapidlyfrom0to1anddoessoat[freetubulin]nearCCPopGrow,similartothestepfunctioninpanelC.Thisbehaviorcanbeexplainedinthefollowingway.When[freetubulin]isbelowCCPopGrow,MTswillrepeatedlydepolymerizebacktotheseed.Whennucleationfromseedsisdifficult,itwilltakelongerforanewgrowthphasetoinitiateaftereachcompletedepolymerization;seedswillthereforeremainunoccupiedforlongertimesandtheproportionofseedsinthepopulationthatareoccupiedatanyparticulartimebewilllower.Thus,asthedifficultyofnucleationincreases,theshapeofthePocccurvewouldchangefromasigmoid(asinpanelB)toastepfunctionatCCPopGrow(asinpanelC).

CC

Pop

Gro

w

CC

Pop

Gro

w

CC

IndG

row

1

CC

I ndG

row

Figure 11

Poc

c (pr

opor

tion

of

see

ds o

ccup

ied)

Poc

c (pr

opor

tion

of

see

ds o

ccup

ied)

Poc

c (pr

opor

tion

of

see

ds o

ccup

ied)

[Free Tubulin]

C A B

Schema(cs(notsimula(ondata),Non-Compe(ng

1

0 [Free Tubulin] [Free Tubulin]

CC

IndG

row

CC

Pop

Gro

w

0

1

0

CCIndGrow

[Free Subunit] CCPopGrow = CCIndGrow = CCKD_GTP

Figure 12

A B

Q1

Q2

Indi

vidu

al F

ilam

ent L

engt

h

Time

CCPopGrow < [Free Subunit]

[Total Subunit]

Free Subunit (few seeds) Free Subunit (many seeds) Polymerized Subunit (few seeds) Polymerized Subunit (many seeds)

Ste

ady-

Sta

te

[Fre

e S

ubun

it] o

r [P

olym

eriz

ed S

ubun

it]

CCPopGrow

Competing

CCPopGrow<<< [Free Subunit]

CCIndGrow< [Free Subunit] < CCPopGrow

Indi

vidu

al F

ilam

ent L

engt

h

Time

Rat

e of

Cha

nge

in

Indi

vidu

al L

engt

h or

Ave

rage

Len

gth

Competing Non-Competing

Non-Competing, Varying kH

Low kH

Medium kH High kH

E

D C

Rate of Change in Average Filament Length Growth Velocity during Growth Phases of Individuals

[Free Subunit]

(ii) Rate of Chg. in Avg. Length (Constant [Free Subunit])

Rat

e of

Cha

nge

in

Indi

vidu

al L

engt

h or

Ave

rage

Len

gth

[Free Subunit] range where populations of filaments grow persistently, perhaps with DI

CCIndGrow (Q3, Q6, Q7)

CCPopGrow (Q4, Q5abc)

Non-Competing

[Free Subunit] range where steady-state

DI occurs

(iii) Rate of Change in Average Length (Dilution)

(i) Growth Velocity during Growth Phases of Individuals

CCPopGrow <<< [Total Subunit]

CCPopGrow < [Total Subunit]

CCIndGrow

kH = 0

[Total Subunit] range where steady-state DI occurs

CCIndGrow < [Total Subunit] < CCPopGrow

CCIndGrow CCIndGrow CCPopGrow CCPopGrow CCPopGrow

steady-state DI range steady-state DI range steady-state DI range

Summary of Conclusions

avamauro
(legend on next page)
avamauro
Figure 12
avamauro
55

56

Figure12:Schematicsummaryoftherelationshipsbetweendynamicinstability(DI)behaviorandcriticalconcentrationsforDIpolymers.(A)Relationshipsbetween[totalsubunit]and[freesubunit](green)or[polymerizedsubunit](blue)forapopulationoffilamentscompetingforafixedpoolofsubunits(constant[totalsubunit])atpolymer-masssteadystate,similartoFigures3A-B,4).Noticethatthesteady-state[freesubunit]insuchcompetingsystemsapproachesCCPopGrowandthatthesharpnessoftheapproachdependsonthenumberofseeds.Inparticular,formanyseeds,steady-state[freesubunit]isnoticeablybelowCCPopGrowevenatveryhigh[totalsubunit].(B)Relationshipsbetween[freesubunit]andtherateofpolymerization/depolymerizationundernon-competingconditions(constant[freesubunit])foreitherindividualfilamentsduringgrowthphasesorpopulationsoffilaments.Morespecifically,thepanelshows:(i)thegrowthvelocity(Vg)ofindividualfilamentsduringthegrowthphase(purpledashedline;similartoFigure7);(ii)thenetrateofchangeinaveragefilamentlengthinapopulationoffilamentsasassessedfromexperimentsperformedwith[freesubunit]heldconstantfortheentiretimeoftheexperiment(lightturquoisedashedcurve;similartoFigure5C-F);and(iii)thenetrateofchangeinaveragefilamentlengthinapopulationoffilamentsasassessedfromdilutionexperiments(darkturquoisesolidcurve;similartoFigure6).Noticethatcurves(ii)and(iii)aresuperimposedfor[freesubunit]>CCPopGrow,andthatcurves(ii)and(iii)approachcurve(i)for[freesubunit]>>>CCPopGrow.(C-D)Lengthhistoriesofindividualfilamentsincompetingsystems(panelC)andnon-competingsystems(panelD).Notethatwhen[freesubunit]isbelowCCPopGrow(purplelengthhistoryinpanelDandalllengthhistoriesafterpolymer-masssteadystateinpanelC),individualfilamentsdisplaysteady-statedynamicinstabilityinwhichtheyeventuallyandrepeatedlydepolymerizebacktotheseed;furthermore,theaveragefilamentlengthandthepolymermassreachfinitesteady-statevaluesgivensufficienttime(seepolymer-masssteadystateinFiguresS1C-DandS3A-B).When[freesubunit]isaboveCCPopGrow(panelD),individualfilamentsdisplaynetgrowthovertime,whilestillundergoingdynamicinstability(skyblue,panelD)exceptperhapsatveryhighconcentrations(seagreen,panelD).ThetextunderneaththehorizontalaxisinpanelsA-BrelatesthedynamicinstabilitybehaviorofindividualfilamentsinpanelsC-Dtotheindicatedrangesof[freesubunit]andthepopulationbehaviorsinpanelsA-B.(E)EffectofchangingkH,therateconstantfornucleotidehydrolysis(similartoFigure9).WhenkH=0(equilibriumpolymer),CCKD_GTP=CCIndGrow=CCPopGrow.WhenkH>0(steady-statepolymer),CCIndGrowandCCPopGrowaredistinctfromeachotherandfromCCKD_GTP.AskHincreases,CCIndGrowandCCPopGrowbothincreaseandtheseparationbetweenthemincreases(atlowenoughkH,CCIndGrowandCCPopGrowwouldbeexperimentallyindistinguishable);CCKD_GTPdoesnotchangewithkH.The[freesubunit]rangewheresteady-stateDIoccurs,i.e.,therangebetweenCCPopGrowandCCIndGrow(yellowbracketsinpanelE;comparetopanelsBandD),increaseswithkH.Notethatthisfigureisaschematicrepresentationofbehaviorsoverawiderangeofconcentrationsandisnotdrawntoscale.

top related