biochar basics and current researchcalclimateag.org/wp-content/uploads/2017/03/biochar.pdf ·...

Post on 25-Aug-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Biochar Basics and Current Research

SanjaiJ.ParikhDepartmentofLand,AirandWaterResourcessjparikh@ucdavis.edu---biochar@ucdavis.edu

UniversityofCalifornia–Davis

Soil

Biomass(cropresidues,manure,nutshells,woodchips)

300-900°C,no/lowO2

Biogas

Biochar

Biocharischarcoalcreatedfrombiomass,anddiffersfromcharcoalonlyinthesensethatitsprimaryuseisnotforfuel.Typicallyusedasasoilamendment.

WhatisBiochar?

BiocharmaybeproducedintenIonallyasasoilamendmentorasawastebyproductintheproducIonofbioenergy.

BiocharproperIesareafuncIonoffeedstockmaterial

producIonparameters.

ThermalConversion

“TerraPretadeIndio”–AmazonianBlackEarth

•  BrazilandotherpartsofSouthAmerica

•  500to2500yrsB.P.•  AddiPonofcharcoal(black

carbon/biochar)forsoilmanagement

•  Today,highorganicmaRercontentandmoreferPle

hRp://www.biochar-internaPonal.org/files/graphics/terra-preta.jpg

Oxisol TerraPreta

WhyBiochar?

•  BiocharproperIes,andperformance,areafuncIonoffeedstockmaterialandproducIonparameters.

•  Whenusingbiochar,consideraIonfortheintendedposiIveoutcomemustbecarefullyevaluated.

•  Althoughtherearecertainparametersthatdomakeaqualitybiochar,biocharqualityisdeterminedbyitsintendedpurpose.

BiocharTypeMaNers

4

•  Benefitsinconsistent

•  MulPplevariables

•  SomepotenPaldrawbacks

•  Biocharisnotaspecificproductàumbrellaterm

PotenPalReasonstoUseBiocharinSoil

•  CarbonSequestraPon•  DroughtResilience•  SoilFerPlity•  ReduceNutrientLeakage•  CropYieldandQuality•  GreenhouseGasEmissions•  SoilRemediaPon•  SoilMicrobiology•  RaisesoilpH

Howdobiocharsdiffer?

–  Surfacearea–  Ashcontent–  CaPonexchangecapacity(CEC)– Waterholdingcapacity

–  pH–  H/CraPo–  C/NraPo–  Porosity–  ElementalcomposiPon

•  funcPonofproducPontemperature,producPonmethod,residencePme,andfeedstock

SomeKeyCharacteris0cs

ManureWalnutshell

PinechipsHogwaste

WoodTurkeyLiRer

Wood

10

100

1000

100-350OC351-600OC601-900OC

S oftwoodS ludgeP omaceNuts hellManureHardwoodG ras s

C:N

C orns tover

FeedstockImpacts

DatafromTheUCDavisBiocharDatabase:biochar.ucdavis.edu

2

4

6

8

10

12

14

100 -350 OC351 -600 OC

601 -900 OC

S oftwoodS ludgePomaceNuts hellManureHardwoodG ras s

pH

C orns tover

0

150

300

450

800

900100-350OC351-600OC601-900OC

S oftwoodS ludgeP omaceNuts hellManureHardwoodG ras s

Surface

area(m

2 /g)

C orns tover

BiocharSurfaceArea

BiocharpH

ProducPonTemperature

Impacts

DatafromTheUCDavisBiocharDatabase:biochar.ucdavis.edu

0

50

100

225

250 100-350OC351-600OC601-900OC

S oftwoodS ludgeNuts hellManureHardwoodG ras s

CEC(cm

olc/k

g)

C orns tover

Someparametersshowlessobvioustrends

DatafromTheUCDavisBiocharDatabase:biochar.ucdavis.edu 9

NutrientContentofBiocharFeedstock Temperature

°CpH FerIlizerequivalentraIo(kg/tonbiocar) Reference

N P K

Hardwood 450-600 5.7 3 0.3 6 Novaketal.2009

Sojwood(pine)

465 6.1 3 0.8 4 Novaketal.2009

Cornstover 500 n/a 16 3 12 Breweretal.2009

Leaves(E.saligna)

550 11.8 17 3 15 Singhetal.2010

Cowmanure

550 8.9 11 5 23 Singhetal.2010

Swinemanure

350 8.2 37 39 18 Cantrell&MarPn2011700 8.2 26 59 26

PoultryliRer

350 8.7 50 30 60 Novaketal.2009

700 10.3 30 40 90

AdaptedfromSpokasetal.2012

ShouldIusebiochar?

Whataboutcompost?

TheBiocharFronIer•  ResultsfromWebofScienceCoreCollecIon-QueriesonTopicKeyword:

“Biochar”

Occurrencesofsearchtermsinresultsareapproximateanddependentonins0tu0onssubscrip0ons.Theseresultsgatheredonsearchesforeachyear,accessedthroughUCDavis(02/24/2017).

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

0

250

500

750

1000

1250

1500

1256

873

2000to2016= 4 ,0191900to2016= 4 ,135

198

465

3

123

47128

296

13102

725

Occ

uren

cesinW

ebofS

cien

cefo

r"B

ioch

ar"

1

“Compost”

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

0

250

500

750

1000

1250

15002000to2016= 17,8491900to2016= 23,619

1,035

1,557

Occ

uren

cesinW

ebofS

cien

cefo

r"C

ompo

st"

774

2

NumberofresearcharIclesaddressingspecificbiochartopicareas(2013)

GurwickNP,MooreLA,KellyC,EliasP(2013)ASystemaPcReviewofBiocharResearch,withaFocusonItsStabilityinsituandItsPromiseasaClimateMiPgaPonStrategy.PLoSONE8(9):e75932.doi:10.1371/journal.pone.0075932

“Biocharisnotasingleen0tybutratherspansawiderangeofblackcarbonforms.”•  50%ofstudiesshowyieldincreaseswithbiochar(orblackcarbon)

à50%reportdecreasesornosignificantdecreases

•  Agronomicbenefitsindegradedsoilsareojenemphasized,negligibleandnegaPveresultsnotgivenasmuchaRenPon.

Biochardoesnotalwaysprovidebenefits.Wemustdeterminethecondi0onsforbiochars,soils,andcroppingsystemswheremaximumbenefitscanberealizedforadesiredoutcome.

2012

•  Small,butsignificantbenefitforcropproducPvityfrombiocharaddedtosoil•  Meanincreaseof+10%àbenefitsobservedmorethen50%ofthe0me•  Range:-28%to+39%

•  Greatestbenefits:•  Acidicsoils:+14%•  Neutralsoils:+13%•  Coursetexture:+10%•  Mediumtexture:+13%

•  Greatestimprovementseenatrateof100tons/ha•  BestPerformingbiocharsinclude:PoultryliRerandwoodchips•  BiocharperformedbeRerinpotvsfieldtrials,and,influencedtotalbiomass

morethanyieldmeasurements

Analysisof16studiesand177treatments

Biocharprovidesbenefitswhenitcanimpact:•  pH(“liming”),porosity,nutrientavailability

BiocharuseinCA:SoilTextureandpH•  MostpotenPalforbenefitincoarsetexturedsoilsàpotenPal

toincreaseporosity,organicCcontent,andenhanceferPlity•  ConsidersoilandbiocharpHàuseinacidicorneutralsoils

likelytobemostbeneficial

MapscreatedwithSoilProperPesAp(casoilresource.lawr.ucdavis.edu)

Governor's Office of Planning & Research (OPR) Biochar Research Advisory Group

Chairs:SanjaiJ.Parikh(UCDavis),AmrithGunasakara(CDFA)

SancIonedbyParPcipaPngstate/federalgovernmentenPPes,academicinsPtuPons,andnon-profitsinclude,butarenotlimitedto:•  Governor’sOfficeofPlanningandResearch(OPR)•  Governor’sOfficeofBusinessandEconomicDevelopment(Go-Biz)•  CaliforniaDepartmentofFoodandAgriculture(CDFA)•  StateWaterResourcesControlBoard(SWRCB)•  CaliforniaEnergyCommission(CEC)•  CaliforniaNaturalResourcesAgency(CNRA)•  CaliforniaDepartmentofForestryandFireProtecPon(CALFIRE)•  SierraNevadaConservancy(SNC)•  CaliforniaAssociaPonofResourceConservaPonDistricts(CARCD)•  CaliforniaDepartmentofResourcesRecyclingandRecovery(CalRecycle),•  AirResourcesBoard(ARB)•  USForestService(USFS)•  UniversityofCalifornia(Riverside,Merced,Davis,CooperaPveExtension)

Governor's Office of Planning & Research (OPR) Biochar Research Advisory Group

Chairs:SanjaiJ.Parikh(UCDavis),AmrithGunasakara(CDFA)

IntendedPurpose•  AssistthestateofCaliforniawithidenPfyingresearchgapsinthescienPficliterature,astheypertaintoCaliforniaspecificenvironmental,economic,andregulatorycondiPons

IssuestoAddress•  Environmentalchallenges:drought,foresttreemortality,climatechange,etc.

•  SoilwaterretenPon,cropproducPvity,carbonsequestraPoninsoils,andbioavailabilityofsoilorwatercontaminants

•  BiocharproducPon:feedstocks,thermalconversiontechnologies•  Impactsofsoiltypes,crops,climate,biochartype,farmmanagement,etc.

Biochar (0, 5, 10 g kg-1 à 0, 10, 20 t/ha) –  Walnut shell biochar (900 °C, high surface area) –  Softwood biochar (600-700 °C, low surface

area) Soil

–  Yolo silt loam: Russell Ranch, UC Davis –  Reiff very fine sandy loam: UC Davis Vineyard

Analysis –  Pressure plate – plant available water, field

capacity, permanent wilting point –  Neutron tomography – imaging of water

distribution

Russell Ranch Sustainable Agriculture Facility, UC Davis

UC Davis Vineyard

BiocharSourceMaterial

Temp(°C)

Ash(wt%)

Surf.Area(m2/g)

C(wt%)

C:N H(wt%)

O(wt%)

pHw(1:2)

CECa(cmol/kg)

Walnutshell 900 40 227 55 118 0.9 1.6 9.7 33

Sojwood 600-700 6.4 2.00 58 142 4.2 32 6.8 67

UCD Research: Examining Biochar Water Relations

Wangetal.,inprepara0on

Biochar to “Close the Loop”

modifiedfromPereiraetal.,2016

Impact of Biochar on Soil Water

Softwood biochar – no impact in any scenario Walnut shell biochar •  Field Capacity: no impact, except for highest application rate in very

fine sandy loam had slight increase

•  Permanent Wilting Point: no impact in either soil

•  Plant Available Water: slight increase in the fine sandy loam

Soil Water Potential (-bars) 0 2 4 6 8 10 12 14 16

Per

man

ent

Wilt

ing

Poi

nt

Fiel

d C

apac

ity

Plant Available Water W

ater

Con

tent

Wangetal.,inprepara0on

Moisture Distribution Around Biochar with Drying (7 days)

1 pixel ≈ 0.1 mm

Neutron Tomography Analysis

Can water within biochar become available as the bulk soil dries?

Biochar in wet soil

Drying

Biochar in dry soil

Moisture Released from Biochar

Wangetal.,inprepara0on

ImpactofbiocharandsoiltypeonsoilaggregaIon

BiocharSourceMaterialTemp(°C)

Ash(wt%)

Surf.Area(m2/g)

C(wt%)

C:N H(wt%)

O(wt%)

pHw(1:2)

CECa(cmol/kg)

WS:Walnutshell 900 40 227 55 118 0.9 1.6 9.7 33

EB:Sojwood+algaldigestate 600-700 6.4 2.00 58 142 4.2 32 6.8 67

•  Vina:finesandyloam•  Yolo:siltloam•  60weekincubaPons:80%waterholdingcapacity,23±1°C

Wangetal.,inprepara0on

MineralFerIlizerCompost Biochar+MineralFerIlizer

Biochar+Compost

Compost(CP)

Biochar+MineralFertilizer(MF+BC)

Biochar+

Compost(CP+BC)

MineralFertilizer

(MF)

+/-Biochar

Fertilize

rTyp

e

MineralferPlizer:UAN-32Compost:Poultrymanurecompost

Compost(CP)

Biochar+MineralFertilizer(MF+BC)

Biochar+

Compost(CP+BC)

MineralFertilizer

(MF)

+/-Biochar

Fertilize

rTyp

e

MineralferPlizer:UAN-32Compost:Poultrymanurecompost

RusselRanch,UCDavis:Walnutshellbiochar(900°C)appliedat10t/hainMay2012

Photo:corn,Summer2013

Griffinetal.,2017..

Tomato Tomato

Corn Corn

:2013 :2015

:2012 :2014

CropYieldaferBiocharApplicaIon

mg/kgdryso

il

Soil:ExtractableK+

•  1yearagingofbiocharprovidednutrientsandincreasedcropyieldinyear2

•  Short-termincreasesinK+,Ca2+andPO4-P

RusselRanch,UCDavis:Walnutshellbiochar(900°C)appliedat10t/hainMay2012

Griffinetal.,2017.

BindingofOrganicChemicalsandMetals

•  SorpPonoforganicagrochemicals•  DifferentaffiniPesofphenylureaherbicidesforbiochars:

walnutshellbiocharbinding>so`wood>turkeyliaer>hogwaste>wood/algaldigest.

Bindingconstant(KF)ofbiocharsandsoilforselected

herbicides

Wangetal.J.Environ.Sci.Health,B,2015

WS

0 20 40 60 80 100 120 140 160 180 2000

1000

2000

3000

4000

5000

6000

C dP bN iC u

Wa lnutS he llB iocha r(900oC )

0 20 40 60 80 100 120 140 160 180 2000

1000

2000

3000

4000

5000

6000C dP bN iC u

P ine WoodB iocha r(510oC )

Boun

dMetals(mg/kg)

AqueousMetals(mg/L)

PotenPalimpactsonpesPcideefficacy ReducingHeavyMetalBioavailability

•  BiocharshavedifferingreacPvity•  Walnutshellbiocharbindsmoremetalsthanpinewoodbiochar

Datafrom

:Baire

talJEQ

,2016

Bind

ingAffi

nityParam

eter

SoilremediaIon

BiocharproducedfromBlackLocust(Robinapseudacacia)

hRp://texastreeid.tamu.edu/content/TreeDetails/?id=112

OpImizingBiochar

Lehmann2007

•  BiocharcanbecreatedforanintendeduseànutrientretenPon,limingagent,soilremediaPon,carbonsequestraPon,bioenergy

•  FeedstockandproducPonparameterscanbevariedtoforopPmalperformance

Jeffreyetal.2015

•  Asinglebiocharisunlikelytobetheidealmaterialformanydifferentintendedoutcomes

Biochar?•  variableproduct–notallthesameorequal•  benefitscanbereal,butcanalsobehighlyvariable•  willnotalwaysprovidebenefits•  benefitsmostlikelywhenop0mizedforspecificclimate-soil-

plant-croppingsystems,ANDanintendedoutcome•  knowledgebaseisrapidlygrowing•  addiPonalinformaPononphysical,chemical,andbiological

mechanismsisneeded

Biocharhaspoten0altobepartof“thesolu0on”;athoughful,prescrip0ve,andprudentapproachis

mostlikelytoyieldconsistentbenefits

AcknowledgementsCollaborators: •  Daoyuan Wang, UC Davis •  Deirdre Griffin, UC Davis •  Kate Scow, UC Davis •  Fungai Mukome, William Jessup Univ. •  Steve Fonte, Colorado State Univ. •  Johan Six, ETH Zurich •  Daniel Bair, UC Davis •  Sarah Hafner, UC Davis •  Ina Popova, Univ. of Idaho •  Chongyang Li, UC Davis •  Thomas Young, UC Davis •  Ronald Walker, UC Davis •  Dr. A. Barzin Moradi, FREP CDFA

ParikhGroup,EnvironmentalSoilChemistry,UCDavis

Funding: •  USDA-NIFA Grant #2012-67009-20070 •  USDA Hatch Formula Funding CA 2122-H & multistate regional project W-3045 •  California Energy Commission Grant #500-09-035 •  National Institute of Environmental Health Sciences (NIEHS) grant number 5 P42

ES004699 (NIH and the contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH)

•  UC Davis Agric. Sustainability Inst. & David and Lucille Packard Foundation

Over1,100biocharsindatabase&

growing

biochar.u

cdavis.ed

u

References•  Brewer,C.E.,K.Schmidt-Rohr,J.A.SatrioandR.C.Brown(2009)."CharacterizaPonofBiocharfromFastPyrolysisandGasificaPonSystems."

EnvironmentalProgress&SustainableEnergy28(3):386-396.•  Cantrell,K.B.andJ.H.MarPn(2012)."StochasPcstate-spacetemperatureregulaPonofbiocharproducPon.PartII:ApplicaPontomanure

processingviapyrolysis."JournaloftheScienceofFoodandAgriculture92(3):490-495.•  Jeffery,S.,F.G.A.Verheijen,M.vanderVeldeandA.C.Bastos(2011)."AquanPtaPvereviewoftheeffectsofbiocharapplicaPontosoilsoncrop

producPvityusingmeta-analysis."AgricultureEcosystems&Environment144(1):175-187.•  Pereira,E.I.,E.C.Suddick,andJ.Six(2016).CarbonAbatementandEmissionsAssociatedwiththeGasificaPonofWalnutShellsforBioenergyand

BiocharProducPon.PLoSONE11(3)•  Novak,J.M.,I.Lima,X.B.,J.W.Gaskin,C.Steiner,K.C.Das,M.Ahmedna,D.Rehrah,D.W.WaRs,W.J.BusscherandH.Schmobert(2009).

"CharacterizaPonofdesignerbiocharsproducedatdifferenttemperaturesandtheireffectsonalomysand."AnnalsofEnvironmentalScience3:195-206.

•  Singh,B.,B.P.SinghandA.L.Cowie(2010)."CharacterisaPonandevaluaPonofbiocharsfortheirapplicaPonasasoilamendment."SoilResearch48(7):516-525.

•  Spokas,K.A.,K.B.Cantrell,J.M.Novak,D.W.Archer,J.A.Ippolito,H.P.Collins,A.A.Boateng,I.M.Lima,M.C.Lamb,A.J.McAloon,R.D.LentzandK.A.Nichols(2012)."Biochar:ASynthesisofItsAgronomicImpactbeyondCarbonSequestraPon."JournalofEnvironmentalQuality41(4):973-989.

ParikhGroupBiocharPublicaPons•  Bair,D.A.,F.N.D.Mukome,I.E.Popova,T.A.Ogunyoku,A.Jefferson,D.Wang,S.C.Hafner,T.M.YoungandS.J.Parikh(2016)."SorpPonof

PharmaceuPcals,HeavyMetals,andHerbicidestoBiocharinthePresenceofBiosolids."JournalofEnvironmentalQuality.•  Griffin,D.E.,D.Wang,S.J.Parikh,K.M.Scow.2017.Short-livedeffectsofwalnutshellbiocharonsoilsandcropyieldsinalong-termfield

experiment.Agriculture,EcosystemsandEnvironment.236:21-29.•  Mukome,F.N.D.andS.J.Parikh(2015).Chemical,Physical,andSurfaceCharacterizaPonofBiochar.Biochar:ProducPon,CharacterizaPon,

andApplicaPons.Y.-S.Ok,S.M.Uchimiya,S.X.ChangandN.Bolan.BocaRaton,FL,CRCPress.•  Mukome,F.N.D.,J.SixandS.J.Parikh(2013)."Theeffectsofwalnutshellandwoodfeedstockbiocharamendmentsongreenhousegas

emissionsfromaferPlesoil."Geoderma200–201(0):90-98.•  Mukome,F.N.D.,X.Zhang,L.C.R.Sillva,J.SixandS.J.Parikh(2013)."UseofchemicalandphysicalcharacterisPcstoinvesPgatetrendsin

biocharfeedstocks."JournalofAgriculturalandFoodChemistry61(9):2196-2204.•  Mukome,F.N.D.,A.L.D.Kilcoyne,andS.J.Parikh.2014.AlteraPonofbiocharcarbonchemistryduringsoilincubaPons:SR-FTIRandNEXAFS

invesPgaPon.SoilSci.Soc.Amer.J.78:1632-1640.•  Pereira,E.I.P,E.Suddick,I.Mansour,F.N.D.Mukome,S.J.Parikh,K.M.Scow,J.W.Six.2015.BiocharaltersnitrogentransformaPonsbuthas

minimaleffectsonnitrousoxideemissionsinanorganicallymanagedleRucemesocosm.2015.Biol.Fert.Soils.51:573-582.•  Wang,D.,D.E.Griffin,S.J.ParikhandK.M.Scow(2016)."Impactofbiocharamendmentonsoilwatersolublecarboninthecontextof

extremehydrologicalevents."Chemosphere160:287-292.•  Wang,D.,F.N.D.Mukome,D.Yan,H.Wang,K.M.ScowandS.J.Parikh(2015)."PhenylureaherbicidesorpPontobiocharsandagricultural

soil."JournalofEnvironmentalScienceandHealthPartB-PesPcidesFoodContaminantsandAgriculturalWastes50(8):544-551.031

•  Withincreasingtemperature…à lowerbiocharyieldsà highersurfaceareaà higherpHà higherashcontentà lowersurfacechargeà increasedaromaPcity.à higherpercentCinthebiochar

TheCcontentofbiocharscanrangewidely(36-94%;dependentonfeedstock),withCcontenttypicallyincreasingwithhigherpyrolysistemperatures

TrendsinBiocharProperPes?

e.g.,Mukomeetal.2013,MukomeandParikh2015,Novaketal.2009,Keiluweitetal.2010

AB2511:clarifiesthat“biochar”isasoilamendmentthatisincludedinthedefini0onof“auxiliarysoilandplantsubstance”and,therefore,subjecttolicensingandlabelinglaws,anddefines“biochar”tomeanmaterialsderivedfromthermochemicalconversionofbiomassinanoxygen-limitedenvironmentcontainingatleast60percentcarbon.

biocoal.org/earth-mound-kiln/ biochar-internaPonal.org/projects/BiGchar

BiocharProducIonTradiIonal Portable

biochar-internaPonal.org/technology/producPon

Industrial Process Bio-oil Biochar Syngas

FastPyrolysisModerateT(~500°C)ShortresidencePme

75%(25%H2O)

12% 13%

MediumPyrolysisLow-moderateTModerateresidencePme

50%(25%H2O)

25% 25%

SlowPyrolysisLow-moderateTLongresidencePme

30%(25%H2O)

35% 35%

GasificaPonHighT(>800°C)LongresidencePme

5%(5%H2O)

10% 85%TableadaptedfromhRp://www.feasta.org/wp-content/uploads/2009/03/csiro-biochar-climate-change-and-soil-report-feb-20091.pdf

Impact of Biochar on Field Capacity

•  Silt Loam: Neither biochar impacted field capacity

•  Very Fine Sandy Loam: High surface area biochar (walnut shell) slightly raised field capacity for the high application rate

a a a a a a

0

0.05

0.1

0.15

0.2

0.25

0.3

EB WS

Fiel

d ca

paci

ty (g

wat

er/g

dr

y so

il)

Yolo Silt Loam 0 g/kg

Softwood biochar (low surface area)

Walnut shell biochar (high surface area)

a a a a a b

0

0.05

0.1

0.15

0.2

0.25

0.3

EB WS Fi

eld

capa

city

(g w

ater

/g

dry

soil)

Reiff Very Fine Sandy Loam

Softwood biochar (low surface area)

Walnut shell biochar (high surface area)

FC

a a a

a a

a

0 0.02 0.04 0.06 0.08

0.1 0.12 0.14

Reiff Yolo

Perm

anen

t wilt

ing

poin

t (g

wat

er/g

dry

soi

l)

0g/kg 5g/kg 10g/kg

0 0.02 0.04 0.06 0.08

0.1 0.12 0.14 0.16

Reiff Yolo

Plan

t ava

ilabl

e w

ater

(g

wat

er/g

dry

soi

l)

Impact of Walnut Shell Biochar on Soil Water

Walnut Shell Biochar

•  Field Capacity (data not shown): no impact except for highest application rate in very fine sandy loam had slight increase

•  Wilting Point: no impact in either soil

•  Plant Available Water: slight increase in the fine sandy loam

PW

P

PAW

FC

Neutron Imaging of Biochar in Sand Columns

168 h air dried 48 h oven dry

These two images shows that the black points are mainly not

caused by the hydrogenous functional group on biochar, but

the water in biochar

•  Silica sand columns, avoid interference from soil organic matter

•  Walnut shell biochar (1-2 mm)

•  Biochar amended samples were saturated for 48 h and imaged over a 168 h (7 d) drying period

•  Neutron imaging radiographs analyzed on a pixel-by-pixel basis

•  Moisture distributions calculated according to

transmission of neutrons through column the over drying period

Closing the Circle

Energizing the “Missing Link” toIntegrate Disparate Responses to California’s

Critical Environmental Challenges

David Morell, PhD.

Fire, Water, & Carbon

Sequestration

Excess biomass; water shortages; climate. How can we address this set of interrelated problems together rather than separately? How can we do this efficiently and effectively?

BIOCHAR

Sonoma Biochar Initiative

Forest to Farm

Sonoma Biochar Initiative

100 Million Dead Trees – Plus Ag Wastes

Sonoma Biochar Initiative

Agricultural Water Crisis

Sonoma Biochar Initiative

Agricultural Water Crisis

Sonoma Biochar Initiative

Climate Change/Carbon Sequestration

Sonoma Biochar Initiative

Carbon-Neutral to Carbon-Negative

Sonoma Biochar Initiative

Moving from Concept to Implementation

OK, this seems �like a great idea:

Integrate �the silosBut how do we �

make this a reality?

Sonoma Biochar Initiative

Forest Fire Risk/�Dead Trees/Ag

Biomass

Water Supply Climate Change/�Carbon

Action: Strategies and Next Steps

•  Support efforts at state level to keep most existing biomass to energy plants operational.

•  Fast track funding and permitting to demonstrate promising technologies to process dead trees without trucking them out of the forest

•  Secure funding from state agencies or private foundations for large-scale field trials to demonstrate biochar applications throughout California agriculture.

Sonoma Biochar Initiative

Save & Convert Existing Biomass Plants

Sonoma Biochar Initiative

Accelerate Use of Small Technologies

Mobile Air Curtain Burners

“Movable” thermal conversion systems

Sonoma Biochar Initiative

Fast Track Use of Even Smaller Technologies

Moxham Kiln Flame-Cap Kiln

Sonoma Biochar Initiative

“As I was driving over the hill from the fire station to watch the demonstration in person all I could see was the heat column—there was no smoke at all. I couldn’t believe it!”

Schell-Vista Fire Chief Ray Mulas

Use Conservation Burn Technique

Sonoma Biochar Initiative

Actions in More Detail

Most importantly, look at tree mortality, forest fire risk, agricultural biomass, water shortages, and climate change as interrelated problems (and opportunities).

See biochar production and use as a way to address them all, helping to close a circle of sustainable actions affecting our communities, our economy, and our environment. Execute “proof of concept” actions.

 

Sonoma Biochar Initiative

Dead Trees to Biochar

•  Cal/Fire and others identify appropriate “log deck” locations

•  CCC teams and others cut dead trees, move biomass to “log decks”

•  Extensive added �employment available

•  Carry out smaller demonstrations first, then scale up as biochar production capacity increases

Sonoma Biochar Initiative

Dead Trees to Biochar (cont.)

•  Funding Potentially Available From:

•  Cal/FIRE Risk Reduction Monies

•  AB32 GHG Auction Monies

•  Fire Insurance Premium Rebates/Reductions

•  Sales of Biochar to CA Farmers

Sonoma Biochar Initiative

Dead Trees to Biochar (cont.)

•  Produce Biochar from Available Biomass

•  Deploy Transportable Units at Log Decks and with Ag Biomass

•  Transport Some Biomass�to Sawmills

•  Use Conservation Burns

•  Attack ag wastes similarly

•  Demonstrations First, Then Scale Up

Sonoma Biochar Initiative

Apply Biochar as Soil Amendment on California Farms

•  Focus First on High-Water-Usage Farms

•  Transport Available Biochar in Truckloads

•  Blend with Compost, Apply as �Soil Amendment

•  Initial and Ongoing Funding:

•  Crop Insurance Rebates and Bank/Ag �credit Agency Loans

•  Front-end Loans (interest bearing) Repaid from Savings on Water Use costs

Sonoma Biochar Initiative

CAFieldTrialsAlreadyCompleted

¡  SonomaCountyCIGFieldTrialsCompleted¡  UpcomingDWR-FundedDemonstrations

-WithUC-RiversideScientists¡  ExperienceinOver20Vineyards¡ WesternSAREFieldTrials(pending)

National and Global Climate Leadership

•  Outreach and Education to California Farms

•  Document On-farm Results (water savings, soil health improvement)

•  Track and Publicize Carbon �Negative Actions

•  Compare to # of gasoline �cars removed from roads

•  Compare to # of solar �electric arrays equivalent

Sonoma Biochar Initiative

David Morell, PhDSonoma Ecology Center510-551-4067 david@sonomaecologycenter.org

Thank you!

top related