c examples 1

Post on 04-Jan-2016

58 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

C Examples 1. Download Links. MPLAB IDE dsPIC30F4011/4012 Data Sheet dsPIC30F Family Reference Manual MikroC MikroC Manual MikroC Quick Reference. This step necessary if you are using an RS-232 programmer. This step necessary if you are using an RS-232 programmer. - PowerPoint PPT Presentation

TRANSCRIPT

C Examples 1

Download Links

MPLAB IDE dsPIC30F4011/4012 Data Sheet dsPIC30F Family Reference Manual MikroC MikroC Manual MikroC Quick Reference

This step necessary if you are using an RS-232 programmer.

This step necessary if you are using an RS-232 programmer. This is necessary for

the program to run after successfully programming

LED ON

main () { TRISB=0b11111101; while(1) { PORTB.F1=1; } }

Rapid40iXL

I am using LED 1 connected to RB1 and SW4 connected to MCLR

Blinking LED - 1

main () { ADPCFG = 0xFFFF; //Analog input pin in Digital mode, // port read input enabled, TRISB=0b11111101; PORTB.F1=1; while(1) { Delay_ms(1000); PORTB.F1=PORTB.F1^1; } }

Blinking LED - 2

main () { ADPCFG = 0xFFFF; TRISB=0b11111101; PORTB=PORTB|0b00000010; while(1) { Delay_ms(1000); PORTB=PORTB^0x02; } }

Logical VS Bitwise

Timer 1

16-bit Timer Mode: In the 16-bit Timer mode, the timer increments on every instruction cycle up to a match value, preloaded into the Period register, PR1, then resets to 0 and continues to count.

When the CPU goes into the Idle mode, the timer will stop incrementing unless the TSIDL (T1CON<13>) bit 0. If TSIDL 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

16-bit Synchronous Counter Mode: In the 16-bit Synchronous Counter mode, the timer increments on the rising edge of the applied external clock signal, which is synchronized with the internal phase clocks. The timer counts up to a match value preloaded in PR1, then resets to 0 and continues.

When the CPU goes into the Idle mode, the timer will stop incrementing unless the respective TSIDL bit o. If TSIDL 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

Blinking LED - 3

main () { T2CON=0x8030; // Enable Timer 2 Prescaler=256 IEC0=0x0040; // Enable Interrupt for Timer 2 PR2=0xF424; ADPCFG = 0xFFFF; TRISB=0b11111101; PORTB=PORTB|0b00000010; while(1) { } } void interrupt_T2() org 0x000020 { PORTB=PORTB^0x02; IFS0=0x0000; }

62500256

000,000,16

500,624240

f

xF

Blinking LED - 4

main () { T2CON=0b1000000000001000; // Enable Timer 2/3 IEC0=0x0080; // Enable Interrupt for Timer 3 PR2=0x6800; PR3=0x0989; ADPCFG = 0xFFFF; TRISB=0b11111101; PORTB=0x00; while(1) { } } void interrupt_T2() org 0x000022 { PORTB=PORTB^0x02; IFS0=0x0000; }

Switch + LED(SWITCH1) main () { ADPCFG = 0xFFFF; TRISB=0b11111101; TRISE=0b000001; PORTB=0x00; // THE CODE DOES NOT USE PORT B PORTE=0x1F; while(1) { if((PORTE&0b000001)==0) {PORTE.F1=PORTE.F1^1;} } }

Now I am using LED 4 connected to RB1 and SW1 connected to RE0

Key DEBOUNCING

Key DEBOUNCING – 1(SWITCH2) main () { int i; const int Twentyms = 29,091; ADPCFG = 0xFFFF; TRISB=0b11111101; TRISE=0b000001; PORTB=0x00; PORTE=0x1F; while(1) { i = 0; // Wait 20 ms for Button Up while (i < Twentyms) { if (0 == PORTE.F0) // Button Down/Start over { i = 0; } else // Button Up/Increment Count { i = i + 1; } // } //

i = 0; // Wait 20 ms for Button Down while (i < Twentyms) if (1 == PORTE.F0) // Button Up/Start over i = 0; else // Button Down/Increment Count i = i + 1;

PORTE.F1=PORTE.F1^1; // Toggle LED to Turn ON/OFF LED

} }

Adapted from 123 PIC Experiments for the EVIL GENIOUS by MYKE PREDKO

Key DEBOUNCING - 1

;SWITCH2.c,13 :: while (i < Twentyms) $0120 $ L_main_2: $0120 $470060 ADD W14, #0, W0 $0122 $780110 MOV [W0], W2 $0124 $210721 MOV #4210, W1 $0126 $510001 SUB W2, W1, W0 $0128 $3D000D BRA GE L_main_3, L_main_3 ;SWITCH2.c,15 :: if (0 == PORTE.F0) // Button Down/Start over $012A $8016D0 MOV PORTE, W0 $012C $6000E1 AND W0, #1, W1 $012E $108060 SUBR W1, #0, W0 $0130 $3A0004 BRA NZ L_main_4, L_main_4 ;SWITCH2.c,17 :: i = 0; $0132 $200000 MOV #0, W0 $0134 $780F00 MOV W0, [W14] ;SWITCH2.c,18 :: } $0136 $040140 GOTO L_main_5 $013A $ L_main_4: ;SWITCH2.c,21 :: i = i + 1; $013A $200011 MOV #1, W1 $013C $470060 ADD W14, #0, W0 $013E $408810 ADD W1, [W0], [W0] ;SWITCH2.c,22 :: } // $0140 $ L_main_5: ;SWITCH2.c,23 :: } // $0140 $040120 GOTO L_main_2

091,29T(ms)

20msN

0.0006875f

1T(ms)

4551,454,545.11

000,000,16

f

Key DEBOUNCING – 2(SWITCH3) int function_key(void) { int i,m; const int Twentyms = 29091; m=1; // SWITCH UP INDICATOR if (1 == PORTE.F0) {return(m);} while(1) { i = 0; // Wait 20 ms for Button Up while (i < Twentyms) { if (0 == PORTE.F0) // Button Down/Start over { i = 0; } else // Button Up/Increment Count { i = i + 1; } // } // m=0; // SWITCH DOWN INDICATOR return(m); }

Key DEBOUNCING - 2

main () { int s=1; ADPCFG = 0xFFFF; TRISB=0b11111101; PORTB=0x00; TRISE=0b000001; PORTE=0x1F; while(1) { s=function_key(); if (s==0) PORTE.F1=PORTE.F1^1; S=1; } }

Key DEBOUNCING – 3(SWITCH4) main () { int s=1; ADPCFG = 0xFFFF; TRISB=0b11111101; PORTB=0x00; TRISE=0b000001; PORTE=0x1F; while(1) { Delay_ms(5000); PORTB=~PORTB; s=function_key(); if (s==0) PORTE.F1=PORTE.F1^1; S=1; } }

Key DEBOUNCING – 4(SWITCH5 main () { int s=1; T2CON=0x8030; // Enable Timer 2 Prescaler=256 IEC0=0x0040; // Enable Interrupt for Timer 2 PR2=0xFFFF; ADPCFG = 0xFFFF; TRISB=0b11111101; PORTB=0x00; TRISE=0b000001; PORTE=0x1F; while(1) { s=function_key(); if (s==0) PORTE.F1=PORTE.F1^1; S=1; } } void interrupt_T2() org 0x000020 { PORTB=PORTB^0x02; IFS0=0x0000; }

UART1

U1MODE = 0x8400;

UART1

unsigned rx1; unsigned char uc1;

void main() {

Uart1_Init(19200); U1MODE = 0x8400; delay_ms(200); TRISE=0b000001; PORTE=0x1F;

Uart1_Write_Char('a'); while(1) { if (Uart1_Data_Ready()) { rx1 = Uart1_Read_Char(); Uart1_Write_Char(++rx1); PORTE=~PORTE; } } }//~!

UART2

unsigned rx1; unsigned adcRes; unsigned char uc1;

void main() {

PORTB = 0x0000; TRISB = 0xFFFF; Uart1_Init(19200); U1MODE = 0x8400; delay_ms(200); TRISE=0b000001; PORTE=0x1F;

Uart1_Write_Char('a'); while(1) { adcRes = Adc_Read(3); adcRes = adcRes/4; Uart1_Write_Char(adcRes); PORTE=~PORTE; delay_ms(1000); } }//~!

PWM1

U1STA = 0x8400;

PWM1

PWM1

int m,p; signed char n; main () { IEC0=0x0200; // Enable Interrupt for UART 1 Rx U1MODE = 0x8400; U1STA = 0x8400; U1BRG = 51; // BRG=((16000000/19200)/16)-1 Delay_ms(100); TRISB=0b11111101; PORTB.F1=0; m=Pwm_Mc_Init(40000,1,0xFF,0x00); Pwm_MC_Set_Duty(m,2); Pwm_MC_Set_Duty(m,1); Pwm_Mc_Start(); while(1) { Delay_ms(1000); PORTB.F1=0; } }

m=Pwm_Mc_Init(40000,1,0xFF,0x00);

PWM1

void interrupt_UART1() org 0x000026 { PORTB.F1=1; n=U1RXREG&0x07; switch (n) { case 1: p=-2; goto FLAG; case 2: p=-1; goto FLAG; case 3: p=1; goto FLAG; case 4: p=2; goto FLAG; default : goto END; FLAG: p=m+(m*p)/2; Pwm_MC_Set_Duty(p,1); Pwm_MC_Set_Duty(p,2); END: IFS0=0x0000; } }

PWM2

int m,p; signed char n; main () { IEC0=0x8200; // Enable Interrupt for UART 1 Rx U1MODE = 0x8400; U1STA = 0x8400; U1BRG = 51; // BRG=((16000000/19200)/16)-1 CNEN1=0x0020; Delay_ms(100); ADPCFG = 0xFFFF; TRISB=0b11111101; PORTB.F1=0; m=Pwm_Mc_Init(40000,1,0xFF,0x00); Pwm_MC_Set_Duty(m,2); Pwm_MC_Set_Duty(m,1); Pwm_Mc_Start(); while(1) { Delay_ms(1000); PORTB.F1=0; } }

PWM2

PWM2

void interrupt_UART1() org 0x000026 { PORTB.F1=1; n=U1RXREG&0x07; switch (n) { case 1: p=-2; goto FLAG; case 2: p=-1; goto FLAG; case 3: p=1; goto FLAG; case 4: p=2; goto FLAG; default : goto END; FLAG: p=m+(m*p)/2; Pwm_MC_Set_Duty(p,1); Pwm_MC_Set_Duty(p,2); END: IFS0=IFS0&0b1111110111111111; } } void interrupt_CN() org 0x000032 { Pwm_MC_Set_Duty(0,1); Pwm_MC_Set_Duty(0,2); IFS0=IFS0&0b011111111111; }

Low Frequency PWM

The Indicated project settings, together with the code bellow were able to produce a 50 Hz PWM signal.

int m; main () { ADPCFG = 0xFFFF; TRISE=0b11110010; TRISF=0b11111110; PORTE.F3=1; PORTB.F0=1;

m=Pwm_Mc_Init(50,1,0xFF,0x00); Pwm_MC_Set_Duty(m,1); Pwm_MC_Set_Duty(m,2); Pwm_Mc_Start(); while(1) { PORTF.F0=1; } }

top related