cable sizing calc

Post on 26-Jan-2016

168 Views

Category:

Documents

16 Downloads

Preview:

Click to see full reader

DESCRIPTION

Cable Sizing Sample

TRANSCRIPT

Prepared by: JR Ejorcadas BLOCK No. 1

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage =240 V kVAresidential = 41.22 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

41.222 + (0.16 x 10) = 42.82 kVA No. of Bundles: 1kVANORTH= kVA SpanNORTH = 128.69 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (42.822 x1000)/240= 178.425 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (128.686 ÷ 42.822)x150= 450.771 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 178.425 x 450.771) / (12 x 1)= 160858 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 000 AWG Copper Conductor, 2-Wires7 Strands Hard Drawn Copper Conductor

167806 CMILS

(For 3 ft. Spacing Between Two 167806 CM Wires:)Based on Table

Ra = 0.382 Ω/mileXa = 0.518 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.651 Ω/mile

Reactance and Resistance Ratio (X t/Ra):Ratio= Xt ÷ Ra

= 0.651307678568674 ÷ 0.382= 1.705

Based on Table : AC DROP FACTOR @ 85% = 1.85

167806

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 178.425 x 450.771) ÷ (167806 x 1)= 11.503 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.503 x 1.85= 21.281 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (21.281 ÷ 240) x 100 = 8.867 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 56.80 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 56.796 + (0.16 x 10) = 58.40 kVA No. of Bundles: 1kVA SpanSOUTH = 129.25 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (58.396 x1000)/240 = 243.317 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (129.252 ÷ 58.396)x150 = 332.006 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 243.317 x 332.006) / (12 x 1)= 161565 CM ≈ 167806 CM

Based on Table For Circular Mill:

Use: No. 000 AWG Copper Conductor, 2-Wires167806 7 Strands Hard Drawn Copper Conductor

167806 CMILS

(For 3 ft. Spacing Between Two 167806 CM Wires:)Based on Table

Ra = 0.382 Ω/mileXa = 0.518 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6513 Ω/mile

Reactance and Resistance Ratio (X t/Ra):Ratio= Xt ÷ Ra

= 0.651307678568674 ÷ 0.382= 1.705

Based on Table : AC DROP FACTOR @ 85% = 1.85

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 243.317 x 332.006) ÷ (167806 x 1)= 11.554 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.554 x 1.85= 21.375 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (21.375 ÷ 240) x 100= 8.906 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 2

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 52.60 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 52.6 + (0.16 x 10) = 54.20 kVA No. of Bundles: 1kVA SpanNORTH = 189.18 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (54.2 x1000)/240= 225.833 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (189.178 ÷ 54.2)x150= 523.555 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 225.833 x 523.555) / (12 x 1)= 236472 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 225.833 x 523.555) ÷ (250000 x 1)= 11.351 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.351 x 3.1= 35.188 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (35.188 ÷ 240) x 100= 14.662 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 65.41 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 65.408 + (0.16 x 10) = 67.01 kVA No. of Bundles: 1kVA SpanSOUTH = 188.81 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (67.008 x1000)/240= 279.200 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (188.81 ÷ 67.008)x150= 422.658 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 279.200 x 422.658) / (12 x 1)= 236012 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 279.200 x 422.658) ÷ (250000 x 1)= 11.329 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.329 x 3.1= 35.120 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (35.120 ÷ 240) x 100= 14.633 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 3

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 78.00 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 77.996 + (0.16 x 10) = 79.60 kVA No. of Bundles: 1kVA SpanNORTH = 287.64 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (79.596 x1000)/240= 331.650 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (287.642 ÷ 79.596)x150= 542.066 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 331.650 x 542.066) / (12 x 1)= 359552 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 331.650 x 542.066) ÷ (400000 x 1)= 10.787 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.787 x 3.1= 33.440 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (33.440 ÷ 240) x 100= 13.933 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 63.90 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 63.9 + (0.16 x 10) = 65.50 kVA No. of Bundles: 1kVA SpanSOUTH = 288.16 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (65.5 x1000)/240= 272.917 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (288.164 ÷ 65.5)x150= 659.918 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 272.917 x 659.918) / (12 x 1)= 360206 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 272.917 x 659.918) ÷ (400000 x 1)= 10.806 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.806 x 3.1= 33.499 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (33.499 ÷ 240) x 100= 13.958 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 4

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 57.75 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 57.746 + (0.16 x 10) = 59.35 kVA No. of Bundles: 1kVA SpanNORTH = 256.93 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (59.346 x1000)/240= 247.275 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (256.926 ÷ 59.346)x150= 649.393 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 247.275 x 649.393) / (12 x 1)= 321157 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 247.275 x 649.393) ÷ (400000 x 1)= 9.635 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.635 x 3.1= 29.869 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.869 ÷ 240) x 100= 12.445 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 59.15 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 59.152 + (0.16 x 10) = 60.75 kVA No. of Bundles: 1kVA SpanSOUTH = 256.89 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (60.752 x1000)/240= 253.133 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (256.892 ÷ 60.752)x150= 634.280 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 253.133 x 634.280) / (12 x 1)= 321114 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 253.133 x 634.280) ÷ (400000 x 1)= 9.633 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.633 x 3.1= 29.862 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.862 ÷ 240) x 100= 12.443 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 5

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 79.16 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 79.164 + (0.16 x 10) = 80.76 kVA No. of Bundles: 1kVA SpanNORTH = 280.44 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (80.764 x1000)/240= 336.517 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (280.438 ÷ 80.764)x150= 520.847 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 336.517 x 520.847) / (12 x 1)= 350548 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 336.517 x 520.847) ÷ (400000 x 1)= 10.516 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.516 x 3.1= 32.600 V

400000

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (32.600 ÷ 240) x 100= 13.583 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 64.98 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 64.978 + (0.16 x 10) = 66.58 kVA No. of Bundles: 1kVA SpanSOUTH = 279.69 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (66.578 x1000)/240= 277.408 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (279.694 ÷ 66.578)x150= 630.150 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 277.408 x 630.150) / (12 x 1)= 349617 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 277.408 x 630.150) ÷ (400000 x 1)= 10.489 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.489 x 3.1= 32.516 V

400000

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (32.516 ÷ 240) x 100= 13.548 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 6

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 53.96 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 53.958 + (0.16 x 10) = 55.56 kVA No. of Bundles: 1kVA SpanNORTH = 254.52 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (55.558 x1000)/240= 231.492 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (254.518 ÷ 55.558)x150= 687.168 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 231.492 x 687.168) / (12 x 1)= 318148 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 231.492 x 687.168) ÷ (400000 x 1)= 9.544 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.544 x 2.6= 24.814 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (24.814 ÷ 240) x 100= 10.339 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 64.04 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 64.044 + (0.16 x 10) = 65.64 kVA No. of Bundles: 1kVA SpanSOUTH = 255.19 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (65.644 x1000)/240= 273.517 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (255.192 ÷ 65.644)x150= 583.127 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 273.517 x 583.127) / (12 x 1)= 318990 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 273.517 x 583.127) ÷ (400000 x 1)= 9.570 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.570 x 2.6= 24.882 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (24.882 ÷ 240) x 100= 10.368 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 7

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 50.67 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 50.672 + (0.16 x 10) = 52.27 kVA No. of Bundles: 1kVA SpanNORTH = 192.12 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (52.272 x1000)/240= 217.800 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (192.12 ÷ 52.272)x150= 551.309 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 217.800 x 551.309) / (12 x 1)= 240150 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.62 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 217.800 x 551.309) ÷ (250000 x 1)= 11.527 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.527 x 2.28= 26.282 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.282 ÷ 240) x 100= 10.951 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 46.42 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 46.418 + (0.16 x 10) = 48.02 kVA No. of Bundles: 1kVA SpanSOUTH = 191.17 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (48.018 x1000)/240= 200.075 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (191.174 ÷ 48.018)x150= 597.195 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 200.075 x 597.195) / (12 x 1)= 238968 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6203 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 200.075 x 597.195) ÷ (250000 x 1)= 11.470 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.470 x 2.28= 26.152 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.152 ÷ 240) x 100= 10.897 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 8

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 71.65 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 71.648 + (0.16 x 10) = 73.25 kVA No. of Bundles: 1kVA SpanNORTH = 262.86 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (73.248 x1000)/240= 305.200 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (262.858 ÷ 73.248)x150= 538.290 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 305.200 x 538.290) / (12 x 1)= 328572 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 305.200 x 538.290) ÷ (400000 x 1)= 9.857 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.857 x 3.1= 30.557 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.557 ÷ 240) x 100= 12.732 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 75.02 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 75.018 + (0.16 x 10) = 76.62 kVA No. of Bundles: 1kVA SpanSOUTH = 263.43 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (76.618 x1000)/240= 319.242 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (263.426 ÷ 76.618)x150= 515.726 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 319.242 x 515.726) / (12 x 1)= 329283 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 319.242 x 515.726) ÷ (400000 x 1)= 9.878 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.878 x 3.1= 30.622 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.622 ÷ 240) x 100= 12.759 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 9

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 78.07 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 78.068 + (0.16 x 10) = 79.67 kVA No. of Bundles: 1kVA SpanNORTH = 294.48 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (79.668 x1000)/240= 331.950 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (294.484 ÷ 79.668)x150= 554.459 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 331.950 x 554.459) / (12 x 1)= 368105 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 331.950 x 554.459) ÷ (400000 x 1)= 11.043 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.043 x 3.1= 34.233 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.233 ÷ 240) x 100= 14.264 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 67.05 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 67.048 + (0.16 x 10) = 68.65 kVA No. of Bundles: 1kVA SpanSOUTH = 294.48 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (68.648 x1000)/240= 286.033 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (294.484 ÷ 68.648)x150= 643.465 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 286.033 x 643.465) / (12 x 1)= 368104 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 286.033 x 643.465) ÷ (400000 x 1)= 11.043 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.043 x 3.1= 34.233 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.233 ÷ 240) x 100= 14.264 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 10

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.13 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 48.132 + (0.16 x 10) = 49.73 kVA No. of Bundles: 1kVA SpanNORTH = 179.28 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (49.732 x1000)/240= 207.217 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (179.276 ÷ 49.732)x150= 540.726 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 207.217 x 540.726) / (12 x 1)= 224095 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.62 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 207.217 x 540.726) ÷ (250000 x 1)= 10.757 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.757 x 2.28= 24.526 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (24.526 ÷ 240) x 100= 10.219 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 45.00 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 44.996 + (0.16 x 10) = 46.60 kVA No. of Bundles: 1kVA SpanSOUTH = 179.28 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (46.596 x1000)/240= 194.150 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (179.276 ÷ 46.596)x150= 577.118 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 194.150 x 577.118) / (12 x 1)= 224095 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6203 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 194.150 x 577.118) ÷ (250000 x 1)= 10.757 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.757 x 2.28= 24.526 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (24.526 ÷ 240) x 100= 10.219 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 11

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 44.68 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 44.676 + (0.16 x 10) = 46.28 kVA No. of Bundles: 1kVA SpanNORTH = 191.89 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (46.276 x1000)/240= 192.817 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (191.888 ÷ 46.276)x150= 621.990 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 192.817 x 621.990) / (12 x 1)= 239860 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 192.817 x 621.990) ÷ (250000 x 1)= 11.513 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.513 x 3.1= 35.690 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (35.690 ÷ 240) x 100= 14.871 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 54.91 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 54.912 + (0.16 x 10) = 56.51 kVA No. of Bundles: 1kVA SpanSOUTH = 191.93 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (56.512 x1000)/240= 235.467 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (191.932 ÷ 56.512)x150= 509.446 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 235.467 x 509.446) / (12 x 1)= 239915 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 235.467 x 509.446) ÷ (250000 x 1)= 11.516 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.516 x 3.1= 35.700 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (35.700 ÷ 240) x 100= 14.875 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 12

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 77.11 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 77.114 + (0.16 x 10) = 78.71 kVA No. of Bundles: 1kVA SpanNORTH = 294.14 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (78.714 x1000)/240= 327.975 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (294.142 ÷ 78.714)x150= 560.527 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 327.975 x 560.527) / (12 x 1)= 367678 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 327.975 x 560.527) ÷ (400000 x 1)= 11.030 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.030 x 3.1= 34.193 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.193 ÷ 240) x 100= 14.247 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 70.82 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 70.82 + (0.16 x 10) = 72.42 kVA No. of Bundles: 1kVA SpanSOUTH = 293.34 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (72.42 x1000)/240= 301.750 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (293.336 ÷ 72.42)x150= 607.572 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 301.750 x 607.572) / (12 x 1)= 366670 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 301.750 x 607.572) ÷ (400000 x 1)= 11.000 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.000 x 3.1= 34.100 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.100 ÷ 240) x 100= 14.208 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 13

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 65.47 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 65.468 + (0.16 x 10) = 67.07 kVA No. of Bundles: 1kVA SpanNORTH = 270.21 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (67.068 x1000)/240= 279.450 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (270.208 ÷ 67.068)x150= 604.330 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 279.450 x 604.330) / (12 x 1)= 337760 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 279.450 x 604.330) ÷ (400000 x 1)= 10.133 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.133 x 3.1= 31.412 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (31.412 ÷ 240) x 100= 13.088 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 65.16 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 65.16 + (0.16 x 10) = 66.76 kVA No. of Bundles: 1kVA SpanSOUTH = 270.71 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (66.76 x1000)/240= 278.167 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (270.712 ÷ 66.76)x150= 608.250 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 278.167 x 608.250) / (12 x 1)= 338390 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 278.167 x 608.250) ÷ (400000 x 1)= 10.152 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.152 x 3.1= 31.471 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (31.471 ÷ 240) x 100= 13.113 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 14

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.61 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 48.614 + (0.16 x 10) = 50.21 kVA No. of Bundles: 1kVA SpanNORTH = 163.92 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (50.214 x1000)/240= 209.225 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (163.918 ÷ 50.214)x150= 489.658 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 209.225 x 489.658) / (12 x 1)= 204897 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.629 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 209.225 x 489.658) ÷ (211600 x 1)= 11.620 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.620 x 2.03= 23.589 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (23.589 ÷ 240) x 100= 9.829 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 50.68 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 50.684 + (0.16 x 10) = 52.28 kVA No. of Bundles: 1kVA SpanSOUTH = 163.03 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (52.284 x1000)/240= 217.850 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (163.028 ÷ 52.284)x150= 467.719 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 217.850 x 467.719) / (12 x 1)= 203785 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6293 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 217.850 x 467.719) ÷ (211600 x 1)= 11.557 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.557 x 2.03= 23.461 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (23.461 ÷ 240) x 100= 9.775 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 15

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 68.15 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 68.152 + (0.16 x 10) = 69.75 kVA No. of Bundles: 1kVA SpanNORTH = 214.62 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (69.752 x1000)/240= 290.633 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (214.624 ÷ 69.752)x150= 461.544 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 290.633 x 461.544) / (12 x 1)= 268280 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 290.633 x 461.544) ÷ (300000 x 1)= 10.731 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.731 x 2.6= 27.901 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (27.901 ÷ 240) x 100= 11.625 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 56.81 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 56.812 + (0.16 x 10) = 58.41 kVA No. of Bundles: 1kVA SpanSOUTH = 214.28 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (58.412 x1000)/240= 243.383 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (214.284 ÷ 58.412)x150= 550.274 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 243.383 x 550.274) / (12 x 1)= 267855 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 243.383 x 550.274) ÷ (300000 x 1)= 10.714 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.714 x 2.6= 27.856 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (27.856 ÷ 240) x 100= 11.607 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 16

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 63.72 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 63.724 + (0.16 x 10) = 65.32 kVA No. of Bundles: 1kVA SpanNORTH = 209.51 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (65.324 x1000)/240= 272.183 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (209.512 ÷ 65.324)x150= 481.091 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 272.183 x 481.091) / (12 x 1)= 261890 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 272.183 x 481.091) ÷ (300000 x 1)= 10.476 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.476 x 2.6= 27.238 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (27.238 ÷ 240) x 100= 11.349 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 55.70 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 55.696 + (0.16 x 10) = 57.30 kVA No. of Bundles: 1kVA SpanSOUTH = 209.18 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (57.296 x1000)/240= 238.733 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (209.18 ÷ 57.296)x150= 547.630 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 238.733 x 547.630) / (12 x 1)= 261475 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 238.733 x 547.630) ÷ (300000 x 1)= 10.459 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.459 x 2.6= 27.193 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (27.193 ÷ 240) x 100= 11.330 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 17

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.78 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 48.784 + (0.16 x 10) = 50.38 kVA No. of Bundles: 1kVA SpanNORTH = 236.36 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (50.384 x1000)/240= 209.933 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (236.356 ÷ 50.384)x150= 703.664 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 209.933 x 703.664) / (12 x 1)= 295445 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 209.933 x 703.664) ÷ (300000 x 1)= 11.818 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.818 x 2.6= 30.727 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.727 ÷ 240) x 100= 12.803 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 49.88 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 49.876 + (0.16 x 10) = 51.48 kVA No. of Bundles: 1kVA SpanSOUTH = 235.70 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (51.476 x1000)/240= 214.483 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (235.7 ÷ 51.476)x150= 686.825 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 214.483 x 686.825) / (12 x 1)= 294625 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 214.483 x 686.825) ÷ (300000 x 1)= 11.785 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.785 x 2.6= 30.641 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.641 ÷ 240) x 100= 12.767 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 18

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 46.56 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 46.564 + (0.16 x 10) = 48.16 kVA No. of Bundles: 1kVA SpanNORTH = 195.52 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (48.164 x1000)/240= 200.683 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (195.52 ÷ 48.164)x150= 608.920 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 200.683 x 608.920) / (12 x 1)= 244400 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.62 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 200.683 x 608.920) ÷ (250000 x 1)= 11.731 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.731 x 2.28= 26.747 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.747 ÷ 240) x 100= 11.145 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.00 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 48 + (0.16 x 10) = 49.60 kVA No. of Bundles: 1kVA SpanSOUTH = 195.91 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (49.6 x1000)/240= 206.667 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (195.908 ÷ 49.6)x150= 592.464 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 206.667 x 592.464) / (12 x 1)= 244886 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6203 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 206.667 x 592.464) ÷ (250000 x 1)= 11.755 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.755 x 2.28= 26.801 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.801 ÷ 240) x 100= 11.167 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 19

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 59.63 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 59.634 + (0.16 x 10) = 61.23 kVA No. of Bundles: 1kVA SpanNORTH = 253.14 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (61.234 x1000)/240= 255.142 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (253.144 ÷ 61.234)x150= 620.106 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 255.142 x 620.106) / (12 x 1)= 316430 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 255.142 x 620.106) ÷ (400000 x 1)= 9.493 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.493 x 3.1= 29.428 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.428 ÷ 240) x 100= 12.262 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 59.48 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 59.484 + (0.16 x 10) = 61.08 kVA No. of Bundles: 1kVA SpanSOUTH = 253.20 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (61.084 x1000)/240= 254.517 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (253.196 ÷ 61.084)x150= 621.757 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 254.517 x 621.757) / (12 x 1)= 316495 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 254.517 x 621.757) ÷ (400000 x 1)= 9.495 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.495 x 3.1= 29.435 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.435 ÷ 240) x 100= 12.265 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 20

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 33.28 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 33.278 + (0.16 x 10) = 34.88 kVA No. of Bundles: 1kVA SpanNORTH = 100.80 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (34.878 x1000)/240= 145.325 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (100.796 ÷ 34.878)x150= 433.494 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 145.325 x 433.494) / (12 x 1)= 125995 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 00 AWG Copper Conductor, 2-Wires133077 7 Strands Hard Drawn Copper Conductor

133077 CMILS

(For 3 ft. Spacing Between Two 133077 CM Wires:)Based on Table

Ra = 0.48 Ω/mileXa = 0.532 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.665 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

133077

Ratio= Xt ÷ Ra

= 0.665307678568674 ÷ 0.48= 1.3861

Based on Table : AC DROP FACTOR @ 85% = 1.61

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 145.325 x 433.494) ÷ (133077 x 1)= 11.361 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.361 x 1.61= 18.291 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (18.291 ÷ 240) x 100= 7.621 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 39.48 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 39.482 + (0.16 x 10) = 41.08 kVA No. of Bundles: 1kVA SpanSOUTH = 100.63 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (41.082 x1000)/240= 171.175 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (100.628 ÷ 41.082)x150= 367.416 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 171.175 x 367.416) / (12 x 1)= 125785 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 00 AWG Copper Conductor, 2-Wires133077 7 Strands Hard Drawn Copper Conductor

133077 CMILS

(For 3 ft. Spacing Between Two 133077 CM Wires:)Based on Table

Ra = 0.48 Ω/mileXa = 0.532 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6653 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

133077

Ratio= Xt ÷ Ra

= 0.665307678568674 ÷ 0.48= 1.3861

Based on Table : AC DROP FACTOR @ 85% = 1.61

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 171.175 x 367.416) ÷ (133077 x 1)= 11.342 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.342 x 1.61= 18.261 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (18.261 ÷ 240) x 100= 7.609 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 21

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 46.97 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 46.97 + (0.16 x 10) = 48.57 kVA No. of Bundles: 1kVA SpanNORTH = 144.08 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (48.57 x1000)/240= 202.375 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (144.08 ÷ 48.57)x150= 444.966 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 202.375 x 444.966) / (12 x 1)= 180100 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 000 AWG Copper Conductor, 2-Wires167806 7 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.382 Ω/mileXa = 0.518 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.651 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Ratio= Xt ÷ Ra

= 0.651307678568674 ÷ 0.382= 1.705

Based on Table : AC DROP FACTOR @ 85% = 1.85

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 202.375 x 444.966) ÷ (211600 x 1)= 10.214 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.214 x 1.85= 18.896 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (18.896 ÷ 240) x 100= 7.873 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 48.61 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 48.614 + (0.16 x 10) = 50.21 kVA No. of Bundles: 1kVA SpanSOUTH = 144.84 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (50.214 x1000)/240= 209.225 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (144.84 ÷ 50.214)x150= 432.668 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 209.225 x 432.668) / (12 x 1)= 181050 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 000 AWG Copper Conductor, 2-Wires167806 7 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.382 Ω/mileXa = 0.518 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6513 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Ratio= Xt ÷ Ra

= 0.651307678568674 ÷ 0.382= 1.705

Based on Table : AC DROP FACTOR @ 85% = 1.85

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 209.225 x 432.668) ÷ (211600 x 1)= 10.267 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.267 x 1.85= 18.994 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (18.994 ÷ 240) x 100= 7.914 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 22

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 61.08 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 61.08 + (0.16 x 10) = 62.68 kVA No. of Bundles: 1kVA SpanNORTH = 236.48 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (62.68 x1000)/240= 261.167 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (236.482 ÷ 62.68)x150= 565.927 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 261.167 x 565.927) / (12 x 1)= 295603 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 261.167 x 565.927) ÷ (300000 x 1)= 11.824 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.824 x 2.6= 30.742 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.742 ÷ 240) x 100= 12.809 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 61.61 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 61.608 + (0.16 x 10) = 63.21 kVA No. of Bundles: 1kVA SpanSOUTH = 237.09 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (63.208 x1000)/240= 263.367 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (237.094 ÷ 63.208)x150= 562.652 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 263.367 x 562.652) / (12 x 1)= 296368 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 263.367 x 562.652) ÷ (300000 x 1)= 11.855 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.855 x 2.6= 30.823 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.823 ÷ 240) x 100= 12.843 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 23

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 76.67 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 76.672 + (0.16 x 10) = 78.27 kVA No. of Bundles: 1kVA SpanNORTH = 290.05 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (78.272 x1000)/240= 326.133 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (290.05 ÷ 78.272)x150= 555.850 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 326.133 x 555.850) / (12 x 1)= 362562 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 326.133 x 555.850) ÷ (400000 x 1)= 10.877 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.877 x 3.1= 33.719 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (33.719 ÷ 240) x 100= 14.050 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 69.17 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 69.172 + (0.16 x 10) = 70.77 kVA No. of Bundles: 1kVA SpanSOUTH = 289.66 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (70.772 x1000)/240= 294.883 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (289.662 ÷ 70.772)x150= 613.933 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 294.883 x 613.933) / (12 x 1)= 362077 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 294.883 x 613.933) ÷ (400000 x 1)= 10.862 V

Vac Drop = Vdc Actual x AC Drop Factor= 10.862 x 3.1= 33.672 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (33.672 ÷ 240) x 100= 14.030 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 24

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 44.37 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 44.374 + (0.16 x 10) = 45.97 kVA No. of Bundles: 1kVA SpanNORTH = 137.36 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (45.974 x1000)/240= 191.558 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (137.356 ÷ 45.974)x150= 448.153 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 191.558 x 448.153) / (12 x 1)= 171695 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.629 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 191.558 x 448.153) ÷ (211600 x 1)= 9.737 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.737 x 2.03= 19.766 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (19.766 ÷ 240) x 100= 8.236 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 49.65 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 49.654 + (0.16 x 10) = 51.25 kVA No. of Bundles: 1kVA SpanSOUTH = 137.11 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (51.254 x1000)/240= 213.558 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (137.114 ÷ 51.254)x150= 401.278 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 213.558 x 401.278) / (12 x 1)= 171392 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6293 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 213.558 x 401.278) ÷ (211600 x 1)= 9.720 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.720 x 2.03= 19.732 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (19.732 ÷ 240) x 100= 8.222 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 25

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 60.11 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 60.11 + (0.16 x 10) = 61.71 kVA No. of Bundles: 1kVA SpanNORTH = 241.85 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (61.71 x1000)/240= 257.125 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (241.846 ÷ 61.71)x150= 587.861 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 257.125 x 587.861) / (12 x 1)= 302308 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 257.125 x 587.861) ÷ (400000 x 1)= 9.069 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.069 x 3.1= 28.114 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (28.114 ÷ 240) x 100= 11.714 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 59.89 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 59.89 + (0.16 x 10) = 61.49 kVA No. of Bundles: 1kVA SpanSOUTH = 241.64 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (61.49 x1000)/240= 256.208 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (241.638 ÷ 61.49)x150= 589.457 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 256.208 x 589.457) / (12 x 1)= 302047 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 256.208 x 589.457) ÷ (400000 x 1)= 9.061 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.061 x 3.1= 28.089 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (28.089 ÷ 240) x 100= 11.704 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 26

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 66.33 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 66.334 + (0.16 x 10) = 67.93 kVA No. of Bundles: 1kVA SpanNORTH = 254.51 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (67.934 x1000)/240= 283.058 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (254.506 ÷ 67.934)x150= 561.956 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 283.058 x 561.956) / (12 x 1)= 318132 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 283.058 x 561.956) ÷ (400000 x 1)= 9.544 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.544 x 3.1= 29.586 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.586 ÷ 240) x 100= 12.328 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 78.88 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 78.88 + (0.16 x 10) = 80.48 kVA No. of Bundles: 1kVA SpanSOUTH = 255.07 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (80.48 x1000)/240= 335.333 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (255.07 ÷ 80.48)x150= 475.404 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 335.333 x 475.404) / (12 x 1)= 318837 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 335.333 x 475.404) ÷ (400000 x 1)= 9.565 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.565 x 3.1= 29.652 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (29.652 ÷ 240) x 100= 12.355 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 27

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 55.79 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 55.793 + (0.16 x 10) = 57.39 kVA No. of Bundles: 1kVA SpanNORTH = 137.82 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (57.393 x1000)/240= 239.138 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (137.821 ÷ 57.393)x150= 360.203 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 239.138 x 360.203) / (12 x 1)= 172276 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.629 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 239.138 x 360.203) ÷ (211600 x 1)= 9.770 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.770 x 2.03= 19.833 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (19.833 ÷ 240) x 100= 8.264 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 40.58 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 40.579 + (0.16 x 10) = 42.18 kVA No. of Bundles: 1kVA SpanSOUTH = 137.39 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (42.179 x1000)/240= 175.746 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (137.393 ÷ 42.179)x150= 488.607 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 175.746 x 488.607) / (12 x 1)= 171741 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 0000 AWG Copper Conductor, 2-Wires211600 19 Strands Hard Drawn Copper Conductor

211600 CMILS

(For 3 ft. Spacing Between Two 211600 CM Wires:)Based on Table

Ra = 0.303 Ω/mileXa = 0.496 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6293 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

211600

Ratio= Xt ÷ Ra

= 0.629307678568674 ÷ 0.303= 2.0769

Based on Table : AC DROP FACTOR @ 85% = 2.03

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 175.746 x 488.607) ÷ (211600 x 1)= 9.740 V

Vac Drop = Vdc Actual x AC Drop Factor= 9.740 x 2.03= 19.772 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (19.772 ÷ 240) x 100= 8.238 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 28

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 73.90 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 73.902 + (0.16 x 10) = 75.50 kVA No. of Bundles: 1kVA SpanNORTH = 294.63 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (75.502 x1000)/240= 314.592 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (294.628 ÷ 75.502)x150= 585.338 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 314.592 x 585.338) / (12 x 1)= 368285 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.591 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 314.592 x 585.338) ÷ (400000 x 1)= 11.049 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.049 x 3.1= 34.252 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.252 ÷ 240) x 100= 14.272 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 71.22 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 71.218 + (0.16 x 10) = 72.82 kVA No. of Bundles: 1kVA SpanSOUTH = 295.18 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (72.818 x1000)/240= 303.408 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (295.176 ÷ 72.818)x150= 608.042 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 303.408 x 608.042) / (12 x 1)= 368970 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 400 MCM Copper Conductor, 2-Wires400000 19 Strands Hard Drawn Copper Conductor

400000 CMILS

(For 3 ft. Spacing Between Two 400000 CM Wires:)Based on Table

Ra = 0.162 Ω/mileXa = 0.458 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.5913 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

400000

Ratio= Xt ÷ Ra

= 0.591307678568674 ÷ 0.162= 3.65

Based on Table : AC DROP FACTOR @ 85% = 3.1

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 303.408 x 608.042) ÷ (400000 x 1)= 11.069 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.069 x 3.1= 34.314 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (34.314 ÷ 240) x 100= 14.298 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 29

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 49.03 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 49.03 + (0.16 x 10) = 50.63 kVA No. of Bundles: 1kVA SpanNORTH = 233.92 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (50.63 x1000)/240= 210.958 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (233.924 ÷ 50.63)x150= 693.040 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 210.958 x 693.040) / (12 x 1)= 292405 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.609 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 210.958 x 693.040) ÷ (300000 x 1)= 11.696 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.696 x 2.6= 30.410 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.410 ÷ 240) x 100= 12.671 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 47.30 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 47.302 + (0.16 x 10) = 48.90 kVA No. of Bundles: 1kVA SpanSOUTH = 234.70 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (48.902 x1000)/240= 203.758 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (234.696 ÷ 48.902)x150= 719.897 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 203.758 x 719.897) / (12 x 1)= 293370 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 300 MCM Copper Conductor, 2-Wires300000 19 Strands Hard Drawn Copper Conductor

300000 CMILS

(For 3 ft. Spacing Between Two 300000 CM Wires:)Based on Table

Ra = 0.215 Ω/mileXa = 0.476 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6093 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

300000

Ratio= Xt ÷ Ra

= 0.609307678568674 ÷ 0.215= 2.834

Based on Table : AC DROP FACTOR @ 85% = 2.6

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 203.758 x 719.897) ÷ (300000 x 1)= 11.735 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.735 x 2.6= 30.511 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (30.511 ÷ 240) x 100= 12.713 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Prepared by: JR Ejorcadas BLOCK No. 30

North Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 52.85 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVANORTH = 52.854 + (0.16 x 10) = 54.45 kVA No. of Bundles: 1kVA SpanNORTH = 194.86 kVA

Total Current Computation:INORTH = (kVANORTH) ÷ (System Voltage)

= (54.454 x1000)/240= 226.892 A

Total Distance Computation:

dNORTH = (kVA-SpanNORTH ÷ kVANORTH) x (Pole Distance)= (194.864 ÷ 54.454)x150= 536.776 ft

Circular Mill Computation:CM = (24 x INORTH x dNORTH ) / (VDC x B)

= (24 x 226.892 x 536.776) / (12 x 1)= 243580 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.133 Ω/mile

Xt = Xa + Xd = 0.62 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x INORTH x dNORTH) ÷ (CM x B)= (24 x 226.892 x 536.776) ÷ (250000 x 1)= 11.692 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.692 x 2.28= 26.658 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.658 ÷ 240) x 100= 11.108 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

South Side Computations:

Pole Distance = 150 ft # of Poles = 10 polesSystem Voltage = 240 V kVAresidential = 43.19 kVAVoltage Drop = 5 %

VDC = System Voltage x Voltage Drop = 240 x 0.05 = 12 V

kVASOUTH = 43.194 + (0.16 x 10) = 44.79 kVA No. of Bundles: 1kVA SpanSOUTH = 193.98 kVA

Total Current Computation:ISOUTH = (kVASOUTH) ÷ (System Voltage)

= (44.794 x1000)/240= 186.642 A

Total Distance Computation:

dSOUTH = (kVA-SpanSOUTH ÷ kVASOUTH) x (Pole Distance)= (193.976 ÷ 44.794)x150= 649.560 ft

Circular Mill Computation:CM = (24 x ISOUTH x dSOUTH ) / (VDC x B)

= (24 x 186.642 x 649.560) / (12 x 1)= 242470 CM ≈ CM

Based on Table For Circular Mill:

Use: No. 250 MCM Copper Conductor, 2-Wires250000 19 Strands Hard Drawn Copper Conductor

250000 CMILS

(For 3 ft. Spacing Between Two 250000 CM Wires:)Based on Table

Ra = 0.257 Ω/mileXa = 0.487 Ω/mileXd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile= 0.1333 Ω/mile

Xt = Xa + Xd = 0.6203 Ω/mile

Reactance and Resistance Ratio (X t/Ra):

250000

Ratio= Xt ÷ Ra

= 0.620307678568674 ÷ 0.257= 2.4136

Based on Table : AC DROP FACTOR @ 85% = 2.28

AC Voltage Drop Calculation:

Vdc Actual = (24 x ISOUTH x dSOUTH) ÷ (CM x B)= (24 x 186.642 x 649.560) ÷ (250000 x 1)= 11.639 V

Vac Drop = Vdc Actual x AC Drop Factor= 11.639 x 2.28= 26.537 V

Voltage Regulation Computation:

%VR = (Vac Drop ÷ System Voltage) x 100= (26.537 ÷ 240) x 100= 11.057 %

Note: The addditional 0.16 kVA per pole is the Street light Load per Pole

Per Block Transformers Sizing Calculation

Block No: 1

kVANORTH + kVASOUTH

= 42.822 + 58.396= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 2

kVANORTH + kVASOUTH

= 54.2 + 67.008= kVA

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

1Ф Transformer =

1Ф Transformer =

22.82

=

Vp x 125%

19.05

x 300%

Fuse Rating =126.5225

x 300%19.92

Fuse Rating = kVA x 1000

Primary Voltage

1Ф Transformer =

x 300% =19.92

121.21

At 80% Transformer Loading:

1Ф Transformer = 151.51

Primary Voltage

Fuse Rating =151.51

Fuse Rating = kVA x 1000

x 300%

101.22

126.52

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 3

kVANORTH + kVASOUTH

= 79.596 + 65.5= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 4

kVANORTH + kVASOUTH

= 59.346 + 60.752= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

1Ф Transformer = 181.37

Fuse Rating =

Fuse Rating =181.37

x 300%

1Ф Transformer = 150.12

Fuse Rating = kVA x 1000

x 300%Primary Voltage

Vp x 125%

1Ф Transformer =

120.10

= 27.3119.92

Vp x 125%

1Ф Transformer =

145.10

kVA x 1000 x 300%

Primary Voltage

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 5

kVANORTH + kVASOUTH

= 80.764 + 66.578= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 6

kVANORTH + kVASOUTH

= 55.558 + 65.644= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.92kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

1Ф Transformer = 151.50

121.20

1Ф Transformer =

Vp x 125%

Fuse Rating =184.1775

x 300% = 27.7419.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

1Ф Transformer = 184.18

147.34

1Ф Transformer =

Vp x 125%

Fuse Rating =150.1225

x 300% = 22.6119.92

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =151.5025

x 300% = 22.8219.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

Per Block Transformers Sizing Calculation

Block No: 7

kVANORTH + kVASOUTH

= 52.272 + 48.018= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 8

kVANORTH + kVASOUTH

= 73.248 + 76.618= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

= 28.2119.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

187.3325x 300%

x 300%Primary Voltage

Fuse Rating =125.3625

1Ф Transformer =

100.29

1Ф Transformer = 125.36

Fuse Rating = kVA x 1000

18.8819.92

Vp x 125%

1Ф Transformer =

1Ф Transformer = 187.33

=x 300%

149.87

Fuse Rating =

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 9

kVANORTH + kVASOUTH

= 79.668 + 68.648= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 10

kVANORTH + kVASOUTH

= 46.596 + 49.732= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kVPrimary Voltage

Fuse Rating = kVA x 1000

x 300%

1Ф Transformer = 120.41

96.33

Vp x 125%

1Ф Transformer =

19.92185.395

x 300% = 27.92

Primary Voltagex 300%

Vp x 125%

Fuse Rating =

kVA x 1000 Fuse Rating =

1Ф Transformer =

148.32

1Ф Transformer = 185.40

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 11

kVANORTH + kVASOUTH

= 46.276 + 56.512= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 12

kVANORTH + kVASOUTH

= 78.714 + 72.42= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

1Ф Transformer = 188.92

151.13

1Ф Transformer =

Vp x 125%

x 300% = 19.3519.92

Fuse Rating = kVA x 1000

Primary Voltage

Fuse Rating =128.485

x 300%

1Ф Transformer = 128.49

102.79

Vp x 125%

1Ф Transformer =

Fuse Rating =120.41

x 300% = 18.1319.92

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =188.9175

x 300% = 28.4519.92

x 300%Fuse Rating = kVA x 1000

Primary Voltage

Per Block Transformers Sizing Calculation

Block No: 13

kVANORTH + kVASOUTH

= 67.068 + 66.76= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 14

kVANORTH + kVASOUTH

= 50.214 + 52.284= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

= 19.3019.92

x 300%

Fuse Rating = kVA x 1000

x 300%Primary Voltage

1Ф Transformer =

1Ф Transformer =

Fuse Rating = kVA x 1000

19.92

Vp x 125%

1Ф Transformer =

133.83

1Ф Transformer = 128.12

x 300%Primary Voltage

Fuse Rating =167.285

x 300% = 25.19

167.29

102.50

Fuse Rating =128.1225

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 15

kVANORTH + kVASOUTH

= 69.752 + 58.412= kVA

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 16

kVANORTH + kVASOUTH

= 65.324 + 57.296= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kVPrimary Voltage

x 300%Fuse Rating = kVA x 1000

1Ф Transformer = 153.28

122.62

Vp x 125%

1Ф Transformer =

19.92160.205

x 300% = 24.13Fuse Rating =

At 80% Transformer Loading:

Primary Voltagex 300%Fuse Rating =

kVA x 1000

Vp x 125%

1Ф Transformer =

128.16

1Ф Transformer = 160.21

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 17

kVANORTH + kVASOUTH

= 50.384 + 51.476= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 18

kVANORTH + kVASOUTH

= 48.164 + 49.6= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

1Ф Transformer = 122.21

97.76

1Ф Transformer =

Vp x 125%

Fuse Rating =127.325

x 300% = 19.1819.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

127.331Ф Transformer =

101.86

Vp x 125%

1Ф Transformer =

Fuse Rating =153.275

x 300% = 23.0819.92

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =122.205

x 300% = 18.4019.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

Per Block Transformers Sizing Calculation

Block No: 19

kVANORTH + kVASOUTH

= 61.234 + 61.084= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 20

kVANORTH + kVASOUTH

= 34.878 + 41.082= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 100 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Fuse Rating =94.95

x 300% = 14.3019.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

= 23.0319.92

Vp x 125%

1Ф Transformer =

x 300%Primary Voltage

Fuse Rating =152.8975

x 300%

1Ф Transformer =

1Ф Transformer = 152.90

Fuse Rating = kVA x 1000

75.96

122.32

1Ф Transformer = 94.95

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 21

kVANORTH + kVASOUTH

= 48.57 + 50.214= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 22

kVANORTH + kVASOUTH

= 62.68 + 63.208= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

1Ф Transformer = 157.36

Primary VoltageFuse Rating =

kVA x 1000 x 300%

125.89

Vp x 125%

1Ф Transformer =

19.92123.48

x 300% = 18.60Fuse Rating =

1Ф Transformer = 123.48

Primary VoltageFuse Rating =

kVA x 1000 x 300%

98.78

1Ф Transformer =

Vp x 125%

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 23

kVANORTH + kVASOUTH

= 78.272 + 70.772= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 24

kVANORTH + kVASOUTH

= 45.974 + 51.254= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

121.541Ф Transformer =

97.23

1Ф Transformer =

Vp x 125%

Fuse Rating =186.305

x 300% = 28.0619.92

kVA x 1000 x 300%

Primary VoltageFuse Rating =

1Ф Transformer = 186.31

149.04

Vp x 125%

1Ф Transformer =

Fuse Rating =157.36

x 300% = 23.7019.92

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =121.535

x 300% = 18.3019.92

Primary VoltageFuse Rating =

kVA x 1000 x 300%

Per Block Transformers Sizing Calculation

Block No: 25

kVANORTH + kVASOUTH

= 61.71 + 61.49= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 167 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 26

kVANORTH + kVASOUTH

= 67.934 + 80.48= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

27.9419.92

=Fuse Rating =185.5175

x 300%

x 300%

= 23.1919.92

Vp x 125%

1Ф Transformer =

123.20

1Ф Transformer = 154.00

x 300%Primary Voltage

Fuse Rating =154

x 300%

1Ф Transformer =

Fuse Rating = kVA x 1000

148.41

1Ф Transformer = 185.52

Fuse Rating = kVA x 1000

Primary Voltage

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 27

kVANORTH + kVASOUTH

= 57.393 + 42.179= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 28

kVANORTH + kVASOUTH

= 75.502 + 72.818= kVA

At 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 200 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

1Ф Transformer = 185.40

kVA x 1000 x 300%

Primary VoltageFuse Rating =

148.32

Vp x 125%

1Ф Transformer =

124.465x 300% = 18.74

19.92Fuse Rating =

1Ф Transformer = 124.47

kVA x 1000 x 300%

Primary VoltageFuse Rating =

99.57

Vp x 125%

1Ф Transformer =

Use: 30 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion TypePer Block Transformers Sizing Calculation

Block No: 29

kVANORTH + kVASOUTH

= 50.63 + 48.902= kVA

For 80% Transformer Loading:

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Block No: 30

kVANORTH + kVASOUTH

= 54.454 + 44.794= kVA

kVA

For Transformer Specification:

Use: 125 kVA Distribution Transformer, 19.91kV/240V, 1ph, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)1H+G MECO Incoming

1Ф Transformer = 124.06

99.25

1Ф Transformer =

Vp x 125%

Fuse Rating =124.415

x 300% = 18.7419.92

Fuse Rating = kVA x 1000

x 300%Primary Voltage

1Ф Transformer = 124.42

99.53

Vp x 125%

1Ф Transformer =

Fuse Rating =185.4

x 300% = 27.9219.92

For Fuse Rating:

Where: Vp =19.92 kV

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

For Lightning Arrester:

L.A = = 19.92 kV (125%) = 24.9 kV

Use: 27 kV, Lightning Arrester, Expulsion Type

Vp x 125%

Fuse Rating =124.06

x 300% = 18.6819.92

x 300%Primary Voltage

Fuse Rating = kVA x 1000

Calculations for 3Ф Transformers:

Facility Name: SM Department Store - Silang

S = 33.06 kVA

At 80% Transformer Loading:S ÷ 80% = 33.06 ÷ 0.8 = 41.33 kVA

For Transformer Specification:Use: 45 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

59.65 = (33.06 x 1000 x 1.25)÷400√3 = 59.65 AUse: Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (33.06 ÷ (34.5 x √3)) x 300%= 1.66 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Cleanway Technology Corp.

S = 425 kVA

At 80% Transformer Loading:S ÷ 80% = 425 ÷ 0.8 = 531.25 kVA

For Transformer Specification:Use: 750 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

766.82 = (425 x 1000 x 1.25) ÷ 400√3 = 766.82 AUse: 3-No. 500 MCM + 1/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (425 ÷ (34.5 x √3)) x 300%= 21.34 A

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

3Ф Transformer =

3Ф Transformer =

3-No. 8 AWG + 8 AWG (G)

Facility Name: Hypermarket

S = 47.22 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Waltermart

S = 47.2 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Calculations for 3Ф Transformers:

Facility Name: FEU Silang-Cavite

S = 47.2 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Cavite State University

S = 47.2 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Calculations for 3Ф Transformers:

Facility Name: Silang Municipal Hall

S = 47.22 kVA

At 80% Transformer Loading:S ÷ 80% = 47.22 ÷ 0.8 = 59.03 kVA

For Transformer Specification:Use: 75 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

85.2 = (47.22 x 1000 x 1.25) ÷ 400√3 = 85.20 AUse: 3-No. 8 AWG + 8AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (47.22 ÷ (34.5 x √3)) x 300%= 2.37 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Philippine Oasis Hotel & Resort

S = 283.3 kVA

At 80% Transformer Loading:S ÷ 80% = 283.33 ÷ 0.8 = 354.16 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (Pad Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

511.2 = (283.33 x 1000 x 1.25) ÷ 400√3 = 511.20 AUse: 3-No. 250 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (283.33 ÷ (34.5 x √3)) x 300%= 14.22 A

3Ф Transformer =

3Ф Transformer =

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

Facility Name: The Hills Condotel

S = 188.9 kVA

At 80% Transformer Loading:S ÷ 80% = 188.89 ÷ 0.8 = 236.11 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

340.81 = (188.89 x 1000 x 1.25) ÷ 400√3 = 340.81 AUse: 3-No. 2/0 AWG + 4 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (188.89 ÷ (34.5 x √3)) x 300%= 9.48 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Renz Villa Hotel

S = 188.9 kVA

At 80% Transformer Loading:S ÷ 80% = 188.89 ÷ 0.8 = 236.11 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

340.81 = (188.89 x 1000 x 1.25) ÷ 400√3 = 340.81 AUse: 3-No. 2/0 AWG + 4 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (188.89 ÷ (34.5 x √3)) x 300%

3Ф Transformer =

3Ф Transformer =

= 9.48 AUse: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Calculations for 3Ф Transformers:

Facility Name: D-Zone Backpackers Inn

S = 94.44 kVA

At 80% Transformer Loading:S ÷ 80% = 94.44 ÷ 0.8 = 118.05 kVA

For Transformer Specification:Use: 150 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

170.4 = (94.44 x 1000 x 1.25) ÷ 400√3 = 170.40 AUse: 3-No. 4 AWG + 8 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (94.44 ÷ (34.5 x √3)) x 300%= 4.74 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Estrella Hospital

S = 283.3 kVA

At 80% Transformer Loading:S ÷ 80% = 283.33 ÷ 0.8 = 354.16 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

511.2 = (283.33 x 1000 x 1.25) ÷ 400√3 = 511.20 AUse: 3-No. 250 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (283.33 ÷ (34.5 x √3)) x 300%= 14.22 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

3Ф Transformer =

3Ф Transformer =

Facility Name: Silang General Hospital

S = 283.33 kVA

At 80% Transformer Loading:S ÷ 80% = 283.33 ÷ 0.8 = 354.16 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

511.2 = (283.33 x 1000 x 1.25) ÷ 400√3 = 511.20 AUse: 3-No. 250 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (283.33 ÷ (34.5 x √3)) x 300%= 14.22 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Velasco Hospital

S = 283.33 kVA

At 80% Transformer Loading:S ÷ 80% = 283.33 ÷ 0.8 = 354.16 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

511.2 = (283.33 x 1000 x 1.25) ÷ 400√3 = 511.20 AUse: 3-No. 250 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (283.33 ÷ (34.5 x √3)) x 300%= 14.22 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Calculations for 3Ф Transformers:

Facility Name: La Freva Hotel

S = 236.1 kVA

At 80% Transformer Loading:S ÷ 80% = 236.11 ÷ 0.8 = 295.14 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

426.01 = (236.11 x 1000 x 1.25) ÷ 400√3 = 426.01 AUse: 3-No. 4/0 AWG + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (236.11 ÷ (34.5 x √3)) x 300%= 11.85 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Green Papaya Hotel

S = 236.1 kVA

At 80% Transformer Loading:S ÷ 80% = 236.11 ÷ 0.8 = 295.14 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

426.01 = (236.11 x 1000 x 1.25) ÷ 400√3 = 426.01 AUse: 3-No. 4/0 AWG + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (236.11 ÷ (34.5 x √3)) x 300%= 11.85 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Calculations for 3Ф Transformers:

Facility Name: The Theodore Hotel

S = 236.1 kVA

At 80% Transformer Loading:S ÷ 80% = 236.11 ÷ 0.8 = 295.14 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

426.01 = (236.11 x 1000 x 1.25) ÷ 400√3 = 426.01 AUse: 3-No. 4/0 AWG + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (236.11 ÷ (34.5 x √3)) x 300%= 11.85 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Microtel Inn and Suites Eagle-Ridges

S = 94.4 kVA

At 80% Transformer Loading:S ÷ 80% = 94.44 ÷ 0.8 = 118.05 kVA

For Transformer Specification:Use: 150 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

170.4 = (94.44 x 1000 x 1.25) ÷ 400√3 = 170.40 AUse: 3-No. 4 AWG + 8 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (94.44 ÷ (34.5 x √3)) x 300%= 4.74 A

3Ф Transformer =

3Ф Transformer =

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

Facility Name: Tagaytay Heaven Hotel

S = 236.1 kVA

At 80% Transformer Loading:S ÷ 80% = 236.11 ÷ 0.8 = 295.14 kVA

For Transformer Specification:Use: 300 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

426.01 = (236.11 x 1000 x 1.25) ÷ 400√3 = 426.01 AUse: 3-No. 4/0 AWG + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (236.11 ÷ (34.5 x √3)) x 300%= 11.85 A

Use: 15 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: TRI-R ALLIED INDUSTRIAL INC

S = 425 kVA

At 80% Transformer Loading:S ÷ 80% = 425 ÷ 0.8 = 531.25 kVA

For Transformer Specification:Use: 750 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

766.82 = (425 x 1000 x 1.25) ÷ 400√3 = 766.82 AUse: 3-No. 500 MCM + 1/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (425 ÷ (34.5 x √3)) x 300%

3Ф Transformer =

3Ф Transformer =

= 21.34 AUse: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

Calculations for 3Ф Transformers:

Facility Name: Sustamina Dressing Plant

S = 377.8 kVA

At 80% Transformer Loading:S ÷ 80% = 377.78 ÷ 0.8 = 472.23 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

681.62 = (377.78 x 1000 x 1.25) ÷ 400√3 = 681.62 AUse: 3-No. 400 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (377.78 ÷ (34.5 x √3)) x 300%= 18.97 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Eurotiles

S = 330.6 kVA

At 80% Transformer Loading:S ÷ 80% = 330.56 ÷ 0.8 = 413.20 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

596.42 = (330.56 x 1000 x 1.25) ÷ 400√3 = 596.42 AUse: 3-No. 300 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (330.56 ÷ (34.5 x √3)) x 300%= 16.60 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)Calculations for 3Ф Transformers:

3Ф Transformer =

3Ф Transformer =

Facility Name: Cavite Techno Industrial Supply

S = 377.8 kVA

At 80% Transformer Loading:S ÷ 80% = 377.78 ÷ 0.8 = 472.23 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

1185.42 = (377.78 x 1000 x 1.25) ÷ 400√3 = 681.62 AUse: 2 SETS OF 3-No. 300 MCM + 2/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (377.78 ÷ (34.5 x √3)) x 300%= 18.97 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: NAV Trading Corporation

S = 377.8 kVA

At 80% Transformer Loading:S ÷ 80% = 377.78 ÷ 0.8 = 472.23 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

681.62 = (377.78 x 1000 x 1.25) ÷ 400√3 = 681.62 AUse: 3-No. 400 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (377.78 ÷ (34.5 x √3)) x 300%= 18.97 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Calculations for 3Ф Transformers:

Facility Name: RS-Unitech Manufacturing & Trading

S = 425 kVA

At 80% Transformer Loading:S ÷ 80% = 425 ÷ 0.8 = 531.25 kVA

For Transformer Specification:Use: 750 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

766.82 = (425 x 1000 x 1.25) ÷ 400√3 = 766.82 AUse: 3-No. 500 MCM + 1/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (425 ÷ (34.5 x √3)) x 300%= 21.34 A

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

Facility Name: Cleanway Technology Corp.

S = 425 kVA

At 80% Transformer Loading:S ÷ 80% = 425 ÷ 0.8 = 531.25 kVA

For Transformer Specification:Use: 750 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

766.82 = (425 x 1000 x 1.25) ÷ 400√3 = 766.82 AUse: 3-No. 500 MCM + 1/0 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (425 ÷ (34.5 x √3)) x 300%= 21.34 A

Use: 25 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

3Ф Transformer =

Calculations for 3Ф Transformers:

Facility Name: Cavite Techno Industry

S = 377.8 kVA

At 80% Transformer Loading:S ÷ 80% = 377.8 ÷ 0.8 = 472.25 kVA

For Transformer Specification:Use: 500 kVA, 3Ф, 34.5kV/400,Y230V, 60HzOil - Immersed Self Cooled Transformer (pole Mounted)3H+G MECO Incoming

Secondary Wire Size:I = (S x 1000 x 1.25) ÷ (System Voltage x √3)

681.65 = (377.8 x 1000 x 1.25) ÷ 400√3 = 681.65 AUse: 3-No. 400 MCM + 2 AWG (G) Copper Conductor, 3H+G

Lightning Arrester:L.A. = Vp x 125%

= 34.5kV x 1.25= 43.13 A

Use: 48 kV Lightning Arrester (Expulsion Type)

Fuse Rating:Fuse = (S ÷ (Vp x√3)) x 300%

= (377.8 ÷ (34.5 x √3)) x 300%= 18.97 A

Use: 20 Amps., 19.92kV Fuse Cut-out (Open Type)

3Ф Transformer =

BLOCK NO. RESIDENTIAL COMMERCIAL INDUSTRIAL TOTAL kVA

1 68.16 66.116 0 134.28

2 102.32 184.16 0 286.48

3 116.77 75.55 0 192.32

4 91.77 28.33 425 545.10

5 109.57 37.774 377.78 525.12

6 92.87 28.33 377.78 498.98

7 48.34 240.84 0 289.18

8 116.81 221.95 0 338.76

9 115.26 269.17 0 384.43

10 63.27 33.06 0 96.33

11 69.73 127.5 0 197.23

12 89.75 108.606 0 198.35

13 100.77 80.28 0 181.05

14 74.17 28.33 377.78 480.28

15 95.10 33.06 377.78 505.94

16 89.56 33.06 425 547.62

17 68.80 269.17 0 337.97

18 64.70 269.17 0 333.87

19 93.99 264.44 0 358.43

20 47.63 28.33 0 75.96

21 70.45 75.55 0 146.00

22 97.56 28.33 0 125.89

23 120.71 28.33 0 149.04

24 68.90 311.66 0 380.56

25 104.31 18.89 425 548.20

26 115.36 316.386 0 431.74

27 71.24 311.664 0 382.90

28 129.44 302.21 0 431.65

29 94.81 38.45 330.56 463.82

30 70.92 75.55 0 146.47

SUMMARY OF LOADS

TOTAL kVA 2663.02 3934.25 3116.68 9713.95

AB BC CA 3Ф AB BC CA 3Ф AB BC CA 3Ф

1 101.22 33.06 11 102.79 94.44 21 98.78 47.22

2 121.21 165.27 12 151.13 47.22 22 125.89

3 145.10 47.22 13 133.83 47.22 23 149.04

4 120.10 425 14 102.50 377.78 24 97.23 283.33

5 147.34 377.78 15 128.16 377.78 25 123.20 425

6 121.20 377.78 16 122.62 425 26 148.41 283.33

7 100.29 188.89 17 101.86 236.11 27 99.57 283.33

8 149.87 188.89 18 97.76 236.11 28 148.32 283.33

9 148.32 236.11 19 122.32 236.11 29 99.53 364.29

10 96.33 20 75.96 30 99.25 47.22

Sum 417.934 418.416 414.614 2040 Sum 383.106 377.062 378.766 2077.77 Sum 394.83 397.41 396.99 2017.05

Total Total Total

9713.95

FEEDER LOAD BALANCING

Total Load kVA =

3290.964 3216.704 3206.28

PHASEBLOCK

PHASE PHASEBLOCK BLOCK

134.28 197.23 146.00

286.48 198.35 125.89

192.32 181.05 149.04

545.10 480.28 380.56

525.12 505.94 548.20

498.98 547.62 431.74

289.18 337.97 382.90

338.76 333.87 431.65

384.43 358.43 463.82

96.33 75.96 146.47

3290.96 3216.70 3206.28

Computation of Distance:

Division # of Poles Po-Po Distance

SS - AB 29 150 4350 ft

A-C 18 150 2700 ft

A-D 31 150 4650 ft

B-E 44 150 6600 ft

B-F 11 150 1650 ft

F-G 22 150 3300 ft

F-H 10 150 1500 ft

Total = 24750

Allowable Voltage Drop per 1000ft:

Allowable VD = (1725 x 1000) ÷ 24750

= 69.70 V

Voltage Drop per Division:

Division Distance VD Vdc

SS - AB 4350 69.70 303.20 V

A-C 2700 69.70 188.19 V

A-D 4650 69.70 324.11 V

B-E 6600 69.70 460.02 V

B-F 1650 69.70 115.01 V

F-G 3300 69.70 230.01 V

F-H 1500 69.70 104.55 V

Total = 1725 V

Reference TCL (kVA) I CM DcVd e Vac

SS - AB 512.06 8.57 16510 54.19 40.1 45.99

A-C 262.87 4.40 16510 27.82 13 23.6103

A-D 737.41 12.34 16510 83.41 62 70.7884

B-E 935.50 15.66 16510 150.24 111 127.506

B-F 338.76 5.67 16510 13.60 10 11.542

F-G 384.43 6.43 16510 30.85 23 26.1818

F-H 96.33 1.61 16510 3.51 2.598 2.97887

TOTAL 3267.35 54.68 363.62 261.27 308.60

FEEDER 1: SUMMARY OF VALUES

DESIGN OF PRIMARY DISTRIBUTION SYSTEM FEEDER 1

SS - AB

Total kVA = 512.06 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (512.058) ÷ (34.5kV x √3)

= 8.57 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 4350 x 8.57) ÷ 303.20

= 2951 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 4350 x 8.57) ÷16510

= 54.19 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 54.19 x 0.98

= 45.99 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 4350 x 8.57 x (cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 40.1 V

A - C

Total kVA = 262.87 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (262.868) ÷ (34.5kV x √3)

= 4.40 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2700 x 4.40) ÷ 188.19

= 1515 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 2700 x 4.40) ÷16510

= 27.82 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 27.82 x 0.98

= 23.61 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2700 x 4.40 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 12.78 V

A - D

Total kVA = 737.41 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (737.414) ÷ (34.5kV x √3)

= 12.34 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 4650 x 12.34) ÷ 324.11

= 4249 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 4650 x 12.34) ÷16510

= 83.41 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 83.41 x 0.98

= 70.79 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 4650 x 12.34 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 61.72 V

B - E

Total kVA = 935.50 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (935.504) ÷ (34.5kV x √3)

= 15.66 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 6600 x 15.66) ÷ 460.02

= 5392 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 6600 x 15.66) ÷16510

= 150.24 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 150.24 x 0.98

= 127.5 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 6600 x 15.66 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 111.2 V

B - F

Total kVA = 338.76 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (338.756) ÷ (34.5kV x √3)

= 5.67 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1650 x 5.67) ÷ 115.01

= 1952 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1650 x 5.67) ÷16510

= 13.60 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 13.60 x 0.98

= 11.54 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1650 x 5.67 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 10.06 V

F - G

Total kVA = 384.43 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (384.426) ÷ (34.5kV x √3)

= 6.43 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 3300 x 6.43) ÷ 230.01

= 2214 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 3300 x 6.43) ÷16510

= 30.85 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 30.85 x 0.98

= 26.18 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 3300 x 6.43 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 22.82 V

F - H

Total kVA = 96.33 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (96.328) ÷ (34.5kV x √3)

= 1.61 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1500 x 1.61) ÷ 104.55

= 554 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1500 x 1.61) ÷16510

= 3.51 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 3.51 x 0.98

= 2.979 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1500 x 1.61 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 2.598 V

Computation of Distance:

Division # of Poles Po-Po Distance

SS - A' 7 150 1050 ft

A'-C' 19 150 2850 ft

B'-E' 18 150 2700 ft

D'-H' 14 150 2100 ft

F'-G' 7 150 1050 ft

A'-L' 43 150 6450 ft

J'-K' 3 150 450 ft

I'-Q' 17 150 2550 ft

M'-P' 12 150 1800 ft

N'-O' 11 150 1650 ft

Total = 22650

Allowable Voltage Drop per 1000ft:

Allowable VD = (1725 x 1000) ÷ 22650

= 76.16 V

Voltage Drop per Division:

Division Distance VD Vdc

SS - A' 1050 76.16 79.97 V

A'-C' 2850 76.16 217.06 V

B'-E' 2700 76.16 205.63 V

D'-H' 2100 76.16 159.94 V

F'-G' 1050 76.16 79.97 V

A'-L' 6450 76.16 491.23 V

J'-K' 450 76.16 34.27 V

I'-Q' 2550 76.16 194.21 V

M'-P' 1800 76.16 137.09 V

N'-O' 1650 76.16 125.66 V

Total = 1725 V

Reference TCL (kVA) I CM DcVd e Vac

SS - A' 94.44 #REF! 16510 #REF! #REF! #REF!

A'-C' 480.28 #REF! 16510 #REF! #REF! #REF!

B'-E' 505.96 #REF! 16510 #REF! #REF! #REF!

DESIGN OF PRIMARY DISTRIBUTION SYSTEM FEEDER 2

FEEDER 2: SUMMARY OF VALUES

SS - A'

Total kVA = 94.44 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (94.44) ÷ (34.5kV x √3)

= 1.58 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1050 x 1.58) ÷ 79.97

= 498 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 1050 x 1.58) ÷16510

= 2.41 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 2.41 x 0.98

= 2.045 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1050 x 1.58 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 1.785 V

A' - C'

Total kVA = 480.28 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (480.278) ÷ (34.5kV x √3)

= 8.04 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2850 x 8.04) ÷ 217.06

= 2534 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 2850 x 8.04) ÷16510

= 12.27 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 12.27 x 0.98

= 10.413 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2850 x 8.04 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 24.648 V

B' - E'

Total kVA = 505.96 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (505.964) ÷ (34.5kV x √3)

= 8.47 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2700 x 8.47) ÷ 205.63

= 2669 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 2700 x 8.47) ÷16510

= 33.24 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 33.24 x 0.98

= 28.21 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2700 x 8.47 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 24.60 V

D' - H'

Total kVA = 337.97 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (337.97) ÷ (34.5kV x √3)

= 5.66 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2100 x 5.66) ÷ 159.94

= 1784 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 2100 x 5.66) ÷16510

= 17.28 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 17.28 x 0.98

= 14.67 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2100 x 5.66 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 12.79 V

F' - G'

Total kVA = 547.62 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (547.62) ÷ (34.5kV x √3)

= 9.16 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1050 x 9.16) ÷ 79.97

= 2886 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1050 x 9.16) ÷16510

= 13.98 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 13.98 x 0.98

= 11.86 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1050 x 9.16 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 10.35 V

A' - L'

Total kVA = 434.97 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (434.97) ÷ (34.5kV x √3)

= 7.28 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 6450 x 7.28) ÷ 491.23

= 2294 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 6450 x 7.28) ÷16510

= 68.26 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 68.26 x 0.98

= 57.93 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 6450 x 7.28 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 50.51 V

J' - K'

Total kVA = 47.22 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (47.22) ÷ (34.5kV x √3)

= 0.79 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 450 x 0.79) ÷ 34.27

= 249 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 450 x 0.79) ÷16510

= 0.52 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 0.52 x 0.98

= 0.441 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 450 x 0.79 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 0.382 V

I' - Q'

Total kVA = 333.87 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (333.874) ÷ (34.5kV x √3)

= 5.59 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2550 x 5.59) ÷ 194.21

= 1762 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 2550 x 5.59) ÷16510

= 20.72 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 20.72 x 0.98

= 17.58 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2550 x 5.59 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 15.33 V

M' - P'

Total kVA = 75.96 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (75.96) ÷ (34.5kV x √3)

= 1.27 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1800 x 1.27) ÷ 137.09

= 400 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1800 x 1.27) ÷16510

= 3.32 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 3.32 x 0.98

= 2.818 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1800 x 1.27 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 2.459 V

N' - O'

Total kVA = 122.32 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (122.318) ÷ (34.5kV x √3)

= 2.05 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 1650 x 2.05) ÷ 125.66

= 646 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 1650 x 2.05) ÷16510

= 4.92 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mile

Xt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 4.92 x 0.98

= 4.176 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 1650 x 2.05 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 3.638 V

Computation of Distance:

Division # of Poles Po-Po Distance

SS - D'' 15 150 2250 ft

A''-B'' 31 150 4650 ft

A''-C'' 37 150 5550 ft

D''-F'' 23 150 3450 ft

E''-G'' 2 150 300 ft

D''-H'' 47 150 7050 ft

Total = 23250

Allowable Voltage Drop per 1000ft:

Allowable VD = (1725 x 1000) ÷ 23250

= 74.19 V

Voltage Drop per Division:

Division Distance VD Vdc

SS - D' 2250 74.19 166.93 V

A''-B'' 4650 74.19 344.98 V

A''-C'' 5550 74.19 411.75 V

D''-F'' 3450 74.19 255.96 V

E''-G'' 300 74.19 22.26 V

D''-H'' 7050 74.19 523.04 V

Total = 1725 V

Reference TCL (kVA) I CM DcVd e Vac

SS - D' #REF! #REF! 16510 #REF! #REF! #REF!

A''-B'' #REF! #REF! 16510 #REF! #REF! #REF!

A''-C'' #REF! #REF! 16510 #REF! #REF! #REF!

D''-F'' #REF! #REF! 16510 #REF! #REF! #REF!

E''-G'' #REF! #REF! 16510 #REF! #REF! #REF!

D''-H'' #REF! #REF! 16510 #REF! #REF! #REF!

TOTAL #REF! 29.38 525.96 433.59 355.28

DESIGN OF PRIMARY DISTRIBUTION SYSTEM FEEDER 1

FEEDER 1: SUMMARY OF VALUES

SS - D"

Total kVA = 146.00 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (146.004) ÷ (34.5kV x √3)

= 2.44 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 2250 x 2.44) ÷ 166.93

= 789 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 2250 x 2.44) ÷16510

= 7.98 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 7.98 x 0.98

= 6.772 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 2250 x 2.44 x (cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 5.905 V

A" - B"

Total kVA = 274.93 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (274.932) ÷ (34.5kV x √3)

= 4.60 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 4650 x 4.60) ÷ 344.98

= 1488 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 4650 x 4.60) ÷16510

= 15.05 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 15.05 x 0.98

= 12.77 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 4650 x 4.60 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 23.01 V

A" - C"

Total kVA = 928.76 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (928.758) ÷ (34.5kV x √3)

= 15.54 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 5550 x 15.54) ÷ 411.75

= 5027 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (24 x 5550 x 15.54) ÷16510

= 125.37 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table : AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 125.37 x 0.98

= 106.4 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 5550 x 15.54 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 92.77 V

D" - F"

Total kVA = 715.07 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (715.074) ÷ (34.5kV x √3)

= 11.97 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 3450 x 11.97) ÷ 255.96

= 3872 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 3450 x 11.97) ÷16510

= 60.03 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 60.03 x 0.98

= 50.95 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 3450 x 11.97 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 44.42 V

E" - G"

Total kVA = 99.57 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (99.572) ÷ (34.5kV x √3)

= 1.67 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 300 x 1.67) ÷ 22.26

= 540 CM ≈ 16510 CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

16510 CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= (O824 x 300 x 1.67) ÷16510

= 0.73 V

(For 3 ft. Spacing Between Three 16510 CM Wires:)

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= 0.866 x 0.73 x 0.98

= 0.62 V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 300 x 1.67 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 0.539 V

D" - H"

Total kVA = 384.43 kVA

Total Current Computation:

INORTH = (Total kVA) ÷ (System Voltage x √3)

= (384.426) ÷ (34.5kV x √3)

= 6.43 A

Circular Mill Computation:

CM = (24 x D x I) ÷ Vdc

= (24 x 7050 x 6.43) ÷

= #DIV/0! CM ≈ #DIV/0! CM

Based on Table For Circular Mill:

Use: No. 8 AWG Copper Conductor, 2-Wires

16510 1 Strand Hard Drawn Copper Conductor

#DIV/0! CMILS @ 3ft. Spacing Between Conductor

Actual Voltage Drop:

VDc Actual = (24 x D x I) ÷ CM)

= #DIV/0!

= #DIV/0! V

#DIV/0!

Based on Table

Ra = 3.79 Ω/mile

Xa = 0.665 Ω/mile

Xd = 0.2794 log GMR Ω/mile

= 0.2794 log √(3 x 3) Ω/mile

= 0.133 Ω/mileXt = Xa + Xd = 0.4127 Ω/mile

Reactance and Resistance Ratio (Xt/Ra):

Ratio= Xt ÷ Ra

= 0.412707678568674 ÷ 3.79

= 0.109

Based on Table: AC DROP FACTOR @ 85% = 0.98

Vac SS - A = 0.866 x Vdc actual x AC Drop Factor

= #DIV/0!

= #DIV/0! V

Approximate Method:

e = [√3 x D x I x (RacosӨ +XtsinӨ)] ÷ 5280

= [√3 x 7050 x 6.43 x (3.79cos31.79 + 0.108893846588041sin31.79)] ÷ 5280

= 48.76 V

Reference TCL, kVA I, Amp CM ACSR AWG DCvd e, V Vac

PP - A #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A - B #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A - A' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A' - C' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A" - C" #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!

TOTAL #REF! 26.38 525.96 #REF! #REF!

VOLTAGE REGULATION FOR FEEDER 1

#REF!

#REF!

Reference TCL, kVA I, Amp CM ACSR AWG DCvd e, V Vac

PP - A #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A - A' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A -B #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - B' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - B" #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - C #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!C - C' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!C - C" #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!

TOTAL #REF! 29.98 295.43 #REF! #REF!

VOLTAGE REGULATION FOR FEEDER 1

#REF!

#REF!

Reference TCL, kVA I, Amp CM ACSR AWG DCvd e, V Vac

PP - A #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A - A' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!A -B #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - B' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - B" #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!B - C #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!C - C' #REF! #REF! #REF! 16510 8 #REF! #REF! #REF!

TOTAL #REF! 28.9 295.43 #REF! #REF!

VOLTAGE REGULATION FOR FEEDER 1

#REF!

#REF!

SUMMARY OF VALUES FOR FEEDER 1

%VR= (∑Vac / Vp) x 100 = #REF!

%VR= (∑Ve / Vp) x 100 = #REF!

SUMMARY OF VALUES FOR FEEDER 2

%VR= (∑Vac / Vp) x 100 = #REF!

%VR= (∑Ve / Vp) x 100 = #REF!

%VR= (∑Ve / Vp) x 100 = #REF!

SUMMARY OF VALUES FOR FEEDER 3

%VR= (∑Vac / Vp) x 100 = #REF!

PEC 2009 Edition, Table 2.50.3.17 

Grounding Electrode Conductor for Alternating‐Current System

Over 400 MCM to 600 MCM

Over 600 MCM to 1000 MCM

COPPER

2 AWG or Smaller

AWG/MCM

Equivalent for Ungrounded

14

22

1 AWG or 1/0 AWG

2/0 or 3/0 AWG

Over  3/0 AWG to 400 MCM30

50

60

80

Over 325 through 500

Over 500

Over 80 through 200

Over 200 through 325

38 or 50

60 or 80

(mm²)

Size of Grounding 

Electrode Conductor 

COPPER

Size of Largest Ungrounded 

Service Entrance Conductor or

Equivalent Area for Parallel Conductors

 (mm²)

8

COPPER

30 or Smaller

1/0 AWG

2/0 AWG

COPPER

8 AWG

AWG/MCM

Equivalent for 

grounded

6 AWG

4 AWG

2 AWG

BLOCK NO. RESIDENTIAL COMMERCIAL INDUSTRIAL TOTAL kVA

SUMMARY OF LOADS

TOTAL kVA

AB BC CA 3Ф AB BC CA 3Ф AB BC CA 3Ф

1 11 21

2 12 22

3 13 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19 29

10 20 30

Sum Sum Sum

Total Total Total

Total Load kVA =

FEEDER LOAD BALANCING

BLOCK PHASE BLOCK PHASE BLOCK PHASE

top related