cardiac physiology

Post on 09-Dec-2014

310 Views

Category:

Health & Medicine

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

lecture of Cardiac physiology by Dr. Omid Nabavian; anesthesiologist; assistant professor in TUMS

TRANSCRIPT

10/25/2012Nabavian, O.; M.D.1

CARDIAC PHYSIOLOGY

Miller’s AnesthesiaChapter 16

Nabavian, O.; M.D.Assistant Professor of Anesthesiology

TUMSVali-Asr Hospital

10/25/2012Nabavian, O.; M.D.

There is difference between : “ Intact heart” & “ Isolated” heart muscle

Flash player Active-X Macro’s enabled

10/25/2012Nabavian, O.; M.D.3

10/25/2012 4Nabavian, O.; M.D.

10/25/20125

Nabavian, O.; M.D.

10/25/2012Nabavian, O.; M.D.6

Ventricular structure

10/25/2012 7Nabavian, O.; M.D.

Cardiac Vocabulary

Preload:  Preload is the muscle length prior to contractility, and it is dependent of ventricular filling (or end diastolic volume…EDV) 

The most important determining factor

for preload is venous return.

10/25/20128

Nabavian, O.; M.D.

PreloadPreload

10/25/20129

Nabavian, O.; M.D.

Cardiac Vocabulary

Afterload:  is the tension (or the arterial pressure) against which the ventricle must contract. 

If arterial pressure increases, afterload also increases.

Afterload for the left ventricle is determined by aortic pressure.

10/25/201210

Nabavian, O.; M.D.

Afterload

10/25/201211

Nabavian, O.; M.D.

Law of Laplace

σ= P*R/2h

h = wall thickness

10/25/2012Nabavian, O.; M.D.12

Heart Rate and Force-Frequency Relationshipan increase in the frequency of

stimulation induces an increase in the force of contraction.

This relationship is termed the “treppe” phenomenon or

the force-frequency the force-frequency relationshiprelationship

10/25/2012Nabavian, O.; M.D.13

10/25/2012Nabavian, O.; M.D.14

EF=( LVEDV-LVESV)/LVEDV

Stroke (External) work=SV * P

10/25/2012Nabavian, O.; M.D.15

Cardiac Cardiac work

10/25/201216

Nabavian, O.; M.D.

External work is expended to eject blood under pressure, whereas

internal work is expended within the ventricle to change the shape of the heart and prepare it for ejection.

10/25/2012Nabavian, O.; M.D.17

Diastolic FunctionDiastolic Function

(1) Isovolumic relaxation (2) the rapid filling phase (80%) (3) slow filling, or diastasis;5%(4) final filling during atrial systole.

15% The isovolumic relaxation phase is

energy dependent

10/25/2012Nabavian, O.; M.D.18

Assessing diastolic function

(-dP/dt)

Aortic closing–mitral opening interval the isovolumic relaxation time peak rate of LV wall thinning as

determined by echocardiography

10/25/2012Nabavian, O.; M.D.19

CO= SV * HRCardiac output in a living organism

can be measured with the “Fick principle”

The Fick principle is based on the concept of

conservation of mass

10/25/2012Nabavian, O.; M.D.20

Fick’s Principleq1 = × CpaO2

q3 = × CpvO2

Because q1 + q2 = q3 ,

× (CpaO2 ) + q2 = ×(CpvO2 )

q2 = × (CpvO2 ) − × (CpaO2 )

q2 = ×(CpvO2 − CpaO2 )

= q2 /(CpvO2 − CpaO2 )

10/25/201221

Nabavian, O.; M.D.

10/25/2012Nabavian, O.; M.D.22

Cellular Cardiac PhysiologyCellular Cardiac Physiology

Cellular anatomy:

Cardiac muscle tissue Conduction tissue Extracellular connective tissue

10/25/2012Nabavian, O.; M.D.23

10/25/201224

Nabavian, O.; M.D.

10/25/201225

Nabavian, O.; M.D.

Sarcoplasmic Reticulum (SR)

Figure 9.510/25/2012

26Nabavian, O.; M.D.

CARDIOMYOCYTE

10/25/201227

Nabavian, O.; M.D.

10/25/2012Nabavian, O.; M.D.28

gap junctions>>electrical coupling

“spot” desmosomes>> mechanical linkage >> cytoskeleton

“sheet” desmosomes (or fasciae adherens)>> contractile apparatus

10/25/2012Nabavian, O.; M.D.29

Cardiomyocytes can be functionally separated into:

(1) the excitation system, (2) the ECC system, (3) the contractile system.

10/25/2012Nabavian, O.; M.D.30

Excitation System

Fast-response action potentials>> His-Purkinje system

atrial/ventricular cardiomyocytes

Slow-response action potentials, pacemaker cells in the

SA and AV nodes

10/25/2012Nabavian, O.; M.D.31

10/25/2012Nabavian, O.; M.D.32

10/25/2012Nabavian, O.; M.D.33

phase 0 : much less steep,

phase 1: absent, phase 2 : indistinct from phase 3 in the slow-response action potential

10/25/2012Nabavian, O.; M.D.34

ECC

Ca channel phosphorylation

Faster contraction

Phospholamban

Faster relaxation

Ca++

Ca++

Ca++Ca++

Pictorial E-C CouplingPictorial E-C Coupling

Plb

Ca++

Ca++Ca++

Ca++Ca++

Ca

++

Ca++

Ca++

Ca ++Ca++

Ca++

Ca++

Ca++

Ca++

Ca++

Ca ++

Ca++

Ca ++ Ca ++

Ca

++

Ca++

Ca

++

Ca++

Ca++

Ca++

Ca++

Ca++

Ca++

Ca++

Ca++

Ca++Ca++

Ca++

Ca++

Ca++

Ca++Ca++

Ca ++

Ca

++

Ca++ Ca ++Ca

++

Ca++

Ca ++

Ca++

Ca++

Ca++

Ca++

Ca++

Ca++

Na+

Na+Na+

Ca++

SERCA

SR

L-Type Ca++

Channel

Na+/Ca++ Exchanger

Ca++

SarcolemmaCa++

RyR

10/25/201236

Nabavian, O.; M.D.

Contractile SystemContractile System

The basic working unit of contraction is the sarcomere.

A sarcomere is defined as the distance between Z lines

10/25/2012Nabavian, O.; M.D.37

10/25/201238

Nabavian, O.; M.D.

Sarcomere

10/25/201239

Nabavian, O.; M.D.

10/25/201240

Nabavian, O.; M.D.

Structure of Actin and MyosinStructure of Actin and Myosin

10/25/201241

Nabavian, O.; M.D.

Figure 9.4 (a)(b)10/25/2012

42Nabavian, O.; M.D.

Actin

Figure 9.4 (c)10/25/2012

43Nabavian, O.; M.D.

Troponin

10/25/2012Nabavian, O.; M.D.44

actin

actin

myosin

10/25/201245

Nabavian, O.; M.D.

processive movement of myosin V along F-actin

actin

actintroponin

actintroponin

tropomyosin

actintroponin

tropomyosin

actintroponin

tropomyosinmyosin binding site

Ca2+Ca2+ Ca2+ Ca2+

Ca2+Ca2+ Ca2+ Ca2+

Calcium ions are released from the sarcolemma after stimulation from the T system

10/25/201254

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

10/25/201255

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

the calcium ions bind to the troponin and changes its shape

10/25/201256

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

the calcium ions bind to the troponin and changes its shape

10/25/201257

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

10/25/201258

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

10/25/201259

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

the troponin displaces the tropomyosin and exposes the myosin binding sites

10/25/201260

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

10/25/201261

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

10/25/201262

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

the bulbous heads of the myosin attach to the binding sites on the actin filaments

10/25/201263

Nabavian, O.; M.D.

Ca2+Ca2+

Ca2+

Ca2+

10/25/201264

Nabavian, O.; M.D.

Ca2+ Ca2+

Ca2+

10/25/201265

Nabavian, O.; M.D.

Ca2+ Ca2+

Ca2+

the myosin heads change position to achieve a lower energy state and slide the actin filaments past the stationary myosin

10/25/201266

Nabavian, O.; M.D.

Ca2+ Ca2+

Ca2+

APi PiPiAPi PiPiAPi PiPi

10/25/201267

Nabavian, O.; M.D.

Ca2+ Ca2+

Ca2+APi PiPi

APi PiPi

APi PiPi

10/25/201268

Nabavian, O.; M.D.

Ca2+ Ca2+

Ca2+APi PiPi

APi PiPi

APi PiPi

ATP binds to the bulbous heads and causes it to become detached

10/25/201269

Nabavian, O.; M.D.

Ca2+ Ca2+

Ca2+

APi PiPiAPi PiPi

APi PiPi

ATP binds to the bulbous heads and causes it to become detached

10/25/201270

Nabavian, O.; M.D.

Ca2+ Ca2+

Ca2+

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

hydrolysis of ATP provides the energy to “re-cock” the heads

10/25/201271

Nabavian, O.; M.D.

Ca2+ Ca2+

Ca2+

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

hydrolysis of ATP provides the energy to “re-cock” the heads

10/25/201272

Nabavian, O.; M.D.

Ca2+ Ca2+Ca2+

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

10/25/201273

Nabavian, O.; M.D.

Ca2+ Ca2+Ca2+

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

calcium ions are re-absorbed back into the T system

10/25/201274

Nabavian, O.; M.D.

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

calcium ions are re-absorbed back into the T system

10/25/201275

Nabavian, O.; M.D.

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

the troponin reverts to its normal shape and the tropomyosin move back to block the myosin binding sites

10/25/201276

Nabavian, O.; M.D.

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

the troponin reverts to its normal shape and the tropomyosin move back to block the myosin binding sites

10/25/201277

Nabavian, O.; M.D.

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

the troponin reverts to its normal shape and the tropomyosin move back to block the myosin binding sites

10/25/201278

Nabavian, O.; M.D.

APi Pi

Pi

APi Pi

Pi

APi Pi

Pi

phosphocreatine regenerates ATP

10/25/201279

Nabavian, O.; M.D.

APi Pi

Pi

APi PiPi

APi PiPi

phosphocreatine regenerates ATP

10/25/201280

Nabavian, O.; M.D.

APi PiPiAPi PiPi

APi PiPi

phosphocreatine regenerates ATP

10/25/201281

Nabavian, O.; M.D.

Mechanism of muscle contraction

10/25/201282

Nabavian, O.; M.D.

10/25/2012 83Nabavian, O.; M.D.

10/25/2012Nabavian, O.; M.D.84

All Things Science - Heart excitation contraction coupling.flv - YouTube.FLV

NEURAL REGULATION OF HEART

10/25/201285

Nabavian, O.; M.D.

At rest the heart has a tonic level of PNSAtria have more PNS innervation than

ventriclesM1-M5, M2 most oneM1,3,5, G proteineM2,4 pertussis toxin

10/25/2012Nabavian, O.; M.D.86

SNS more prominent in ventricles α receptors >> G protein>> phospholipase

C,D,A β receptors >> G protein>> cAMP β1,2,3 β1, both atria ventricle, 80% β2 atria 20%

ventricles β2>> β1 α1,2>>α1A,B,D α1 : cardiac hypertrophy

10/25/2012Nabavian, O.; M.D.87

Adrenoreceptors

10/25/201288

Nabavian, O.; M.D.

Hormones affecting cardiac function

Hormone source Cardiac action Increase with CHF

Adrenomedullin Cardiomyocyte + inotropy/ +chronotropy

+

Aldosterone Cardiomyocyte ? +

Angiotensin II Cardiomyocyte + inotropy/ +chronotropy +

Endothelin Cardiomyocyte ? +

Natriuritic peptide

ANP Atria+

BNP Ventricles+

Neuropeptide Y - Inotropy

Vasopressin Post pituitary + inotropy/ +chronotropy +

10/25/201289

Nabavian, O.; M.D.

10/25/2012 90Nabavian, O.; M.D.

10/25/2012 91Nabavian, O.; M.D.

Chemoreceptor ReflexChemoreceptor ReflexMediated by

– Chemosensitive cells in the carotid bodies and the aortic body.

– Sinus nerve of Hering and vagus nervesAt PaO2 <50 mm Hg or in acidosis

– respiratory centers stimulated and increasing ventilatory drive.

Activation of the parasympathetic system – reduction in heart rate and myocardial

contractility. 10/25/2012

92Nabavian, O.; M.D.

Bainbridge Reflex

Bainbridge (atrial) reflex – a sympathetic reflex initiated by

increased blood in the atria

Causes stimulation of the SA node

10/25/201293

Nabavian, O.; M.D.

Bezold-Jarisch reflexBezold-Jarisch reflex Elicited by

– chemoreceptors and mechanoreceptors within the LV wall

– ↑ parasympathetic tone Noxious ventricular stimuli induces the triad of

hypotension, bradycardia, and coronary artery dilatation.

Less pronounced in patients with

– Cardiac hypertrophy

– Atrial fibrillation

10/25/201294

Nabavian, O.; M.D.

Valsalva ManeuverValsalva ManeuverValsalva maneuver → ↓CO and BP. Sensed by baroreceptors → sympathetic

stimulation ↑heart rate and myocardial contractility.

When the glottis opens, venous return ↑ →↑BP.

Sensed by baroreceptors → stimulate parasympathetic efferent pathways to the heart.

10/25/201295

Nabavian, O.; M.D.

Cushing Reflex Cerebral ischemia at the medullary

vasomotor center ↓

Activation of the sympathetic nervous system

↓↑ HR, BP, and myocardial contractility

↓Improve cerebral perfusion

10/25/201296

Nabavian, O.; M.D.

Oculocardiac Reflex Oculocardiac Reflex Stretch receptors

↓ Short and long ciliary nerves

↓ Ophthalmic division of the trigeminal nerve

↓Gasserian ganglion

↓Increased parasympathetic tone

↓Bradycardia.

Incidence during ophthalmic surgery- 30% to 90%.

10/25/201297

Nabavian, O.; M.D.

10/25/2012Nabavian, O.; M.D.98

top related