case study 1 - hydraulic jack analysis

Post on 27-Oct-2014

32 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The hydraulic jack has an input area of 10 mm2 and an output area of 40 mm2, and is used to move the output piston against a constant 2kN load with different output speed values. The input cylinder is connected to the output cylinder with a 4 mm2 pipe of length L. The fluid used in the jack is water at 20 °C (Density = 998 kg/m3 and viscosity is 1 x 10-3 Pa.s)

Plot the force F needed on the input piston as a function of the steady output piston speed. Generate three different curves on the same plot corresponding to (i) L = 5 m, (ii) L = 10 m and (iii) L = 20 m. Identify all the critical inflection points on the plot.

Under steady conditions, the acceleration of the weight is zero and using Newton’s 2nd law we have

∑ F=0 [1]

Po Ao−W=0 ,Po=W / Ao [2]

Using Bernoulli principle on the pipe,

Pi=Po+P loss [3]

with

Ploss=f ( LD )( ρ v p2

2 ) [4]

But F i=A i p i, and from continuity v p Ap=vo Ao .Using [2], [3] and [4], we have

F i=A i(WAo +f ( LD )( A pAo )2

( ρ vo2

2 )) [5]

Where

f={ 64ℜ ,ℜD<4000

−1.8 log( 6.9ℜ +( ε /D3.7 )1.11)

−2

,ℜD>2300}Points of discontinuity, inflection occur at ℜD=0 (motion starts) ℜD=2300 ( turbulent solution

starts) and ℜD=4000 (laminar solution ends). Using ℜD=ρ v pD

μ, and vo=

A pAov p, we have

vo=A pAo

μℜD

ρD

withD=√4 A/ π=√16 /π=2.26mm, the results in the table below are obtained:

L (m) ReD Vo (m/s) Fi (Laminar) (kN) Fi (Turbulent) (kN)5 2300 0.1021 500.3208 500.5261

4000 0.1776 500.5579 501.385610 2300 0.1021 500.6416 501.0522

4000 0.1776 501.1159 502.7713

20 2300 0.1021 501.2833 502.10444000 0.1776 502.2318 505.5425

rho = 998; % water density at 20 deg Cmu = 1e-3; % water viscosity at 20 deg CAp = 4e-6; %pipe areaDp = sqrt(4*Ap/pi); %pipe diameterAo = 40e-6; %output areaAi = 10e-6; %input areaWt = 2000; %Weight Lp = input('\n pipe length:'); % pipe length ReD = input('\n Reynolds number:'); % Reynolds Number Vp = ReD .* mu ./ (rho * Dp); % pipe flow speedVo = Vp .* (Ap/Ao); % output speed f_f_lam = 64 ./ ReD; % laminar friction factorf_f_trb = 0.316 ./ (ReD .^ 0.25); % turbulent friction factor Pl_lam = f_f_lam .* (Lp/Dp) .* 0.5 .* rho .* Vp .^ 2;Pl_trb = f_f_trb .* (Lp/Dp) .* 0.5 .* rho .* Vp .^ 2; Fi_lam = Ai .* ( (Wt/Ao) + Pl_lam); %laminar forceFi_trb = Ai .* ( (Wt/Ao) + Pl_trb); %turbulent force fprintf('Lp = %-2.2f \n', Lp);fprintf('ReD = %-5.1f \n',ReD);fprintf('Vo = %-2.4f \n',Vo);fprintf('Fi_lam = %-5.4f \n',Fi_lam);fprintf('Fi_trb = %-5.4f \n',Fi_trb);

rho = 998; % water density at 20 deg Cmu = 1e-3; % water viscosity at 20 deg CAp = 4e-6; %pipe areaDp = sqrt(4*Ap/pi); %pipe diameterAo = 40e-6; %output areaAi = 10e-6; %input areaWt = 2000; %Weight ReD_lam = 0:2300; % Range of Reynolds for laminar flowReD_crt = 2300:4000 ; %Range of Reynolds for critical flowReD_trb = 4000:6000; % Range of Reynolds for turbulent flow Vp_lam = ReD_lam .* mu ./ (rho * Dp); % laminar pipe speedVp_crt = ReD_crt .* mu ./ (rho * Dp); % critical pipe speedVp_trb = ReD_trb .* mu ./ (rho * Dp); % turbulent pipe speed Vo_lam = Vp_lam .* (Ap/Ao); % laminar output speedVo_crt = Vp_crt .* (Ap/Ao); % laminar output speedVo_trb = Vp_trb .* (Ap/Ao); % turbulent output speed f_f_lam = 64 ./ ReD_lam; %laminar friction factorf_f_trb = 0.316 ./ (ReD_trb .^ 0.25); %turbulent friction factor f_f_lam_crt = 64 ./ ReD_crt; %laminar friction factor in critical regionf_f_trb_crt = 0.316 ./ (ReD_crt .^ 0.25); %turbulent friction factor in critical region hold on

for Lp = [5, 10, 20]; %pipe lengths Pl_lam = f_f_lam .* (Lp/Dp) .* 0.5 .* rho .* Vp_lam .^ 2; Pl_lam_crt = f_f_lam_crt .* (Lp/Dp) .* 0.5 .* rho .* Vp_crt .^ 2; Pl_trb = f_f_trb .* (Lp/Dp) .* 0.5 .* rho .* Vp_trb .^ 2; Pl_trb_crt = f_f_trb_crt .* (Lp/Dp) .* 0.5 .* rho .* Vp_crt .^ 2; Fi_lam = Ai .* ( (Wt/Ao) + Pl_lam); %laminar force Fi_lam_crt = Ai .* ( (Wt/Ao) + Pl_lam_crt); %laminar force in critical region Fi_trb = Ai .* ( (Wt/Ao) + Pl_trb); %turbulent force Fi_trb_crt = Ai .* ( (Wt/Ao) + Pl_trb_crt); %turbulent force in critical region plot(Vo_lam, Fi_lam, Vo_crt, Fi_lam_crt, '--', Vo_crt, Fi_trb_crt, '--', Vo_trb, Fi_trb);end xlabel ('output speed (m/s)');ylabel ('Input Force (N)');

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35500

502

504

506

508

510

512

output speed (m/s)

Inpu

t F

orc

e (N

)

For F = 1 kN and L = 20 m, derive an expression for the transient output speed, v, as a function of time, t, and find the time needed for the piston to reach 95% of the steady speed. Plot v(t) using appropriate scale.

Under transient conditions, we have

∑ F=m dvdt

[5]

Po Ao−W=m dvdt

[6]

Using Bernoulli principle on the pipe,

Po=P i−Ploss [7]

with pi=F i /A i and using the results of the plot in part (a) when Fi = 1 kN, the flow becomes fully

turbulent short time after motion starts. It can then be assumed that Ploss=f ( LD )( ρ v p2

2 ), where f

is independent of v.

mdvd t

=Ao( F iA i−f ( LD )( ρ v p2

2 ))−W [8]

From continuity v p=v ( Ao/A p ) .and the equation becomes

mdvdt

=Ao( F iA i−f ( LD )( AoA p )2

( ρ v2

2 ))−W [5]

dvdt

+Aom ( AoAp )

2

f ( LD )( ρ v2

2 )= Fim ( AoAi )−g [5]

Let c=Aom ( AoAp )

2

f ( LD )( ρ2 ) and =k=F im ( AoA i )−g, the equation may be written as:

dvdt

+c v2=k [5]

dv

k−c v2=dt [5]

∫vo

vdv

v2−k /c=−c∫

0

t

dt [5]

12√k /c

ln( v−√k /cv+√k /c )=−ct

v−√k /cv+√k /c

=−e−2√kct [5]

v (t )=√ kc (1−e−2√kct1+e−2√kc t ) [5]

0 0.5 1 1.5 20

0.5

1

1.5

2

2.5

time

out

pu

t sp

eed

To find the time needed for the output piston to reach a ratio, r v, of the steady velocity, vs=√k /c

v (t )√k /c

=rv

=( 1−e−2√kc t1+e−2√kc t )Solving for t

t= 12√kc

ln ( 1+r v1−r v )Given, k=

F im ( AoA i )−g=g

c=Aom ( AoAp )

2

f ( LD )( ρ2 )Using the values specified for the parameters above

c= g∗40×10−6

2000102 f ( 20

√16×10−6/π )(500)c=8.87g f

The steady speed is therefore, vs=√k /c=√1 /8.87 f

Assume c=2 ( f=0.024 ), vs=√k /c=√g /2=2.21 m/s, and with r v=95%

t= 12√2g

ln ( 1+0.951−0.95 )t=0.41s.

top related