clay research summary

Post on 13-Nov-2014

226 Views

Category:

Technology

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

 

TRANSCRIPT

Clay amended soilless substrate: Increasing water and

nutrient efficiency in containerized crop production

J.S. Owen, Jr., Dept. Horticultural Science

Dept. Soil Science

NC STATE UNIVERSITY

Overview

IntroductionExperiments

Clay processingClay rateInput efficiency

ConclusionFuture

Overview

IntroductionExperiments

Clay processingClay rateInput efficiency

ConclusionFuture

Nursery Industry3.97 billion dollars in gross sales

USDA, 2004.

Nursery Industry3.97 billion dollars in gross sales73% containerized crop inventory

Organic substrate

USDA, 2004.

Nursery Industry3.97 billion dollars in gross sales73% containerized crop inventory

Organic substrate Southeast

41% of 7,742 national operations34% of 20 billion ft2 in total production

USDA, 2004.

Problem

Low input efficienciesWater 30% to 80%N and P 30% to 60%

Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005

Problem

Low input efficienciesWater 30% to 80%N and P 30% to 60%

Water availability and use

Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005

Problem

Low input efficienciesWater 30% to 80%N and P 30% to 60%

Water availability and useUSEPA-MCL regulation and criteria

Nitrate-N ≤ 10 mg L-1

Total P ≤ 0.05 mg L-1

Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005

Floriculture and nursery research initiative

Environmental resource management systems for nurseries, greenhouses and landscapes

• Clemson • University of Florida • Horticulture & Breeding Research – USDA• Floral & Nursery Plants Research – USDA

Primary objective

To engineer a pine bark-based soilless substrate that increased water and nutrient efficiency in containerized nursery crop production

Approach

NUTRIENTS

ENVIRONM

ENT IRRIGATION

SUBSTRATE

ContainerContainer

Approach

NUTRIENTS

ENVIRONM

ENTIRRIGATION

SUBSTRATE

Yeager et al., 1997

Approach

NUTRIENTS

ENVIRONM

ENTIRRIGATION

SUBSTRATE

Yeager et al., 1997

EFFICIENT?EFFICIENT?

Infrastructure

Approach

NUTRIENTS

ENVIRONM

ENT IRRIGATION

SUBSTRATE

ContainerContainer

Approach

NUTRIENTS

ENVIRONM

ENT IRRIGATION

SUBSTRATE

ContainerContainer

Amendment

Amendment

Peat-based substrateIncrease available waterDecrease effluent phosphorusIncrease pH buffering capacityPre-charged source of nutrient

Pine bark-based substrateIncrease available waterIncrease plant K and P content

Williams and Neslon, 2000 and 1997; Warren and Bilderback, 1992; Reed, 1998; Handreck and Black, 2002.

Amendment

Mineral aggregateChemical absorbentFertilizer carrierBarrier clays

IndustrialUniformReproducible

Murray, 2000.

Amendment

Raw Clay Selection & Mining

Primary CrusherSecondary Crusher

Dryer(RVM)Mill

Screen

Rotary Kiln(LVM)

Oil-Dri Corporation of America

Bag or Bulk

≤ 800°C ≈ 120°C

Amendment

Montmorillonite Palygorskite

Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.

Amendment

Montmorillonite Palygorskite

Surface Area: 98 m2/g Surface Area: 122.5 m2/g

Oil-Dri Corporation of America

Amendment

Heating

DehydrationNatural

OccurringLow

VolatileMaterial

Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.

Montmorillonite

Amendment

Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.

Heating

DehydrationNatural

OccurringLow

VolatileMaterial

Palygorskite

Overview

IntroductionExperiments

Clay processingClay rateInput efficiency

ConclusionFuture

Clay Processing

Pine bark-based substratesIndustrial Mineral Aggregate

• 8% Clay (by vol.)

Industry Representative Substrate• 11% Sand (by vol.)

Clay Type

Industrial Mineral Aggregate Processing

• Particle Size• 0.25 to 0.85 mm• 0.85 to 4.75 mm

• Temperature Pre-treatment• Low volatile material (LVM)• Regular volatile material (RVM)

Clay Processing

2 x 2 factorialRCBD3 replications

Cyclic micro-irrigation1200, 1500, 1800 HR EST0.2 target LF

Medium rate of CRFDolomite addition

Clay Processing

Data collectedDry weightInfluentEffluentEffluent N and P content

Use to calculateLF = effluent ÷ influentWUE = water retained ÷ plant dry mass PUE = (plant P ÷ applied P) x 100

Field Plots

Field Plots

Nutrient AnalysisNH4 – nitrogen

NO3 – nitrogen

Dissolved reactive P

North Carolina Department of Agriculture

USDA-ARS

Laboratory

Analysis

StatisticsParticle size

• WaterTemperature

pretreatment• Effluent DRP

ControlA priori contrast

Clay Processing

0

40

80

120

160

200

0 20 40 60 80 100 120

0.25-0.85 mm0.85-4.75 mmControl

Cum

ulat

ive

wat

er a

pplie

d (L

)

Day after initiation

Substrate amendment

Clay Processing

0

40

80

120

160

200

0 20 40 60 80 100 120

0.25-0.85 mm0.85-4.75 mmControl

Cum

ulat

ive

wat

er a

pplie

d (L

)

Day after initiation

Substrate amendment

20 L

Clay Processing

0

40

80

120

160

200

0 20 40 60 80 100 120

0.25-0.85 mm0.85-4.75 mmControl

Cum

ulat

ive

wat

er a

pplie

d (L

)

Day after initiation

Substrate amendment

31 L

Clay Processing

0

40

80

120

160

200

0 20 40 60 80 100 120

0.25-0.85 mm0.85-4.75 mmControl

Cum

ulat

ive

wat

er a

pplie

d (L

)

Day after initiation

Substrate amendment

31 L

WUE 731 ml g-1

to 599 ml g-1

Clay Processing

0

40

80

120

160

200

0 20 40 60 80 100 120

0.25-0.85 mm0.85-4.75 mmControl

Cum

ulat

ive

wat

er a

pplie

d (L

)

Day after initiation

Substrate amendment

107,000 gallons of water saved per growing acre

while maximizing growth

Clay Processing

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

LVM

ControlRVM

Cum

ulat

ive

effl

uen

t D

RP

(m

g)

Day after initiation

Substrate amendment

Clay Processing

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

LVM

ControlRVM

Cum

ulat

ive

effl

uen

t D

RP

(m

g)

Day after initiation

Substrate amendment

19 mg

Clay Processing

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

LVM

ControlRVM

Cum

ulat

ive

effl

uen

t D

RP

(m

g)

Day after initiation

Substrate amendment

29 mg

Clay Processing

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

LVM

ControlRVM

Cum

ulat

ive

effl

uen

t D

RP

(m

g)

Day after initiation

Substrate amendment

PUE Control 27% Clay 36%

Clay ProcessingWater

Particle size• 0.25 to 0.85 mm• 18% (31L) decrease

NutrientPhosphorus

• Temperature pretreatment• Low volatile material• 48% (29 mg) decrease

Equivalent growth0.25 to 0.85 mm LVM

24 - 48

Clay ProcessingWater

Particle size• 0.25 to 0.85 mm• 18% (31L) decrease

NutrientPhosphorus

• Temperature pretreatment• Low volatile material• 48% (29 mg) decrease

Equivalent growth0.25 to 0.85 mm LVM

24 - 48

Overview

IntroductionExperiments

Clay processingClay rateInput efficiency

ConclusionFuture

Physical Properties

Clay rate 0.25 to 0.85 mm LVM0% to 24% (by vol.)

• 4% increments

PoromoterSubstrate moisture

characteristic curve15-bar extractionParticle size distribution

Clay Rate

0

20

40

60

80

100

0 4 8 12 16 20 24

Vol

um

e (

%)

Mineral amendment rate (% vol.)

PorometerResults

Clay Rate

0

20

40

60

80

100

0 4 8 12 16 20 24

Vol

um

e (

%)

Mineral amendment rate (% vol.)

Container Capacity

Air space

Clay Rate

0

20

40

60

80

100

0 4 8 12 16 20 24

Vol

um

e (

%)

Mineral amendment rate (% vol.)

Container Capacity

Available water

Clay Rate

0

20

40

60

80

100

0 4 8 12 16 20 24

Vol

um

e (

%)

Mineral amendment rate (% vol.)

Unavailable water

Available water

Clay Rate

0

20

40

60

80

100

0 4 8 12 16 20 24

Vol

um

e (

%)

Mineral amendment rate (% vol.)

Air space

Available water

Clay Rate

0

20

40

60

80

100

0 4 8 12 16 20 24

Vol

um

e (

%)

Mineral amendment rate (% vol.)

Air space

Available water

Normal Range

Materials & Methods

Clay rate (% vol.) RCBD0, 8, 12, 16, and 20%

Li-Cor 6400Net photosynthesisStomatal conductance

Nutrient analysisPlant growth

Clay Rate

0

50

100

150

200

250

300

0 8 12 16 20

Top

dry

mas

s (g

)

Amendment rate (% by vol.)

Clay Rate

0

50

100

150

200

250

300

0 8 12 16 20

Top

dry

mas

s (g

)

Amendment rate (% by vol.)

Max. = 12%

Clay Rate

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0 8 12 16 20

Pn (

µm

ol C

O2 m

-2 s

-1) g

s (µm

ol H2 O

m-2 s

-1)

Amendment rate (% by vol.)

Clay Rate

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0 8 12 16 20

Pn (

µm

ol C

O2 m

-2 s

-1) g

s (µm

ol H2 O

m-2 s

-1)

Amendment rate (% by vol.)

Max. = 11%

Clay Rate

0

0.1

0.2

0.3

0.4

0.5

0

100

200

300

400

500

0 8 12 16 20

g s (µ

mo

l H2O

m-2

s-1

)W

ater use e

fficinecy (m

l g-1)

Amendment rate (% by vol.)

Clay Rate

250

300

350

400

450

500

0 8 12 16 20

Tot

al p

lant

P c

onte

nt (

mg)

Amendment rate (% vol.)

Clay Rate

250

300

350

400

450

500

0 8 12 16 20

Tot

al p

lant

P c

onte

nt (

mg)

Amendment rate (% vol.)

PUE = 46%

Clay Rate

0

10

20

30

40

50

60

0 20 40 60 80 100 120

01220

Cum

ulat

ive

eff

luen

t DR

P (

mg

L-1)

Day after initiaiton

Amendment rate (% vol.)

Clay Rate

0

10

20

30

40

50

60

0 20 40 60 80 100 120

01220

Cum

ulat

ive

eff

luen

t DR

P (

mg

L-1)

Day after initiaiton

Amendment rate (% vol.)

33 mg

Clay Rate

0

10

20

30

40

50

60

0 20 40 60 80 100 120

01220

Cum

ulat

ive

eff

luen

t DR

P (

mg

L-1)

Day after initiaiton

Amendment rate (% vol.)

33 mg

Clay Rate

Clay Rate

Clay Rate

X-ray absorption near edge surface (XANES) spectroscopy

Linear combination fittingAthena Software

Phosphorus Speciation

Phosphorus Speciation

Phosphorus Speciation

Linear combination fittingLow volatile material

• 75 mol% hydroxyapatite• 25 mol% metal adsorbed P

Linear combination fittingLow volatile material

• 75 mol% hydroxyapatite• 25 mol% metal adsorbed P

(aq)2-4(aq)2

2 (aq) (aq)(s)345 OH PO3H 5Ca 7HOH)(POCa

Phosphorus Speciation

Linear combination fittingLow volatile material

• 75 mol% hydroxyapatite• 25 mol% metal adsorbed P

(aq)2-4(aq)2

2 (aq) (aq)(s)345 OH PO3H 5Ca 7HOH)(POCa

Phosphorus Speciation

Clay Rate

Clay rate (% vol.) 10% to 12%

• Plant growth• Net photosynthesis• Stomatal conductance• Use efficiency

• Water• Phosphorus

Plant mineral content

Overview

IntroductionExperiments

Clay processingClay rateInput efficiency

ConclusionFuture

Input EfficiencyRCBD with 4 replications

Cyclic irrigation • 0100, 0300, 0500 HR EST

Main effects Amendment (11% by vol.)

• 0.25 to 0.85 mm LVM• Washed, builders sand

Leaching fraction• 0.2 or 0.1

P rate• 1.0x or 0.5x

Input Efficiency

0

50

100

150

200

250

300

Sand Clay

0.51.0

Tot

al p

lant

dry

mas

s (g

)

Amendment

P rate

Input Efficiency

0

50

100

150

200

250

300

Sand Clay

0.51.0

Tot

al p

lant

dry

mas

s (g

)

Amendment

P rate

A

B

31 g

Input Efficiency

0

50

100

150

200

250

300

Sand Clay

0.51.0

Tot

al p

lant

dry

mas

s (g

)

Amendment

P rate

Not Significant

Input Efficiency

0

50

100

150

200

250

300

0.5 1.0

SandClay

Tot

al p

lant

dry

mas

s (g

)

Phosphorus rate

Amendment

Input Efficiency

0

50

100

150

200

250

300

0.5 1.0

SandClay

Tot

al p

lant

dry

mas

s (g

)

Phosphorus rate

Amendment

A

B

77 g

Input Efficiency

0

50

100

150

200

250

300

0.5 1.0

SandClay

Tot

al p

lant

dry

mas

s (g

)

Phosphorus rate

Amendment

B

A31 g

0.0

1.0

1.5

2.0

2.5

N P K Ca Mg S

SandClay

Pla

nt t

op

nutr

ient

con

tent

(g)

Elemental nutrient

Amendment

0.5

Input Efficiency

0.0

1.0

1.5

2.0

2.5

N P K Ca Mg S

SandClay

Pla

nt t

op

nutr

ient

con

tent

(g)

Elemental nutrient

Amendment

0.5

Input Efficiency

108%

38%

48%

54%

21%

0

20

40

60

80

100

1.0 0.5

SandClay

P u

se e

ffici

ency

(%

)

Phosphorus rate

Amendment

Input Efficiency

B

0

20

40

60

80

100

1.0 0.5

SandClay

P u

se e

ffici

ency

(%

)

Phosphorus rate

Amendment

Input Efficiency

B

A11%

0

20

40

60

80

100

1.0 0.5

SandClay

P u

se e

ffici

ency

(%

)

Phosphorus rate

Amendment

Input Efficiency

B

A

B

64%

Input Efficiency

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Clay 0.10 LFClay 0.20 LF

Cum

ulat

ive

influ

ent

(L)

Treatment

Day after initiation

Input Efficiency

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Clay 0.10 LFClay 0.20 LF

Cum

ulat

ive

influ

ent

(L)

Treatment

Day after initiation

26 L

Input Efficiency

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Clay 0.10 LFClay 0.20 LFSand 0.10 LFSand 0.20 LF

Cum

ulat

ive

influ

ent

(L)

Treatment

Day after initiation

Input Efficiency

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Clay 0.10 LFClay 0.20 LFSand 0.10 LFSand 0.20 LF

Cum

ulat

ive

influ

ent

(L)

Treatment

Day after initiation

90,000 gallons of water saved per growing acre

while maintaining growth

Input Efficiency

0

5

10

15

20

25

0 20 40 60 80 100 120

Clay 0.1 LFClay 0.2 LF

Cum

ulat

ive

eff

luen

t (L

)

Day after initiation

Treatment

Input Efficiency

0

5

10

15

20

25

0 20 40 60 80 100 120

Clay 0.1 LFClay 0.2 LF

Cum

ulat

ive

eff

luen

t (L

)

Day after initiation

Treatment

16 L

Input Efficiency

0

5

10

15

20

25

0 20 40 60 80 100 120

Clay 0.1 LFClay 0.2 LFSand 0.1 LFSand 0.2 LF

Cum

ulat

ive

eff

luen

t (L

)

Day after initiation

Treatment

Input Efficiency

0

5

10

15

20

25

0 20 40 60 80 100 120

Clay 0.1 LFClay 0.2 LFSand 0.1 LFSand 0.2 LF

Cum

ulat

ive

eff

luen

t (L

)

Day after initiation

Treatment

55,000 gallons per growing acre

Input Efficiency

0

5

10

15

20

25

0 20 40 60 80 100 120

Clay 0.1 LFClay 0.2 LFSand 0.1 LFSand 0.2 LF

Cum

ulat

ive

eff

lue

nt D

RP

(m

g) Treatment

Day after initiation

Input Efficiency

0

5

10

15

20

25

0 20 40 60 80 100 120

Clay 0.1 LFClay 0.2 LFSand 0.1 LFSand 0.2 LF

Cum

ulat

ive

eff

lue

nt D

RP

(m

g) Treatment

Day after initiation

14 mg

Input Efficiency

0

5

10

15

20

25

0 20 40 60 80 100 120

Clay 0.1 LFClay 0.2 LFSand 0.1 LFSand 0.2 LF

Cum

ulat

ive

eff

lue

nt D

RP

(m

g) Treatment

Day after initiation

7 mg

Input Efficiency

Water buffering capacityReal-time monitoring

• Weight• Water loss• Container capacity

Input Efficiency

70

75

80

85

90

95

100

00:00

06:00

12:00

18:00

00:00

06:00

12:00

18:00

00:00

06:00

12:00

18:00

00:00

06:00

12:00

18:00

00:00

06:00

12:00

18:00

00:00

06:00

12:00

18:00

00:00

Time and date

Con

tain

er

capa

city

(%

)

ClaySand

Aug 23 Aug 24 Aug 25 Aug 26 Aug 27 Aug 28

Amendment

Input Efficiency

-2000

-1500

-1000

-500

0

ClaySand

5:30

7:30

9:30

11:3

0

13:3

0

15:3

0

17:3

0

19:3

0

21:3

0

Wat

er lo

ss (

ml)

daylight hours

Time (Sept.)

Amendment

Input Efficiency

-2000

-1500

-1000

-500

0

ClaySand

5:30

7:30

9:30

11:3

0

13:3

0

15:3

0

17:3

0

19:3

0

21:3

0

Wat

er lo

ss (

ml)

daylight hours

Time (Sept.)

Amendment

3.4 mL m

in-1

2.7 mL m

in -1

Input Efficiency

-2000

-1500

-1000

-500

0

ClaySand

5:3

0

7:3

0

9:3

0

11:

30

13:

30

15:

30

17:

30

19:

30

21:

30

Wat

er lo

ss (

ml)

daylight hours

Time (Sept.)

Amendment

334 mL

Input Efficiency

-2000

-1500

-1000

-500

0

ClaySand

5:3

0

7:3

0

9:3

0

11:

30

13:3

0

15:

30

17:

30

19:3

0

21:

30

Wat

er lo

ss (

ml)

daylight hours

Time (Sept.)

Amendment

4% increase in available water which equates into 500 ml

Input Efficiency

Phosphorus use efficiency≤64% increase

Water use efficiency ≤15% increase (43 mL g-1)

Maximum growth≤46% increase

Overview

IntroductionExperiments

Clay processingClay rateInput efficiency

ConclusionFuture

Conclusion

Maximum growth0.25 to 0.85 mmLow volatile material11% amendment50% reduction of inputs

• Phosphorus

• Water

Water buffering capacity

Overview

IntroductionExperiments

Clay processingClay rateInput efficiency

ConclusionFuture

Future Research

Species screenNutrient addition

of clayPhosphorus Potassium

Water Management

William Reece Mary Lorscheider Kim HutchisonBeth Harden Dr. Fonteno Dr. NorthupDr. Beauchemin Mike Jett Dr. SwallowSandy Donaghy Bradley Holland Tim KetchieAnthony LeBude Michelle McGinnis Cindy Proctor Carroll Williamson Kristen Walton Brian Jackson Daniel Norden Greta Bjorkquist Dr. Hunt

Committee:Dr. Warren Dr. BilderbackDr. Cassel Dr. Hesterberg

Horticulture & Soil Science Faculty & Graduate Students

My family

Thank you…..

Thank you…..William Reece Mary Lorscheider Kim HutchisonBeth Harden Dr. Fonteno Dr. NorthupDr. Beauchemin Mike Jett Dr. SwallowSandy Donaghy Bradley Holland Tim KetchieAnthony LeBude Michelle McGinnis Cindy Proctor Carroll Williamson Kristen Walton Brian Jackson

Daniel Norden Greta Bjorkquist

Committee:Dr. Warren Dr. BilderbackDr. Cassel Dr. Hesterberg

Horticulture & Soil Science Faculty & Graduate Students

My family

top related