course antenna engineering wir aopert micro strip 01

Post on 29-Nov-2014

477 Views

Category:

Documents

7 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1Course Antenna Engineering

Dirk Heberling

3. Antenna Concepts and Analysis

• Wire Antennas• Aperture Antennas• Microstrip Antennas

2Course Antenna Engineering

Dirk Heberling

3.1 Wire Antennas

• Dipole Antennas and Derivates• Antenna Matching and Balancing• Loop Antennas• Yagi-Uda Antennas• Helix Antennas and Broadband

Antennas• Mobile Phone Antennas

3Course Antenna Engineering

Dirk Heberling

Wire antennas 1

• Oldest antenna form• Most prevalent antenna form• Nearly any imaginable antenna shape

and configuration• Simple concept• Easy construction• Inexpensive

4Course Antenna Engineering

Dirk Heberling

Wire antennas 2• Many analytical solutions have been

presented• Modern numerical solutions

- Simple concepts, e.g. Method of Moments (MoM)

- Easy application to computers- Usable for many wire configurations

• High accuracy of simple theory

5Course Antenna Engineering

Dirk Heberling

Example of a wire antennas

Base station antenna for GSM

6Course Antenna Engineering

Dirk Heberling

Straight Wire Dipole 1

current distribution

( ) sin , z2 2mL LI z I k z⎛ ⎞⎛ ⎞= − ≤⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

for L < λ /2

Maximum current at the terminals:

( )0 sin2mLI z I k⎛ ⎞= = ⎜ ⎟

⎝ ⎠Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

7Course Antenna Engineering

Dirk Heberling

Straight Wire Dipole 2

current distribution for various centre-fed dipoles

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

8Course Antenna Engineering

Dirk Heberling

Straight Wire Dipolefarfield pattern 1

The radiation integral: ( ) ( ) ' cos2

2

' 'L

jkzLf I z e dzθθ −

−= ∫

leads to the far-zone electric field:

cos cos cos2 2

2 sin

jkr

m

kL kLeE j I

θη

π θ

−⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

for L = λ/2:

( )cos cos

2sin

F

π θθ

θ

⎛ ⎞⎜ ⎟⎝ ⎠=

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

9Course Antenna Engineering

Dirk Heberling

for L = λ:

( ) ( )cos cos 12sin

Fπ θ

θθ

+=

for L = 3λ/2:

( )

3cos cos20.7148

sinF

π θθ

θ

⎛ ⎞⎜ ⎟⎝ ⎠=

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Straight Wire Dipolefarfield pattern 2

10Course Antenna Engineering

Dirk Heberling

Straight Wire Dipolefarfield pattern 3

Radiation pattern for L = 1.25λSource: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

11Course Antenna Engineering

Dirk Heberling

Straight Wire DipoleInput impedance 1

with the radiated power Pr:

( )

2

2 22 2

20 0

cos cos cos1 2 2 sin

2 sin2m

r

kL kLIP r d d

r

π π θη θ θ φ

η θπ

⎧ ⎫⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

∫ ∫

the radiation resistance Rr gives:

2

2 rr

m

PRI

= for L = λ/2: 73rR = Ω

12Course Antenna Engineering

Dirk Heberling

Straight Wire DipoleInput impedance 2

for L = λ/2: 73 42.5inZ j= + Ω

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

13Course Antenna Engineering

Dirk Heberling Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

Input resistance Rin (Ω)Length L

20π2(L/λ)20<L<λ/4

Input resistance Rin (Ω)Length L

24.7(π L/λ)2.4λ/4<L< λ/220π2(L/λ)20<L<λ/4

Input resistance Rin (Ω)Length L

11.14(π L/λ)4.17λ/2<L< 0.637λ24.7(π L/λ)2.4λ/4<L< λ/2

20π2(L/λ)20<L<λ/4

Straight Wire DipoleInput impedance 3

Approximations for the input impedance:

14Course Antenna Engineering

Dirk HeberlingSource: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

0.49λ

Resonant length L ShorteningL/2a

2%50000.475λ0.49λ

Resonant length L ShorteningL/2a

5%502%5000

Straight Wire Dipole, shortening by thick wires

0.455λ0.475λ0.49λ

Resonant length L ShorteningL/2a

9%105%502%5000

15Course Antenna Engineering

Dirk Heberling

Folded Dipole Antenna 1

Transmission line mode

Antenna mode

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

16Course Antenna Engineering

Dirk Heberling

4in DZ Z=

for L = λ/2

Folded Dipole Antenna 2

212F in FP Z I=

Dipole

212D in DP Z I=

in the antenna mode12F DI I=

280Ω

Folded dipole

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

17Course Antenna Engineering

Dirk Heberling

Antenna Matching and Feeding

Two primary feeding considerations:

• Matching between transmission line and antenna

• Excitation of the current distribution on the antenna

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

18Course Antenna Engineering

Dirk Heberling

Antenna Matching 1

Important point:• Good matching not

always necessary• High voltages can arise

on the feeding line with high power applications

Ways of matching:• Discrete matching

network• λ/4-line transformer• Tuning devices like

stubs etc.

Reflected and transmitted power in relation to VSWR

19Course Antenna Engineering

Dirk Heberling

Antenna Matching 2

sin2in m inLI I zβ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Change of input impedance:

2

2m

in rmin

IR RI

=

Off-centre feeding of a full wave dipole

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

20Course Antenna Engineering

Dirk Heberling

Antenna Matching 3

( )21in aZ Zα+

' / 4l λfor

α current division factorbetween the wires

4in aZ Z

for equal radii conductors

The T-Match

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

21Course Antenna Engineering

Dirk Heberling

Antenna Balancing 1

unbalanced currents I1 > I2

Example:Cross section of a coaxial transmission line feeding a

dipole at its centre

balanced currents I1 = I2

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

22Course Antenna Engineering

Dirk Heberling

BALanced to UNbalancedThe Balun

Coax-fed dipole

Sleeve balun-fed

dipole

Equivalent circuit

Cross section of a sleeve balun

Split coax balun

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

23Course Antenna Engineering

Dirk Heberling

Wire antennas above imperfect ground

Elevation pattern of a vertical short dipole at the surface of the ground plane

( )cos cossin4

jkrjkh jkh

VIL eE j e e

rθ θ

θ ωμ θπ

−−= + Γ

with 2

2

cos sincos sin

rV

r

ε θ ε θ

ε θ ε θ

′ ′− −Γ =

′ ′+ −

and ro

j σε εωε

′ = −

typical: 15rε =

213 210 3 10m

σ − −Ω

= − ⋅Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

24Course Antenna Engineering

Dirk Heberling

Loop AntennasThe radiation resistance

of a small loop is

2 2

2

2 31,1713r

kS SR πηλ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Increase of the loop resistance by:

Several turns of number n2

231,171rSR n

λ⎛ ⎞⎜ ⎟⎝ ⎠

Introduction of a ferrite core of effective permeability μeff

2

231,171r effSR nμ

λ⎛ ⎞⎜ ⎟⎝ ⎠

Typical μeff: 100 - 10,000

25Course Antenna Engineering

Dirk Heberling

Square Loop Antennas 1

For the one-wavelength square loop antenna:

( )0ˆ cos x8

I kx λ′ ′= = − ≤1 2I I x

( )0ˆ sin y8

I ky λ′ ′= − = ≤4 3I I y

26Course Antenna Engineering

Dirk Heberling

yz-plane

xz-plane

Principle plane patterns for one-wavelength square loop antenna

xy-plane

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and

Design, Wiley, New York, 1981

Square Loop Antennas 2

27Course Antenna Engineering

Dirk Heberling

Square Loop Antenna, Input Impedance

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

28Course Antenna Engineering

Dirk Heberling

Circular Loop, Equivalent Circuit

( ) ( )in in in r L A iZ R jX R R j X X= + = + + +

Rr = radiation resistanceRL = loss resistance of loop conductor

XA = external inductive reactance = ω LA

Xi = internal high-frequency reactance = ω Li

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

29Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 1

A parasitic linear array of parallel dipoles is called aYagi-Uda antenna

or

Yagi-Uda arrayor

Yagi

First published by Shintaro Uda 1926

Simplification of an antenna array if only a few elements are fed directly.

Up to now,all arrays examined have had all elements active, requiring a direct

connection to each element.

Such an array is referred to as a parasitic array.

30Course Antenna Engineering

Dirk Heberling

Example of a Yagi-Antenna

Yagi-Antenna for TV and Radio reception

31Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 2

Field incident to a parasitic element is:

incident driverE E=

0 incident parasiteE E= +withtangential to the parasite

Consider a driver element that is a half-wave dipole and a parasitic element very close to it

parasite incident driverE E E= − = −then

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

32Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 3

Driver of length 0.4781λ

Parasite of length 0.49λ

Driver of length 0.4781λ

Parasite of length 0.45λ

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

33Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 4

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Three-element Yagi-Uda antenna

- Driver of length 0.4781λ- Reflector of length 0.49λ- Director of length 0.45λ

H-plane

E-plane

34Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 5

Configuration of a general Yagi-Uda antenna

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

35Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 6Radiation pattern of a six-element Yagi-Uda antenna for TV Channel 15

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

H-plane E-plane

36Course Antenna Engineering

Dirk Heberling

Broadband Antennas 1An antenna with wide bandwidth is referred to as a

Broadband antennaThe term „broadband“ is a relative measure of the

bandwidth and varies with the circumstances

With fU and fL the upper and lower frequency of operation and fC the centre frequency

Bandwidth as a percent of the centre frequency 100U L

C

f ff−

× Bandwidth defined as a ratio

U

L

ff

If the impedance and the pattern of an antenna do not change significantly over about an octave (fU/fL=2) or more, we classify it as a

broadband antenna

37Course Antenna Engineering

Dirk Heberling

Broadband Antennas 2

• Broadband antennas– Helical antennas– Biconical antennas– Discone monopole

• Frequency independent antennas– Spiral antennas– Log-periodic antennas

38Course Antenna Engineering

Dirk Heberling

Helical Antennas

D = diameter of the helixC = circumference of the helix Dπ=S = spacing between turns

α = pitch angle 1tanS

C−

=

L = total length NS=

L0 = length of one turn 2 2S C= +

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

39Course Antenna Engineering

Dirk Heberling

Helical Antennas, Normal Mode

Radiation patternEquivalent model

for 0NL λFarfield consists of dipole field ED and loop field EL

EAR

φ

=2 2

2SDλ

π=

Circular polarization for 2C Sλ=

Helical antenna

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

40Course Antenna Engineering

Dirk Heberling

Helical Antennas, Axial Mode

with: 3 44 3

< <- Circumference in

the range of

4S λ- Spacing about

12 14α° ≤ ≤ °- Pitch angle usually

Typical farfield pattern

Left-hand sensed helix

Right-hand sensed helix

Axial (endfire) mode of helix

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

41Course Antenna Engineering

Dirk Heberling

Log-Periodic Dipole Array (LPDA)

Construction details of the LPDA

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

A log-periodic antenna is an antenna having a structural geometry such that its impedance and radiation characteristics repeat periodically as the

logarithm of frequency

42Course Antenna Engineering

Dirk Heberling

Log-Periodic Dipole Array 2A wedge of enclosed angle α bounds the dipole lengths!

11

1 1

n n N

n n N

L L LLR R R R

+

+

= = = =with

1 1 1n n

n n

R LR L

τ + += = <the scale factor τ is given by:

2n

n

dL

σ =and the spacing factor σ is defined as:

43Course Antenna Engineering

Dirk Heberling

Example of a

LPDA

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

44Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

45Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

46Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

47Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

48Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

49Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

50Course Antenna Engineering

Dirk Heberling

Helical Antenna

Loop Antenna

Inverted-F Antenna

Sleeve-Dipole

Basic antenna types

Antennas for Mobiles 1

51Course Antenna Engineering

Dirk Heberling

Influence of the human body on the electromagnetic field

Antennas for Mobiles 2

52Course Antenna Engineering

Dirk Heberling

Example of a printed loop antenna

Realisation forms of loop antennas

Antennas for Mobilesthe loop-antenna

Equivalent circuit and matching circuit

53Course Antenna Engineering

Dirk Heberling

Principle of a sleeve dipole Current distributionon a cellular phone

Antennas for Mobilesthe sleeve-dipole

54Course Antenna Engineering

Dirk Heberling

Model of a helical antenna Operational modes

Antennas for Mobilesthe helical antenna

55Course Antenna Engineering

Dirk Heberling

Examples of Inverted-F Antennas

λ/4-Monopol

InvertedL-Antenne

InvertedF-Antenne (IFA)

PlanareInvertedF-Anenne(PIFA)

λ/4-Monopole

InvertedL-Antenna

InvertedF-Antenna (IFA)

Planar InvertedF-Antenna (PIFA)

Antennas for Mobilesthe inverted-F antenna

56Course Antenna Engineering

Dirk Heberling

Shortening and loading of antennas

Antennas for MobilesMiniaturization

a) Introduction of an inductance b) Surrounding by dielectric or magnetic materialsc) Introduction of a capacitance

57Course Antenna Engineering

Dirk Heberling

X

YZ

X

YZ

CONCEPT-Model of a cellular phone with an

helical antenna

CONCEPT-Modelof a cellular phone at

the user

YZ

Antennas for Mobiles, an Example 1

X

YZ

Calculated radiation patterns at 450 MHz

58Course Antenna Engineering

Dirk Heberling

CONCEPT-Modelof the mobile phone

Calculated magnetic nearfield at450 MHz (cut plane through the device)

Simulated nearfield behaviour

Antennas for Mobiles, an Example 2

59Course Antenna Engineering

Dirk Heberling

η = P rad (with user)

P rad (without user)

Overall efficiency

EID-Antenna: • Concentration of the nearfield in the feeding point• Electrical decoupled from the casing

lelektr =λ0/2

Principle of the EID-Antenna

L

Optimised nearfield distribution

Optimised overall efficiency

Optimised Antenna: EID-Antenna

Antennas for Mobiles, an Example 3

60Course Antenna Engineering

Dirk Heberling

Mobile phone with EID-antenna

Cellular phone withhelical antenna

Calculated magnetic nearfield atf = 450 MHz (cut plane through the device)

CONCEPT: Nearfield Characteristics

Antennas for Mobiles, an Example 4

61Course Antenna Engineering

Dirk Heberling

X

YZ

η = 38 % η = 84 %

Mobile phone with EID-antenna

with user

X

Y

Z

CONCEPT: Farfield @ 450 MHz

X

YZ

X

YZ

Mobile phone with helical antenna

with user

Antennas for Mobiles, an Example 5

62Course Antenna Engineering

Dirk Heberling

x

y

φ=270°

φ=180°

φ=90°

φ=0°

Measurement Situation

Measurement: Farfield @ 450 MHz

0

45

90

135

180

225

270

315

-14

-10

-10

-6

-6

-2

-2

2

2

Handy, freistehendHandy mit EID am BenutzerHandy mit Helix am Benutzer

φ in °

x

y

Measured horizontal farfield characteristic

dB

Mobile Phone, without userMobile Phone, with EID and userMobile Phone, with helix and user

Antennas for Mobiles, an Example 6

63Course Antenna Engineering

Dirk Heberling

Integrated Antennas

Dualband- and Multiband-Antennas

Antenna Interaction

Antennas for MobilesDevelopment Trends

64Course Antenna Engineering

Dirk Heberling

1. Metallic patch 2. 3D-MID-Antennas 3. Ceramic Antennas

• very popular• good electrical properties• easy fabrication• mech. fixation necessary

• difficult fabrication • flexible antenna design• electric properties depend

on the material

• antenna design difficult• small size• difficult fabrication

Antennas for MobilesIntegrated Antenna Technology

65Course Antenna Engineering

Dirk Heberling

0,8 1 1,2 1,4 1,6 1,8 2-20

-15

-10

-5

0

free spacetalking position

GHz

dB

S11

f

GSM

DC

S18

00

Return Loss (S11)

Antennas for MobilesDualband Helical Antenna

Double Helical Antenna

66Course Antenna Engineering

Dirk Heberling

Antennas for MobilesInteraction with the Head

top related