deanna needell - ucla mathematics

Post on 21-Nov-2021

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Exponential decay of reconstruction error frombinary measurements of sparse signals

Deanna Needell

Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters

Outline

G Introduction

G Mathematical Formulation & Methods

G Practical CS

G Other notions of sparsityG Heavy quantizationG Adaptive sampling

The mathematical problem

1. Signal of interest f ∈Cd (=CN×N )

2. Measurement operator A :Cd →Cm (m ¿ d)

3. Measurements y =A f +ξ

y

=

A

f

+

ξ

4. Problem: Reconstruct signal f from measurements y

Sparsity

Measurements y =A f +ξ.

y

=

A

f

+

ξ

Assume f is sparse:

G In the coordinate basis: ‖ f ‖0def= |supp( f )| ≤ s ¿ d

G In orthonormal basis: f = B x where ‖x‖0 ≤ s ¿ d

In practice, we encounter compressible signals.F fs is the best s-sparse approximation to f

Many applications...

G Radar, Error Correction

G Computational Biology, Geophysical Data Analysis

G Data Mining, classification

G Neuroscience

G Imaging

G Sparse channel estimation, sparse initial state estimation

G Topology identification of interconnected systems

G ...

Sparsity...

Sparsity in coordinate basis: f=x

Reconstructing the signal f frommeasurements y

F `1-minimization [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:

f = argming

‖g‖1 such that ‖A f − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖ f − f ‖2 . ε+ ‖x −xs‖1ps

.

This error bound is optimal.

Restricted Isometry Property

G A satisfies the Restricted Isometry Property (RIP) when there is δ< c

such that

(1−δ)‖ f ‖2 ≤ ‖A f ‖2 ≤ (1+δ)‖ f ‖2 whenever ‖ f ‖0 ≤ s.

G m ×d Gaussian or Bernoulli measurement matrices satisfy the RIP withhigh probability when

m & s logd .

G Random Fourier and others with fast multiply have similar property:m & s log4 d .

Other recovery methods

Greedy Algorithms

G If A satisfies the RIP, then A∗A is “close” to the identity on sparsevectors

G Use proxy p = A∗y = A∗Ax ≈ x

G Threshold to maintain sparsity: x = Hs(p)

G Repeat

G (Iterative Hard Thresholding)

The One-Bit Compressive Sensing Problem

I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired vianonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.

I In practice, measurements need to be quantized.I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=m

s ln(n/s)≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.

The One-Bit Compressive Sensing ProblemI Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.

I In practice, measurements need to be quantized.I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=m

s ln(n/s)≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.

The One-Bit Compressive Sensing ProblemI Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.I In practice, measurements need to be quantized.

I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=m

s ln(n/s)≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.

The One-Bit Compressive Sensing ProblemI Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.I In practice, measurements need to be quantized.I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=m

s ln(n/s)≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.

The One-Bit Compressive Sensing ProblemI Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.I In practice, measurements need to be quantized.I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=m

s ln(n/s)≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.

The One-Bit Compressive Sensing ProblemI Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.I In practice, measurements need to be quantized.I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=m

s ln(n/s)≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.

The One-Bit Compressive Sensing ProblemI Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.I In practice, measurements need to be quantized.I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=m

s ln(n/s)≥ f (γ)

for f slowly increasing when γ decreases to zero

, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.

The One-Bit Compressive Sensing ProblemI Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.I In practice, measurements need to be quantized.I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=m

s ln(n/s)≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.

A visual

A visual

Existing Theoretical Results

I Convex optimization algorithms [Plan–Vershynin 13a, 13b].

I Uniform, nonadaptive, no quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp∥∥∥∥x− ∆LP(y)

‖∆LP(y)‖2

∥∥∥∥2

. λ−1/5 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

I Nonuniform, nonadaptive, random quantization error:Fix x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 = 1. If A ∈ Rm×n is aGaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/4.

I Uniform, nonadaptive, adversarial quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/12 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

Existing Theoretical Results

I Convex optimization algorithms [Plan–Vershynin 13a, 13b].

I Uniform, nonadaptive, no quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp∥∥∥∥x− ∆LP(y)

‖∆LP(y)‖2

∥∥∥∥2

. λ−1/5 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

I Nonuniform, nonadaptive, random quantization error:Fix x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 = 1. If A ∈ Rm×n is aGaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/4.

I Uniform, nonadaptive, adversarial quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/12 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

Existing Theoretical Results

I Convex optimization algorithms [Plan–Vershynin 13a, 13b].

I Uniform, nonadaptive, no quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp∥∥∥∥x− ∆LP(y)

‖∆LP(y)‖2

∥∥∥∥2

. λ−1/5 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

I Nonuniform, nonadaptive, random quantization error:Fix x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 = 1. If A ∈ Rm×n is aGaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/4.

I Uniform, nonadaptive, adversarial quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/12 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

Existing Theoretical Results

I Convex optimization algorithms [Plan–Vershynin 13a, 13b].

I Uniform, nonadaptive, no quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp∥∥∥∥x− ∆LP(y)

‖∆LP(y)‖2

∥∥∥∥2

. λ−1/5 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

I Nonuniform, nonadaptive, random quantization error:Fix x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 = 1. If A ∈ Rm×n is aGaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/4.

I Uniform, nonadaptive, adversarial quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/12 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

Existing Theoretical Results

I Convex optimization algorithms [Plan–Vershynin 13a, 13b].

I Uniform, nonadaptive, no quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp∥∥∥∥x− ∆LP(y)

‖∆LP(y)‖2

∥∥∥∥2

. λ−1/5 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

I Nonuniform, nonadaptive, random quantization error:Fix x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 = 1. If A ∈ Rm×n is aGaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/4.

I Uniform, nonadaptive, adversarial quantization error:If A ∈ Rm×n is a Gaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/12 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

Limitations of the Framework

I Power decay is optimal since

‖x−∆opt(y)‖2 & λ−1

even if supp(x) known in advance [Goyal–Vetterli–Thao 98].

I Geometric intuition

Sn−1

x

http://dsp.rice.edu/1bitCS/choppyanimated.gif

I Remedy: adaptive choice of dithers τ1, . . . , τm in

yi = sign(〈ai , x〉 − τi ), i = 1, . . . ,m.

Limitations of the Framework

I Power decay is optimal since

‖x−∆opt(y)‖2 & λ−1

even if supp(x) known in advance [Goyal–Vetterli–Thao 98].

I Geometric intuition

Sn−1

x

http://dsp.rice.edu/1bitCS/choppyanimated.gif

I Remedy: adaptive choice of dithers τ1, . . . , τm in

yi = sign(〈ai , x〉 − τi ), i = 1, . . . ,m.

Limitations of the Framework

I Power decay is optimal since

‖x−∆opt(y)‖2 & λ−1

even if supp(x) known in advance [Goyal–Vetterli–Thao 98].

I Geometric intuition

Sn−1

x

http://dsp.rice.edu/1bitCS/choppyanimated.gif

I Remedy: adaptive choice of dithers τ1, . . . , τm in

yi = sign(〈ai , x〉 − τi ), i = 1, . . . ,m.

Limitations of the Framework

I Power decay is optimal since

‖x−∆opt(y)‖2 & λ−1

even if supp(x) known in advance [Goyal–Vetterli–Thao 98].

I Geometric intuition

Sn−1

x

http://dsp.rice.edu/1bitCS/choppyanimated.gif

I Remedy: adaptive choice of dithers τ1, . . . , τm in

yi = sign(〈ai , x〉 − τi ), i = 1, . . . ,m.

Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)one-bit measurements and estimate both the direction and themagnitude of x by producing x such that

‖x− x‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x− xt , then set

xt+1 =

Hs(

xt + x− xt

)

, so that ‖x− xt+1‖2 ≤ R/

4t+12t+1

.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−mq = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.

Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)one-bit measurements and estimate both the direction and themagnitude of x by producing x such that

‖x− x‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x− xt , then set

xt+1 =

Hs(

xt + x− xt

)

, so that ‖x− xt+1‖2 ≤ R/

4t+12t+1

.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−mq = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.

Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)one-bit measurements and estimate both the direction and themagnitude of x by producing x such that

‖x− x‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x− xt , then set

xt+1 =

Hs(

xt + x− xt

)

, so that ‖x− xt+1‖2 ≤ R/

4t+12t+1

.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−mq = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.

Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)one-bit measurements and estimate both the direction and themagnitude of x by producing x such that

‖x− x‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x− xt , then set

xt+1 =

Hs(

xt + x− xt

)

, so that ‖x− xt+1‖2 ≤ R/4t+1

2t+1

.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−mq = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.

Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)one-bit measurements and estimate both the direction and themagnitude of x by producing x such that

‖x− x‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x− xt , then set

xt+1 = Hs(xt + x− xt), so that ‖x− xt+1‖2 ≤ R/

4t+1

2t+1.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−mq = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.

Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)one-bit measurements and estimate both the direction and themagnitude of x by producing x such that

‖x− x‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x− xt , then set

xt+1 = Hs(xt + x− xt), so that ‖x− xt+1‖2 ≤ R/

4t+1

2t+1.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−mq = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.

Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)one-bit measurements and estimate both the direction and themagnitude of x by producing x such that

‖x− x‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x− xt , then set

xt+1 = Hs(xt + x− xt), so that ‖x− xt+1‖2 ≤ R/

4t+1

2t+1.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−mq = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.

Order-One Scheme Based on Convex Optimization

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Dithers τ1, . . . , τq: independent N (0,R2).

I x = argmin ‖z‖1 subject to ‖z‖2 ≤ R, yi (〈ai , z〉 − τi ) ≥ 0.

I If q ≥ cδ−4s ln(n/s), then w/hp

‖x− x‖ ≤ δR whenever ‖x‖0 ≤ s, ‖x‖2 ≤ R.

I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.

Order-One Scheme Based on Convex Optimization

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Dithers τ1, . . . , τq: independent N (0,R2).

I x = argmin ‖z‖1 subject to ‖z‖2 ≤ R, yi (〈ai , z〉 − τi ) ≥ 0.

I If q ≥ cδ−4s ln(n/s), then w/hp

‖x− x‖ ≤ δR whenever ‖x‖0 ≤ s, ‖x‖2 ≤ R.

I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.

Order-One Scheme Based on Convex Optimization

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Dithers τ1, . . . , τq: independent N (0,R2).

I x = argmin ‖z‖1 subject to ‖z‖2 ≤ R, yi (〈ai , z〉 − τi ) ≥ 0.

I If q ≥ cδ−4s ln(n/s), then w/hp

‖x− x‖ ≤ δR whenever ‖x‖0 ≤ s, ‖x‖2 ≤ R.

I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.

Order-One Scheme Based on Convex Optimization

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Dithers τ1, . . . , τq: independent N (0,R2).

I x = argmin ‖z‖1 subject to ‖z‖2 ≤ R, yi (〈ai , z〉 − τi ) ≥ 0.

I If q ≥ cδ−4s ln(n/s), then w/hp

‖x− x‖ ≤ δR whenever ‖x‖0 ≤ s, ‖x‖2 ≤ R.

I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.

Order-One Scheme Based on Convex Optimization

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Dithers τ1, . . . , τq: independent N (0,R2).

I x = argmin ‖z‖1 subject to ‖z‖2 ≤ R, yi (〈ai , z〉 − τi ) ≥ 0.

I If q ≥ cδ−4s ln(n/s), then w/hp

‖x− x‖ ≤ δR whenever ‖x‖0 ≤ s, ‖x‖2 ≤ R.

I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.

Order-One Scheme Based on Convex Optimization

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Dithers τ1, . . . , τq: independent N (0,R2).

I x = argmin ‖z‖1 subject to ‖z‖2 ≤ R, yi (〈ai , z〉 − τi ) ≥ 0.

I If q ≥ cδ−4s ln(n/s), then w/hp

‖x− x‖ ≤ δR whenever ‖x‖0 ≤ s, ‖x‖2 ≤ R.

I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.

Order-One Scheme Based on Convex Optimization

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Dithers τ1, . . . , τq: independent N (0,R2).

I x = argmin ‖z‖1 subject to ‖z‖2 ≤ R, yi (〈ai , z〉 − τi ) ≥ 0.

I If q ≥ cδ−4s ln(n/s), then w/hp

‖x− x‖ ≤ δR whenever ‖x‖0 ≤ s, ‖x‖2 ≤ R.

I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.

Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) accordingto

x

2Ru2Rv

w

I Use other half to estimate the direction of x−w applyinghard thresholding again.

I Plane geometry to estimate direction and magnitude of x.I Cons: dithers 〈ai ,w〉 are adaptive.I Pros: deterministic, fast, handles pre/post-quantization errors.

Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) accordingto

x

2Ru2Rv

w

I Use other half to estimate the direction of x−w applyinghard thresholding again.

I Plane geometry to estimate direction and magnitude of x.I Cons: dithers 〈ai ,w〉 are adaptive.I Pros: deterministic, fast, handles pre/post-quantization errors.

Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) accordingto

x

2Ru2Rv

w

I Use other half to estimate the direction of x−w applyinghard thresholding again.

I Plane geometry to estimate direction and magnitude of x.I Cons: dithers 〈ai ,w〉 are adaptive.I Pros: deterministic, fast, handles pre/post-quantization errors.

Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) accordingto

x

2Ru2Rv

w

I Use other half to estimate the direction of x−w applyinghard thresholding again.

I Plane geometry to estimate direction and magnitude of x.I Cons: dithers 〈ai ,w〉 are adaptive.I Pros: deterministic, fast, handles pre/post-quantization errors.

Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) accordingto

x

2Ru2Rv

w

I Use other half to estimate the direction of x−w applyinghard thresholding again.

I Plane geometry to estimate direction and magnitude of x.I Cons: dithers 〈ai ,w〉 are adaptive.I Pros: deterministic, fast, handles pre/post-quantization errors.

Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) accordingto

x

2Ru2Rv

w

I Use other half to estimate the direction of x−w applyinghard thresholding again.

I Plane geometry to estimate direction and magnitude of x.

I Cons: dithers 〈ai ,w〉 are adaptive.I Pros: deterministic, fast, handles pre/post-quantization errors.

Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) accordingto

x

2Ru2Rv

w

I Use other half to estimate the direction of x−w applyinghard thresholding again.

I Plane geometry to estimate direction and magnitude of x.I Cons: dithers 〈ai ,w〉 are adaptive.

I Pros: deterministic, fast, handles pre/post-quantization errors.

Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) accordingto

x

2Ru2Rv

w

I Use other half to estimate the direction of x−w applyinghard thresholding again.

I Plane geometry to estimate direction and magnitude of x.I Cons: dithers 〈ai ,w〉 are adaptive.I Pros: deterministic, fast, handles pre/post-quantization errors.

Measurement Errors

I Pre-quantization error e ∈ Rm in

yi = sign(〈ai , x〉 − τi + ei ).

I If ‖e‖∞ ≤ εR 2−T (or ‖et‖2 ≤ ε√q‖x− xt‖2 throughout),

then‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the convex-optimization and hard-thresholding schemes.

I Post-quantization error f ∈ {±1}m in

yi = fi sign(〈ai , x〉 − τi ).

I If card({i : f ti = −1}) ≤ ηq throughout, then

‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the hard-thresholding scheme.

Measurement Errors

I Pre-quantization error e ∈ Rm in

yi = sign(〈ai , x〉 − τi + ei ).

I If ‖e‖∞ ≤ εR 2−T (or ‖et‖2 ≤ ε√q‖x− xt‖2 throughout),

then‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the convex-optimization and hard-thresholding schemes.

I Post-quantization error f ∈ {±1}m in

yi = fi sign(〈ai , x〉 − τi ).

I If card({i : f ti = −1}) ≤ ηq throughout, then

‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the hard-thresholding scheme.

Measurement Errors

I Pre-quantization error e ∈ Rm in

yi = sign(〈ai , x〉 − τi + ei ).

I If ‖e‖∞ ≤ εR 2−T (or ‖et‖2 ≤ ε√q‖x− xt‖2 throughout),

then‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the convex-optimization and hard-thresholding schemes.

I Post-quantization error f ∈ {±1}m in

yi = fi sign(〈ai , x〉 − τi ).

I If card({i : f ti = −1}) ≤ ηq throughout, then

‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the hard-thresholding scheme.

Measurement Errors

I Pre-quantization error e ∈ Rm in

yi = sign(〈ai , x〉 − τi + ei ).

I If ‖e‖∞ ≤ εR 2−T (or ‖et‖2 ≤ ε√q‖x− xt‖2 throughout),

then‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the convex-optimization and hard-thresholding schemes.

I Post-quantization error f ∈ {±1}m in

yi = fi sign(〈ai , x〉 − τi ).

I If card({i : f ti = −1}) ≤ ηq throughout, then

‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the hard-thresholding scheme.

Measurement Errors

I Pre-quantization error e ∈ Rm in

yi = sign(〈ai , x〉 − τi + ei ).

I If ‖e‖∞ ≤ εR 2−T (or ‖et‖2 ≤ ε√q‖x− xt‖2 throughout),

then‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the convex-optimization and hard-thresholding schemes.

I Post-quantization error f ∈ {±1}m in

yi = fi sign(〈ai , x〉 − τi ).

I If card({i : f ti = −1}) ≤ ηq throughout, then

‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the hard-thresholding scheme.

Numerical Illustration

3 4 5 6 7 8 9 100

0.005

0.01

0.015

0.02

0.025

0.03

t

||x−

x*|

| / ||x||

1000 hard−thresholding−based testsn=100, s=15, m=100000, T=10 (4 minutes)

perfect one−bit measurements

prequantization noise (st. dev.=0.1)

bit flips (5%)

1 1.5 2 2.5 3 3.5 4 4.5 50

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

t

||x−

x*|

| / ||x||

1000 second−order−cone−programming−based testsn=100, s=10, m=20000, T=5 (11 hours)

perfect one−bit measurements

prequantization noise (st. dev.=0.005)

Numerical Illustration, ctd

0 1 2 3 4 5 6 7 8 9

x 104

10−4

10−3

10−2

m/(s log(n/s))

||x−

x*|

| / ||x||

500 hard−thresholding−based testsn=100, m/s=2000:2000:20000, T=6 (9 hours)

s=10

s=15

s=20

s=25

0 100 200 300 400 500 600 700 80010

−3

10−2

10−1

m/(s log(n/s))

||x−

x*|

| / ||x||

100 second−order−cone−programming−based testsn=100, m/s=20:20:200, T=5 (11 hours)

s=10

s=15

s=20

s=25

Ingredients for the Proofs

I Let A ∈ Rq×n with independent N (0, 1) entries.I Sign Product Embedding Property: if q ≥ Cδ−6s ln(n/s),

then with w/hp∣∣∣∣∣√π/2

q〈Aw, sign(Ax)〉 − 〈w, x〉

∣∣∣∣∣ ≤ δfor all w, x ∈ Rn with ‖w‖0, ‖x‖0 ≤ s and ‖w‖2 = ‖x‖2 = 1.

I Simultaneous (`2, `1)-Quotient Property: w/hp, every e ∈ Rq

can be written as

e = Au with

{‖u‖2 ≤ d‖e‖2/

√q,

‖u‖1 ≤ d ′√s∗‖e‖2/

√q,

where s∗ = q/ ln(n/q).I Restricted Isometry Property: if q ≥ Cδ−2s ln(n/s), then with

w/hp ∣∣∣∣1q ‖Ax‖22 − ‖x‖22∣∣∣∣ ≤ δ‖x‖22

for all x ∈ Rn with ‖x‖0 ≤ s.

Ingredients for the ProofsI Let A ∈ Rq×n with independent N (0, 1) entries.

I Sign Product Embedding Property: if q ≥ Cδ−6s ln(n/s),then with w/hp∣∣∣∣∣

√π/2

q〈Aw, sign(Ax)〉 − 〈w, x〉

∣∣∣∣∣ ≤ δfor all w, x ∈ Rn with ‖w‖0, ‖x‖0 ≤ s and ‖w‖2 = ‖x‖2 = 1.

I Simultaneous (`2, `1)-Quotient Property: w/hp, every e ∈ Rq

can be written as

e = Au with

{‖u‖2 ≤ d‖e‖2/

√q,

‖u‖1 ≤ d ′√s∗‖e‖2/

√q,

where s∗ = q/ ln(n/q).I Restricted Isometry Property: if q ≥ Cδ−2s ln(n/s), then with

w/hp ∣∣∣∣1q ‖Ax‖22 − ‖x‖22∣∣∣∣ ≤ δ‖x‖22

for all x ∈ Rn with ‖x‖0 ≤ s.

Ingredients for the ProofsI Let A ∈ Rq×n with independent N (0, 1) entries.I Sign Product Embedding Property: if q ≥ Cδ−6s ln(n/s),

then with w/hp∣∣∣∣∣√π/2

q〈Aw, sign(Ax)〉 − 〈w, x〉

∣∣∣∣∣ ≤ δfor all w, x ∈ Rn with ‖w‖0, ‖x‖0 ≤ s and ‖w‖2 = ‖x‖2 = 1.

I Simultaneous (`2, `1)-Quotient Property: w/hp, every e ∈ Rq

can be written as

e = Au with

{‖u‖2 ≤ d‖e‖2/

√q,

‖u‖1 ≤ d ′√s∗‖e‖2/

√q,

where s∗ = q/ ln(n/q).I Restricted Isometry Property: if q ≥ Cδ−2s ln(n/s), then with

w/hp ∣∣∣∣1q ‖Ax‖22 − ‖x‖22∣∣∣∣ ≤ δ‖x‖22

for all x ∈ Rn with ‖x‖0 ≤ s.

Ingredients for the ProofsI Let A ∈ Rq×n with independent N (0, 1) entries.I Sign Product Embedding Property: if q ≥ Cδ−6s ln(n/s),

then with w/hp∣∣∣∣∣√π/2

q〈Aw, sign(Ax)〉 − 〈w, x〉

∣∣∣∣∣ ≤ δfor all w, x ∈ Rn with ‖w‖0, ‖x‖0 ≤ s and ‖w‖2 = ‖x‖2 = 1.

I Simultaneous (`2, `1)-Quotient Property: w/hp, every e ∈ Rq

can be written as

e = Au with

{‖u‖2 ≤ d‖e‖2/

√q,

‖u‖1 ≤ d ′√s∗‖e‖2/

√q,

where s∗ = q/ ln(n/q).

I Restricted Isometry Property: if q ≥ Cδ−2s ln(n/s), then withw/hp ∣∣∣∣1q ‖Ax‖22 − ‖x‖22

∣∣∣∣ ≤ δ‖x‖22for all x ∈ Rn with ‖x‖0 ≤ s.

Ingredients for the ProofsI Let A ∈ Rq×n with independent N (0, 1) entries.I Sign Product Embedding Property: if q ≥ Cδ−6s ln(n/s),

then with w/hp∣∣∣∣∣√π/2

q〈Aw, sign(Ax)〉 − 〈w, x〉

∣∣∣∣∣ ≤ δfor all w, x ∈ Rn with ‖w‖0, ‖x‖0 ≤ s and ‖w‖2 = ‖x‖2 = 1.

I Simultaneous (`2, `1)-Quotient Property: w/hp, every e ∈ Rq

can be written as

e = Au with

{‖u‖2 ≤ d‖e‖2/

√q,

‖u‖1 ≤ d ′√s∗‖e‖2/

√q,

where s∗ = q/ ln(n/q).I Restricted Isometry Property: if q ≥ Cδ−2s ln(n/s), then with

w/hp ∣∣∣∣1q ‖Ax‖22 − ‖x‖22∣∣∣∣ ≤ δ‖x‖22

for all x ∈ Rn with ‖x‖0 ≤ s.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:

I a1, . . . , aq ∈ Rn independent N (0, Iq).I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),I τ1, . . . , τq ∈ R independent N (0, 1),I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:

I a1, . . . , aq ∈ Rn independent N (0, Iq).I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),I τ1, . . . , τq ∈ R independent N (0, 1),I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:I a1, . . . , aq ∈ Rn independent N (0, Iq).

I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),I τ1, . . . , τq ∈ R independent N (0, 1),I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:I a1, . . . , aq ∈ Rn independent N (0, Iq).I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),I τ1, . . . , τq ∈ R independent N (0, 1),I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:I a1, . . . , aq ∈ Rn independent N (0, Iq).I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),I τ1, . . . , τq ∈ R independent N (0, 1),I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:I a1, . . . , aq ∈ Rn independent N (0, Iq).I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),

I τ1, . . . , τq ∈ R independent N (0, 1),I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:I a1, . . . , aq ∈ Rn independent N (0, Iq).I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),I τ1, . . . , τq ∈ R independent N (0, 1),

I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:I a1, . . . , aq ∈ Rn independent N (0, Iq).I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),I τ1, . . . , τq ∈ R independent N (0, 1),I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].

I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Ingredients for the Proofs, ctd

I Random hyperplane tessellations of√sBn

1 ∩ Sn−1:I a1, . . . , aq ∈ Rn independent N (0, Iq).I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Sn−1 withsign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of√sBn

1 ∩ Bn2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),I τ1, . . . , τq ∈ R independent N (0, 1),I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√sBn

1 ∩ Bn2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

Thank you!

E-mail:G dneedell@cmc.edu

Web:G www.cmc.edu/pages/faculty/DNeedell

References:G R. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters. Exponential decay of reconstruction error

from binary measurements of sparse signal, submitted.

G E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccuratemeasurements. Communications on Pure and Applied Mathematics, 59(8):1207U1223, 2006.

G E. J. Candès, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundantdictionaries. Applied and Computational Harmonic Analysis, 31(1):59-73, 2010.

G M. A. Davenport, D. Needell and M. B. Wakin. Signal Space CoSaMP for Sparse Recovery withRedundant Dictionaries, submitted.

G D. Needell and R. Ward. Stable image reconstruction using total variation minimization. J. FourierAnalysis and Applications, to appear.

G Y. Plan and R. Vershynin. One-bit compressed sensing by linear programming, Comm. Pure Appl.Math., to appear.

top related