direct carbon fuel cell - tumdirect carbon fuel cell michael werhahn, oliver schneider, ulrich...

Post on 09-Jul-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Technische Universität München

Direct Carbon Fuel Cell

Michael Werhahn, Oliver Schneider, Ulrich Stimming

TU München, Lehrstuhl für Physik E19, James-Franck-Str. 1, 85748 Garching

carbon

e

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 2

I. Increasing energy demandII. Limited fossil resourcesIII. Climate/ CO2

GlobalEnergyTrends

Motivation

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 3

Energy Resources Energy Conversion Energy Efficiency

Energy challenges 2050

Energy savinglight bulb

Technische Universität München

Carbon from Biomass

via hydrothermal

carbonization (HTC)

� Suncoal Industries

� AVA CO2

� REVATEC GmbH,

HTC

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 4

Clean Coal Technology

= technology to reduce the environmental

impact of coal energy generation

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 5

Overall Reaction C + O 2 → CO2

� not combustion with O2 at anode

� electrochemical oxidation with O2-

Cathode: e- consumed (reduction)

Anode: e- released (oxidation)

Electrolyte: no e- conductivity,

but O2- ions above 800°C

Cathode O2 + 4e- → 2O2-

Anode C + 2O2- → CO2 + 4e-

Overall C + O2 → CO2

---------------------------------------------------------------

Direct Carbon Fuel Cell - Concept

Carbon

Oxygen

Electron

Technische Universität München

Nürnberger et al. Energy Environ. Sci., 2010, 3, 150

∆H = ∆G + T∆S

ηFC =∆G/ ∆H = 1- T∆S/∆H

For C + O2 → CO2

At 800°C, ∆S = 1,6 J/(mol K)

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 6

Advantages

� High thermodynamic efficiency� High thermodynamic efficiency

� CO2 sequestration

� High fuel comsumption

� Scale up/down

� High thermodynamic efficiency

� CO2 sequestration

� High fuel comsumption

� Scale up/down

� High volume energy denisty

� Carbon readily available

� High thermodynamic efficiency

� CO2 sequestration

� High fuel comsumption

� Scale up/down

� High volume energy denisty

� Carbon readily available

Application: decentralized power unit

S. Nürnberger et al, Energy Environ. Sci., 2010, 3, 150

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 7

Technical Challenges

� C as fuel

→ CO oxidation

→ catalysts

→ purity/ contaminations

� Manufacturing of anodes

→ thin, dense, with catalyst

� Solid fuel

→ solid/solid interface

→ new fuel supply concept

→ new anode design

Conventional SOFC Design

current collector: porous nickel

anode: Ni/YSZ

electrolyte: YSZ

cathode: LSM/YSZ

current collector: porous LSM

-

+

H2, CO, CH3OH, CH4H2O, CO2

O2, N2

YSZ: yttria stabilized zirconia

LSM: lanthanum strontium manganite

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 8

Direct Carbon Fuel Cell – Setup

15mm

Inert gas

N2, O2

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 9

Direct Carbon Fuel Cell - Voltage Efficiency

Sluggish kinetics

catalyst necessary!

S. Nürnberger et al, Energy Environ. Sci., 2010, 3, 150

Carbon powder as fuel

→ amorphous (Vulcan)

→ graphitic (GFG 50M)

Carbon as anode

→ directly on electrolyte

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 10

Summary: Direct Carbon Fuel Cell (DCFC)

� DCFC is a high temperature energy conversion device for

direct electricity generation from carbon

� High potential for efficient energy conversion

- high theoretical efficiency

- carbon from biomass or coal, high energy density and easy to handle/to store

� Possible application as decentralized electricity generator at varying scales

� Challenges: New system design, anode design, catalysts for accelerated kinetics

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 11

Acknowledgements

Odysseas Paschos, Siegfried Schreier, Markus Haß, Pauline Desclaux, Norbert Kluy

for financial support

Das IGF-Vorhaben 16507 N der Forschungsvereinigung DECHEMA wirdüber die AiF im Rahmen des Programmszur Förderung der industriellenGemeinschaftsforschung und –entwicklung(IGF) vom Bundesministerium fürWirtschaft und Technologie aufgrundeines Beschlusses desDeutschen Bundestages gefördert

Alexander Rheinfeld, Benedikt Brandes, GeorgFink, Joshua Schwall, Mathias Brinch-Larsen

Technische Universität München

MSE TUM 28.06.2012 „Direct Carbon Fuel Cell“ 12

Thank you for your attention!

top related