doc.: ieee 802.15-03/097r0 submission march, 2003 r. kohno, h. zhang, h. nagasaka, crlslide 1...

Post on 17-Jan-2016

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 1

doc.: IEEE 802.15-03/097r0

Submission

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)(WPANs)

Submission Title: [Ultra Wideband impulse radio using free-verse pulse waveform shaping , Soft-Spectrum adaptation, and local sine template receiving]Date Submitted: [3 March, 2003]Source: [Ryuji Kohno, Honggang Zhang, Hiroyuki Nagasaka] Company [(1) Communications Research Laboratory, (2) Yokohama National University, (3) Samsung Yokohama Research Institute]Connector’s Address [3-4, Hikarino-oka, Yokosuka, 239-0847, Japan]Voice:[+81-468-47-5101], FAX: [+81-468-47-5431],E-Mail:[ kohno@crl.go.jp, honggang@crl.go.jp, nhiroy@samsung.co.jp]Re: [IEEE P802.15 Alternative PHY Call For Proposals, IEEE P802.15-02/327r7]Abstract: [Soft-Spectrum UWB transferring schemes with free-verse and geometric pulse waveform adaptation and shaping are proposed, which are suitable for co-existence, interference avoidance, matching with regulatory spectral mask, and high data rate. Local sine template receiving scheme is also investigated for Soft-Spectrum UWB impulse radio.]

Purpose: [For investigating the characteristics of High Rate Alternative PHY standard in 802.15TG3a, based on Soft-Spectrum adaptation, pulse waveform shaping and local sine template receiving]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 2

doc.: IEEE 802.15-03/097r0

Submission

Ultra Wideband Impulse Radio Using  Free-Verse Pulse Waveform Shaping, Soft-

Spectrum Adaptation and Local Sine Template Receiving

Ryuji Kohno* §, Honggang Zhang *, Hiroyuki Nagasaka ‡

* UWB Technology InstituteCommunications Research Laboratory (CRL)

§ Yokohama National University‡ Samsung Yokohama Research Institute

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 3

doc.: IEEE 802.15-03/097r0

Submission

Outline

Philosophy of Soft-Spectrum adaptation with flexible pulse waveform design Soft-Spectrum adaptation based on free-verse pulse waveform shaping Soft-Spectrum adaptation based on geometric pulse waveform shaping Interference avoidance and co-existence Scalable, adaptive performance improvement Local sine template receiving Summary

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 4

doc.: IEEE 802.15-03/097r0

Submission

What’s the solution?(I) Pulse domain (II) Spectrum domain

 Considering the whole frequency bands from DC to 15 GHz, in regard of the FCC Spectrum Mask

The maximum emission power is limited to –80dBm/MHz (whole bands) Frequency efficiency is extremely worse 

What we want to do ? Giving spectrum freedom flexible pulse design Maintaining exchangeability with existing UWB systems Still keeping the pulse width in the order of ns for high data rate

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 5

doc.: IEEE 802.15-03/097r0

Submission

Basic philosophy

EX(1): some bands are restrained

EX(2): free-verse spectrum design  

Pulse design corresponding to the required bandwidths Flexible and adaptive spectrum (Soft-Spectrum), even if

the Spectrum Mask were changed

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 6

doc.: IEEE 802.15-03/097r0

Submission

Section (I)

Soft-Spectrum (Soft-Bands) Adaptation with Free-Verse Pulse Waveform

Shaping

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 7

doc.: IEEE 802.15-03/097r0

Submission

N

kk tftf

1

)()(

tN

tB

N

Bkftf Lk

)sin()]

2

)21((2cos[)(

Basic Formulation Pulse Generator

Divide the whole bandwidth into several sub-bands Soft Spectrum (spectrum matching) Pulse synthesis M-ary signaling

B:bandwidth [f H ~ f L]

N division

Feasible Solution: Pulse design satisfying Spectrum Mask

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 8

doc.: IEEE 802.15-03/097r0

Submission

Robustness to MAI

Frequency characteristics

 

Pulse width

Tread-

off

Pulse width of 10 ns

Pulse width of 3 ns

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 9

doc.: IEEE 802.15-03/097r0

Submission

A: Conventional pulse B: Proposed pulse (K-1)

AWGNChannel

6.75GHz99% Bandwidth

Gold SequenceTH Sequence

  10ns/8Frame/Slot

3ns (A)/0.39ns(B)Pulse width

PPM (Asyn.)Modulation

5, 10Users

10000bitsTransmitted data

Performance comparisons of Multiple Access Interference(MAI)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 10

doc.: IEEE 802.15-03/097r0

Submission

BER performance comparisons of pulse (A) and (K-1)

AWGNChannel

Gold SequenceTH Sequence

  100MbpsData rate

(A) 1.0/3ns

(B) 2.84*10 /0.7ns

(A) 4.89*10 /0.39ns

(A) 0.76 /30ns (BPF)

SNR/Pulse width

PPM (Asyn.)Modulation

1Users

10000bitsTransmitted data

-5

-5

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 11

doc.: IEEE 802.15-03/097r0

Submission

Feasible Solution: Pulse design satisfying coexistence and interference avoidance with existing narrowband systems

[GHz]

Time and frequency domain characteristics of the conventional Gaussian-type pulse

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 12

doc.: IEEE 802.15-03/097r0

Submission

Data rate UWB : 3.2Mbps

              SS : 384kbps

Bandwidth UWB : 3.2GHz

                    SS : 3.4MHz

DS-SS chip rate : 3.84Mcps

DS-SS carrier frequency ωc:2GHz

UWB pulse time duration : 0.7ns

Number of pulses per symbol Ns :31

Pulse repetition time Tf : 10ns

DIR:-16.66dB

Performance comparisons of the

coexistence of the DS-SS and UWB systems

(2) BER of UWB system while receiving interference from other co-existing DS-SS

system

(1) BER of UWB system while causing interference to other co-existing DS-SS system

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 13

doc.: IEEE 802.15-03/097r0

Submission

Time and frequency domain characteristics of the proposed Dual-cycle pulse (K-2)

(Note: several band notches happen)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 14

doc.: IEEE 802.15-03/097r0

Submission

Performance comparisons of the coexistence of the DS-SS and UWB systems (K-2)

(1) BER of DS-SS system while Dual-cycle UWB system co-exists

(2) BER of Dual-cycle UWB system while DS-SS system co-exists

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 15

doc.: IEEE 802.15-03/097r0

Submission

Time and frequency domain characteristics of the proposed specific pulse waveform (K-3) generated

by different Gaussain pulses overlapping (Note: band notches happen at 2.4 and 5 GHz)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 16

doc.: IEEE 802.15-03/097r0

Submission

(1) BER of DS-SS system while K-3 UWB system causing interference

(2) BER of K-3 UWB system while DS-SS system causing interference

Performance comparisons of the coexistence of DS-SS and UWB systems (K-3)

(Note: DS-SS system uses carrier frequency of 2.4 GHz, i.e. notch band for the proposed UWB system )

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 17

doc.: IEEE 802.15-03/097r0

Submission

Time and frequency domain characteristics of another proposed pulse waveform (K-4) generated by different

Gaussain pulses overlapping (Note: band notches clearly happen at 2.4 and 5 GHz

as well)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 18

doc.: IEEE 802.15-03/097r0

Submission

(1) BER of DS-SS system while K-4 UWB system causing interference

(2) BER of K-4 UWB system while DS-SS system causing interference

Performance comparisons of the coexistence of the DS-SS and UWB systems (K-4)

(Note: DS-SS system uses carrier frequency of 2.5 GHz, i.e. notch band for the proposed UWB system )

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 19

doc.: IEEE 802.15-03/097r0

Submission

Giving Spectrum Freedom Flexible pulse waveform and spectrum design

m1

0

t

t

m

02

2

cos2exp

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 20

doc.: IEEE 802.15-03/097r0

Submission

Section (II)

Soft-Spectrum (Soft-Bands) Adaptation with Geometric Pulse Waveform

Shaping

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 21

doc.: IEEE 802.15-03/097r0

Submission

Geometric (regular) Soft-Spectrum pulse waveform with Bi-phase/Bi-polar modulation

(Several bits per geometric Soft-Spectrum pulse is available, seeing the following Slides)

Data 1:

Data 0:

t

t

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 22

doc.: IEEE 802.15-03/097r0

Submission

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Soft-Spectrum waveform based on Gaussian pulse

Time (ns)

Waveform Amplitude [V]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Soft-Spectrum waveform based on Gaussin Monocycle

Time (ns)

Waveform Amplitude [V]

Geometric Soft-Spectrum (SS) pulse waveform generated by a series of Gaussian pulses (the left) Geometric Soft-Spectrum (SS) pulse waveform generated by a series of Gaussian Monocycles (the right) First derivative of Gaussian pulses

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 23

doc.: IEEE 802.15-03/097r0

Submission

0 5 10 15 20 25 30 35 40 45 50-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Power Spectral Density of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

0 10 20 30 40 50 60-400

-350

-300

-250

-200

-150

-100

-50

0

Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

Spectral characteristics of the geometric Soft-Spectrum Gaussian pulses (the left) Spectral characteristics of first derivative of the geometric Soft-Spectrum Gaussian pulses (the right) – Gaussian Monocycle type

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 24

doc.: IEEE 802.15-03/097r0

Submission

0 5 10 15 20 25 30 35 40 45 50-140

-120

-100

-80

-60

-40

-20

0

Power Spectral Density of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

0 5 10 15 20 25 30 35 40 45 50-400

-350

-300

-250

-200

-150

-100

-50

0

Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-1

-0.5

0

0.5

1

1.5

Soft-Spectrum waveform based on Gaussian pulse

Time (ns)

Waveform Amplitude [V]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Soft-Spectrum waveform based on Gaussin Monocycle

Time (ns)

Waveform Amplitude [V]

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 25

doc.: IEEE 802.15-03/097r0

Submission

0 5 10 15 20 25 30 35 40 45 50-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

Power Spectral Density of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

0 5 10 15 20 25 30 35 40 45 50-450

-400

-350

-300

-250

-200

-150

-100

-50

Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Soft-Spectrum waveform based on Gaussian pulse

Time (ns)

Waveform Amplitude [V]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-8

-6

-4

-2

0

2

4

6

8x 10

-3Soft-Spectrum waveform based on Gaussin Monocycle

Time (ns)

Waveform Amplitude [V]

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 26

doc.: IEEE 802.15-03/097r0

Submission

Adaptive, controllable Spread-and-Shrink (SS) of frequency bandwidths (i.e. Soft-Spectrum) is feasible,

according to the actual interference environment and the spectrum requirements

“Soft-Bands” philosophy as mentioned before

0 5 10 15 20 25 30 35 40 45 50-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

       Power Spectral Density of Soft-Spectrum Gaussian pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 27

doc.: IEEE 802.15-03/097r0

Submission

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Geometric Soft-Spectrum pulse waveforms with various envelopes

Triangular-type envelope Exponential-type envelope

Rugby-football-type envelope Gaussian-type envelope

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 28

doc.: IEEE 802.15-03/097r0

Submission

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Soft-Spectrum waveform based on Gaussin Monocycle

Time (ns)

Waveform Amplitude [V]

0 5 10 15 20 25 30 35 40 45 50-400

-350

-300

-250

-200

-150

-100

-50

0

Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

0 5 10 15 20 25 30 35 40 45 50-200

-180

-160

-140

-120

-100

-80

-60

-40

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

-20

0

Power Spectral Density of Soft-Spectrum Gaussian Pulses

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Soft-Spectrum waveform based on Gaussian pulse

Time (ns)

Waveform Amplitude [V]

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 29

doc.: IEEE 802.15-03/097r0

Submission

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Soft-Spectrum waveform based on Gaussian pulse

Time (ns)

Waveform Amplitude [V]

0 5 10 15 20 25 30 35 40 45 50-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Power Spectral Density of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

0 5 10 15 20 25 30 35 40 45 50-400

-350

-300

-250

-200

-150

-100

-50

0

Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time (ns)

Waveform Amplitude [V]

Soft-Spectrum waveform based on Gaussin Monocycle

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 30

doc.: IEEE 802.15-03/097r0

Submission

0 5 10 15 20 25 30 35 40 45 50-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Power Spectral Density of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

0 5 10 15 20 25 30 35 40 45 50-400

-350

-300

-250

-200

-150

-100

-50

0

Power Spectral Density of 1th Derivative of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Soft-Spectrum waveform based on Gaussin Monocycle

Time (ns)

Waveform Amplitude [V]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Soft-Spectrum waveform based on Gaussian pulse

Time (ns)

Waveform Amplitude [V]

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 31

doc.: IEEE 802.15-03/097r0

Submission

0 5 10 15 20 25 30 35 40 45 50-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

           Power Spectral Density of Soft-Spectrum Gaussian Pulses

Frequency (Sample: 1Sample=200MHz)

Power Spectral Density (PSD) [dB]

Spectral characteristics with respect to various geometric Soft-Spectrum pulse waveforms ( i.e., Exponential-,

Rugby-Football-, and Gaussian-type envelops)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 32

doc.: IEEE 802.15-03/097r0

Submission

Interference avoidance and co-existence using flexible geometric Soft-Spectrum pulse transmission

Spectrum overlapping and possible

interference with WLAN (802.11a)

Do not use overlapping frequency

bandwidth causing possible interference

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 33

doc.: IEEE 802.15-03/097r0

Submission

Geometric Soft-Spectrum adaptation (Spread-and-Shrink) and pulse waveform shaping provide new

dimension, frontier, and challenge ( seeing FCC UWB Emission Limit: FCC 02-48, UWB Report & Order)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 34

doc.: IEEE 802.15-03/097r0

Submission

3.1 10.6

Just a dream-world?

“The New Continent” ?

GPS Band

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 35

doc.: IEEE 802.15-03/097r0

Submission

Successful precedent  : Adaptive Frequency-Hopping

(Co-existence of Bluetooth and IEEE 802.11b)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 36

doc.: IEEE 802.15-03/097r0

Submission

M-ary Pulse Shape Modulation (PSM) or Pulse Shape Multiple Access (PSMA) based on geometric Soft-Spectrum waveforms

ort

I 100 110101 •••

t

000 010001 •••

t

t

II

III

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 37

doc.: IEEE 802.15-03/097r0

Submission

Comparisons of Hard-Spectrum (single-band) and geometric Soft-Spectrum (Soft-Bands)

impulse radio transmissions

Raw bit rate/bits per pulse / No. of sub-

bands

Raw bit rate*pulses per bit

PRF (per sub-band)

One or more bits per pulse

Multiple pulses per bitProcessing Gain

(per sub-band)

Multiple sub-bandsOneFrequency Bands

LowHigh Duty Cycle (PRF)

Soft-SpectrumHard-Spectrum

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 38

doc.: IEEE 802.15-03/097r0

Submission

Indoor multipath fading: Example of indoor UWB impulse radio signal propagation (IEEE 802.15SG3a S-V model)

0 50 100 150 200 250-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6Impulse response realizations

Time (ns)

From transmitter

TX RX

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 39

doc.: IEEE 802.15-03/097r0

Submission

Another example of indoor UWB impulse radio signal propagation

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 40

doc.: IEEE 802.15-03/097r0

Submission

Geometric Soft-Spectrum pulses Group Delay

-0.5

0

0.5

1

-0.5

0

0.5

1

Geometric Soft-Spectrum inter-pulse interference caused by multipath fading

Group Delay

-0.5

0

0.5

1

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 41

doc.: IEEE 802.15-03/097r0

Submission

Inter-pulse interference effects of multipath fading on various geometric Soft-Spectrum pulse waveforms

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 42

doc.: IEEE 802.15-03/097r0

Submission

Multipath diversity for geometric Soft-Spectrum intra/inter pulse combining

Tc

C 1

(t)C 2

(t)C 3

(t)CN(t)

Tc Tc

Soft-Spectrum Rake Receiver

BPF

-0.5

0

0.5

1

Geometric Soft-Spectrum

pulses

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 43

doc.: IEEE 802.15-03/097r0

Submission

Improved intra-pulse multipath combining performance, but deteriorated inter-pulse

multipath combining performance if geometric Soft-Spectrum waveform Group

Delay were not resolved

Deteriorated intra-pulse multipath combining performance, but improved inter-pulse

multipath combining performance if geometric Soft-Spectrum waveform Group

Delay were not resolved

Intermediated multipath combining performance achievement

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Multipath diversity for various geometric Soft-Spectrum pulse waveforms

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 44

doc.: IEEE 802.15-03/097r0

Submission

Master or Hub

Slave or Leaf node Proxy node or

wireless Bridge

A

B

C

Several neighbor piconets in UWB multiuser environment

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 45

doc.: IEEE 802.15-03/097r0

Submission

Source node

Data link layer control: identification and management of usable resource

multi-hop link

one-hop direct link Destination node

Multi-hop UWB WPAN with resource management, relaying and route discovering

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 46

doc.: IEEE 802.15-03/097r0

Submission

UWB multi-hop communications with Ad-hoc real-time relaying for multimedia data transfer

(Multipath combining scheme is used by the real-time UWB Repeater)

RXTX UWB RP

Pre-RakePost-Rake

TX RX RP

10 m 10 m

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 47

doc.: IEEE 802.15-03/097r0

Submission

-20 -15 -10 -5 0 5 10 1510

-6

10-5

10-4

10-3

10-2

10-1

100BER in free space loss and AL (assumed loss: -10dB more power attenuation than free space loss)

SNR[dB]

BER

direct path onlymultipath channel

multipath channel without direct path between TX and RXusing Rake on the RP

using Rake on the RP but RP receives no direct pathmultipath channel in AL

multipath channel without direct path between TX and RP in ALusing Rake on the RP in AL

using Rake on the RP in AL but RP receives no direct path

Performance improvement by usingMultipath combining scheme at the real-time UWB

Repeater

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 48

doc.: IEEE 802.15-03/097r0

Submission

Section (III)

Local Sine Template Receiving fro UWB Impulse Radio

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 49

doc.: IEEE 802.15-03/097r0

Submission

Utilizing local-generated sine template instead of conventional TH-PPM template-pulse Simplified correlator circuits Low cost, low power consumption Robustness to impulse radio multipath fading Necessary to estimate and control local Initial-phase

Characteristics of proposed Local Sine Template receiving

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 50

doc.: IEEE 802.15-03/097r0

Submission

Pulse sequences generation and modulation on transmitting side

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 51

doc.: IEEE 802.15-03/097r0

Submission

Pulse sequences after Band Pass Filtering (BPF) on transmitting side

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 52

doc.: IEEE 802.15-03/097r0

Submission

Received pulse sequences before adding AWGN on receiving side

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 53

doc.: IEEE 802.15-03/097r0

Submission

Received pulse sequences after adding AWGN on receiving side

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 54

doc.: IEEE 802.15-03/097r0

Submission

Received pulse sequences after BPF and Mixer on receiving side (Correlation with local sine template)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 55

doc.: IEEE 802.15-03/097r0

Submission

Received pulse sequences after Low Pass Filtering (LPF) on receiving side (demodulation and data out)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 56

doc.: IEEE 802.15-03/097r0

Submission

Effects of Initial-phase estimation scheme (i.e. Initial-phase=180deg)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 57

doc.: IEEE 802.15-03/097r0

Submission

Effects of Initial-phase estimation scheme (i.e. Initial-phase=150deg)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 58

doc.: IEEE 802.15-03/097r0

Submission

Effects of Initial-phase estimation scheme (i.e. Initial-phase=120deg)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 59

doc.: IEEE 802.15-03/097r0

Submission

Effects of Initial-phase estimation scheme (i.e. Initial-phase=90deg)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 60

doc.: IEEE 802.15-03/097r0

Submission

Effects of Initial-phase estimation scheme (i.e. Initial-phase=45deg)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 61

doc.: IEEE 802.15-03/097r0

Submission

Effects of Initial-phase estimation scheme (i.e. Initial-phase=0deg)

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 62

doc.: IEEE 802.15-03/097r0

Submission

Summary (I) We propose a Ultra Wideband impulse radio

transferring scheme utilizing Soft-Spectrum adaptation and free-verse pulse waveform shaping.

Soft-Spectrum adaptation and free-verse pulse waveform shaping can satisfy the FCC Spectrum Mask freely and be applied to avoid possible interferences with other existing narrowband wireless systems.

Scalable and adaptive performance improvement can be achieved by utilizing pulse waveform shaping even in multi-user and multipath fading environment.

March, 2003

R. Kohno, H. Zhang, H. Nagasaka, CRLSlide 63

doc.: IEEE 802.15-03/097r0

Submission

We also propose a local sine template receiving scheme.

Simplified correlation scheme and immunity to multipath fading can be achieved.

Initial-phase control is needed.

Summary (II)

Reference

Patent Pending: JPA2003-47990

top related