ecen631 1 - class introductionece631web.groups.et.byu.net/lectures/ecen631 1 - class...

Post on 11-Jun-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1/5/12 

Copyright©2012  Robo3c Vision Lab Brigham Young University 

Class Introduction

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Course Description

Textbook

Topics

Class Format

Grading

Projects

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

  Not an image processing or computer vision course

  Emphasis on real-time performance   Emphasis on engineering aspect   Review mathematical concepts   Algorithm study, review, and implementation   Assignments, team projects, team semester

project, final report, and exams

Course Overview

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

•  Machine Vision & Applications

•  3-D Vision

Geometry

Motion

•  Human vision is nature and seems easy

•  Single view or multiple views

•  Camera model, image processing, geometry

•  Image noise removal, feature detection, feature matching, reconstruction, and applications

Course Description

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

•  Machine Vision – Theory, Algorithms, & Applications •  Compute 3-D information from one or multiple views in

real time with hardware or software implementation. •  Study methods of using passive sensors for – Stereo vision – Motion analysis to achieve – 3-D information extraction – Static obstacle avoidance – Moving obstacle avoidance – Short-range Motion Estimation – Long-range Motion Estimation – Object recognition – Object localization

Course Objectives

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Machine Vision E.R. Davies

Elsevier, 2005, 3rd Edition

Introductory Techniques for 3-D Computer Vision Emanuele Trucco & Alessandro Verri

Prentice Hall, 1998

An Invitation to 3-D Vision - From Images to Geometric Models

Yi Ma, Stefano Soatto, Jana Kosecka, Shankar Sastry Springer, 2004

References

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

References

Multiple View Geometry in Computer Vision Richard Hartley & Andrew Zisserman

Cambridge University Press, 2003

An Introduction to 3D Computer Vision Techniques and Algorithms

Boguslaw Cyganek & J. Paul Siebert Wiley, 2009

3D Computer Vision: Efficient Methods and

Applications Christian Wšhler

Springer-Verlag, 2009

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Introduction to Machine Vision & 3-D Vision           Introduction             Theory, Algorithms, & Applications                        Features and Feature Detection Edge, Corner, Line, & Color Segmentation Imaging and Image Representation        Imaging Devices                                           Image Digitization                                       Digital Image Properties                                        Problems in Digital Images                        CCD vs. CMOS Camera Model & Calibration                    Camera Model and Geometry               3D Transformation                                     Perspective Transformation Matrix          Camera Calibration                                     Camera Calibration Method

Topics

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Stereo Vision     Introduction                                           Two Cameras – Stereo & Geometry          Epipolar Geometry                                      Stereo Correspondence                               Other Methods    Motion                                    Introduction      Optical Flow                                                Differential Method                                   Feature-based                                             Kalman filters             

Topics

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Image Acquisition

Noise Attenuation

Feature Extraction Differential Motion Analysis

Calibration

Recognition

Feature-Based Stereo

Intensity-Based Stereo

Features Optical Flow Shape from

Single Image

Feature-Based Motion Analysis

Optical Flow Analysis

3-D Motion 3-D Structure Object Localization

Object Identification

Camera/System Parameters

Image

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Vision Algorithm Implementation

System on a Chip using FPGA Real-time vision processing Visual C++, OpenCV

“A rough, quickly calculated motion estimation is arguably more useful for robotic vision than a more 

accurate, but slowly calculated estimate”

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Class Format

•  January-February: 2 lectures a week & project discussion

•  March: 2 lectures a week, literature review, progress report, presentation

•  April: semester project

final report: conference proceeding format

demonstration and presentation

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Assignments (30%): 6 assignments

Three team projects:

Machine vision inspection (5%)

Tennis ball catcher (15%)

Structure from Motion (10%)

One midterm exam (10%): in-class closed-book exam

One final exam (10%): in-class closed-book exam (04/17 7:00AM)

Semester Project (20%): quality (10%) demonstration & presentation (5%), final report (5%)

Grading

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

>=95: A 90: A- 85: B+ 80: B 75: B- 65: C <65:E

Historically: A(1/2), A-(1/4), B+ or below (1/4)

Grading

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Assignments

OpenCV

Feature detection

Feature tracking

Camera calibration & distortion correction

Stereo calibration & rectification

Optical flow & time to impact

Motion field & structure from motion

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Tennis Ball Catcher

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Tennis Ball Catcher

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Tennis Ball Catcher

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

  2~3 per team   25 shots   3 points each catch   Presenta3on 25 points (evaluated by the class) 

  Presenta3on include algorithm, calibra3on, trajectory es3ma3on, etc. 

Tennis Ball Catcher

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Semester Project

  Preferably 3‐D   Camera live input   Real‐3me performance   Real‐3me response   Quality of project (10%)   Demonstra3on and presenta3on 5% (evaluated by the class)   Presenta3on in technical conference format   Final report 5% (technical paper format) 

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

  Past projects – Rock, paper, scissors – Small ground robot – obstacle avoidance – Stereo vision – Gaze‐direc3on Input device for the PC  – Es3ma3on of op3mal landing area  – Structure from Mo3on 

Semester Project

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Schedule   Six assignments: follow the lecture schedule   Semester project proposal and presenta3on: 01/31   Real‐3me visual inspec3on project: 02/16   First exam: 03/06   Tennis ball catcher demonstra3on: 03/15   Tennis ball catcher presenta3on: 03/22   Structure from mo3on project: 03/29   Final exam: 04/17   Semester project demonstra3on and presenta3on: 04/05, 04/10 

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Smart Vehicle

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Vision-Guided Mobile Robot

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Gaze-direction Input device

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

3-D Face Model

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Rock, paper, scissors

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

40050 100 150 200 250 300 350 400 450

100

150

200

250

300

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Vision-guided Path Planning

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Threat Assessment

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Stereo Vision

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

3-D Modeling

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Structure from Motion

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Structure from Motion

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Optical Flow

3-D Pose Estimation

Roll = 0.3° Pitch = 10.8° Yaw = -36.4°

X Trans. = 1.3m Y Trans. = -0.7m Z Trans. = 3.6m

(0,0) (1,0)

(0,1)

(1,1)

•  Calculate the Pose of aircraft by solving the Orthogonal Procrustes Problem. •  Pose Estimation Scheme will be implemented on a Gumstix Embedded System

allowing for on-board vision processing.

1/5/12 

Copyright©2012  Robo3c Vision Lab Brigham Young University 

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Light Saber

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Body Tracking

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Magic Mirror

1/5/12  Copyright©2012  Robo3c Vision Lab Brigham Young University 

Finger Paint

top related