electroweak physicsd. hertzog / illinois z the gyromagnetic ratio, g, relates spin angular momentum...

Post on 21-Jul-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

June 6, 2005 Electroweak Physics: Lecture V

Electroweak Physics

Lecture V: Survey of Low Energy Electroweak

Physics(other than neutral current interactions)

Acknowledgements:Slides from D. DeMille, G. Gratta, D. Hertzog, B.

Kayser, D. Kawall, M.J. Ramsey-Musolf

June 6, 2005 Electroweak Physics: Lecture V

Review1. Introduction to Electroweak Physics

• Electroweak force properties; electron-positron collisions

2. Status of Electroweak Physics• Precision electroweak data from colliders

3. Electroweak Physics at low Q2

• Weak Neutral Current interactions• E158 experiment

4. Weak Neutral Current Interactions (cont’d)• Future Weak Neutral Current experiments• Strange Quarks in the Nucleon• Neutron Skin of a Lead Nucleus

D. Hertzog / Illinois

The gyromagnetic ratio, g, relates spin angular momentum to the particle’s magnetic moment

Dirac theory: point-like, spin-1/2 particles have g = 2, but ...» proton» hyperons

» electron» muon

The muon anomalous magnetic moment is

Muon g-2

( )Sg me

Srr

2=µ

γe

γ

coupling to virtual fields

g >> 2

g almost equal to 2

( )800

122

2≈≈

−=

παµ

µg

a

D. Hertzog / Illinois

g ≠ 2 because of virtual loops, many of which can be calculated very precisely

B

µ µγ

QED

Z

Weak

π

Had VP

π

Had LbL

11 658 470.57(29) 15.4(3) 696.3(7)

or 711.0(6)+13.0(25)

New: +50% shift !

Not agreed on yet(2003: +1.8 shift)

Others cannot …Units: x10-10

D. Hertzog / Illinois

Precession proportional to (g-2)

INDEPENDENT of γ !

µin flight

Bat rest

Ls mceBg

ωω ==2 γ⎥⎦

⎤⎢⎣⎡

⎟⎠⎞

⎜⎝⎛ −

γ+=ωmceBg

s 221

mceBg

a ⎟⎠⎞

⎜⎝⎛ −

==2

2ωω∆

µ

θ

γ=ω

mceB

c

MOVIE

D. Hertzog / Illinois

4 key miracles make it happenPolarized muons

Precession proportional to (g-2)

Pµ The magic momentumE field doesn’t affect muon spin when γ = 29.3

Parity violation in the decay

ν π+ µ+

µ

⎥⎦

⎤⎢⎣

⎡×⎟⎟

⎞⎜⎜⎝

−−−= EaBa

mce

avvvv β

γω µµ 1

12

cyclotronspina ωωω −=

D. Hertzog / Illinois

aµ is proportional to the difference between the spin precession and the rotation rate

Momentum

Spin

e

mceBg

a ⎟⎠⎞

⎜⎝⎛ −

==2

2ωω∆

D. Hertzog / Illinois

Fit to Simple 5-Par Function

0 20 40 60 80 100

Co

un

ts p

er 1

50 n

s

102

103

104

105

106

s)µtime (32 34 36 38 40

Co

un

ts p

er 1

50 n

s

0500

10001500200025003000

3x10

s)µtime (692 694 696 698

Co

un

ts p

er 1

50 n

s

020406080

100120

Few billion events

Getting a good χ2

is a challenge

N(t) = N0 e-t/τ [1+Acos(ωat + φ)]

D. Hertzog / Illinois

Results and ImplicationsNon-zero ∆aµ appeals to a catalog of SM Extensions

New physics …SUSYLeptoquarksMuon substructureAnomalous W couplings

µ µ

W

νµ

W

B•Theory is being improved•New design to reduce error by factor of 2

CC Weak Interaction within the SM

June 6, 2005 Electroweak Physics: Lecture V

PV in Charged Current Processes

MCC ≈g2

8MW2 (V− A)⊗(V − A)

Fermi Constants

µ decay

β decay

GFµ

2=

g2

8MW2

GFβ

2=

g2

8MW2 Vud

GFβ GF

µ =Vud

g2 8MW2 is universal

Universality obscured by

1+∆rµ( )1+∆rβ( )

1 + ∆rβ − ∆ rµ( )

New physics

June 6, 2005 Electroweak Physics: Lecture V

Weak decays

d → u e− ν es → u e− ν eb → u e− ν e

u c t( )Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

dsb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

Vud2

+ Vus2

+ Vub2

= 1

0.9968±0.001SM

Expt

0.9487±0.001 0.0482±0.000 0.00001±0.0000

June 6, 2005 Electroweak Physics: Lecture V

Weak decays

u c t( )Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

dsb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

n→pe− ν eA(Z,N)→A(Z−1,N+1)e+ νe

π+ →π0 e+ νe

β-decay

d → u e− ν es → u e− ν eb → u e− ν e

GFβ

GFµ = Vud 1+ ∆rβ −∆rµ( )

New physics

µ−

ν µ

˜ χ 0

˜ µ −

˜ ν µ

ν e

W −

e−

ν µ

µ−

ν e

e−

˜ χ 0

˜ χ −

˜ ν µ ˜ ν e

+L

+L

SUSY

δOSUSY

OSM ~0.00

June 6, 2005 Electroweak Physics: Lecture V

n→pe− ν eA(Z,N)→A(Z−1,N+1)e+ νe

π+ →π0 e+ νe

β-decayWeak decays

GFβ

GFµ = Vud 1+ ∆rβ −∆rµ( )

Ultra cold neutronsLANSCE: “UCN A”

Liquid N2

Be reflector

Solid D2

77 K poly

Tungsten Target

58Ni coated stainless guide

UCN Detector

Flapper valve

LHe dW ∝1+ a

r p e ⋅

r p ν

EeEν

+ Ar σ n ⋅

r p eEe

+L

Future SNS: Pulsed Cold Neutrons: “abBA”

June 6, 2005 Electroweak Physics: Lecture V

Weak decaysn→pe− ν eA(Z,N)→A(Z−1,N+1)e+ νe

π+ →π0 e+ νe

β-decay

GFβ

GFµ = Vud 1+ ∆rβ −∆rµ( )

Ft= ft1+ ′ δ R +δNS( )1−δC( )=K 2(GF

β)2

0+ ! 0+ “Superallowed”

Nuclear structure-dependent corrections

June 6, 2005 Electroweak Physics: Lecture V

Weak decaysn→pe− ν eA(Z,N)→A(Z−1,N+1)e+ νe

π+ →π0 e+ νe

β-decay

GFβ

GFµ = Vud 1+ ∆rβ −∆rµ( )

Ft= ft1+ ′ δ R +δNS( )1−δC( )=K 2(GF

β)2

0+ ! 0+ “Superallowed”

Nuclear structure-dependent corrections

New tests

June 6, 2005 Electroweak Physics: Lecture V

n→pe− ν eA(Z,N)→A(Z−1,N+1)e+ νe

π+ →π0 e+ νe

β-decayWeak decays

GFβ

GFµ = Vud 1+ ∆rβ −∆rµ( )

PSI: “Pi-Beta”

Γπ+→π0e+νe( )Γπ+→µ+νµ( )~1×10−8

June 6, 2005 Electroweak Physics: Lecture V

Weak Decays (Ongoing)

• Muon lifetime (MuLan at PSI)• Neutron lifetime (UCNA at LANSCE, NIST)• Pion Decays (PiBeta at PSI)• Kaon Decays (KLOE at INFN Frascati)• Muon Michel Parameters (TWIST at TRIUMF)

– Search for right-handed charged currents

June 6, 2005 Electroweak Physics: Lecture V

TWIST physics motivation --test the Standard Model for µ-decay

… Most general interaction does not presuppose the W

ν

νµ±

rate ~ gijγ ψ ei

Γγ ψν eψ ν µ

Γγ ψµ jγ =S,V ,Ti, j=R,L

2

• S,V,T = scalar, vector or tensor interactions

• R, L = right and left handed leptons (e, µ, or τ )

June 6, 2005 Electroweak Physics: Lecture V

rate ~ gijγ ψ ei

Γγ ψν eψ ν µ

Γγ ψµ jγ =S,V ,Ti, j=R,L

2Couplings in the present Standard Model

gRRS = 0

gLRS = 0

gRLS = 0

gLLS = 0

gRRV = 0

gLRV = 0

gRLV = 0

gLLV =1

gRRT ≡ 0

gLRT = 0

gRLT = 0

gLLT ≡ 0

June 6, 2005 Electroweak Physics: Lecture V

e+ spectrum in x, cosθe

rate ~ x2 3 − 3x +23

ρ 4 x − 3( )+ 3ηxo1− x

x⎛ ⎝ ⎜

⎞ ⎠ ⎟ + Pµξ cosθe 1− x +

23

δ 4x − 3( )⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎣ ⎢ ⎤

⎦ ⎥

x ≡Ee

Eemax

Spectral shape in x, cosθe is characterized in terms of four parameters -- ρ, η , ξ, δ

θe r p e

r s µ

Pµ is the muon polarization

xo ≡me

Eemax

Eemax ≡

mµ2 + me

2

2mµ(L. Michel, A. Sirlin)

June 6, 2005 Electroweak Physics: Lecture V

ρδξη

Pµξδρ

TWIST at TRIUMFTWIST at TRIUMF

SM3/4 3 /4 1.0 0.0 1.0

TWIST will measure ρ, ξ, δ in two steps --10-3 in 2004; ~3x10-4 in 2005/6

TWIST will measure ρ, ξ, δ in two steps --10-3 in 2004; ~3x10-4 in 2005/6

Highly polarized µ+

June 6, 2005 Electroweak Physics: Lecture V

Discrete Symmetries

• P, C and CP violated• CPT likely conserved (being tested)• Therefore, T violation expected• Baryon number violation

– Proton decay?• Lepton Number Violation

– Neutrino mass and mixing– Charge lepton number violation?

June 6, 2005 Electroweak Physics: Lecture V

P T

D S

3

June 6, 2005 Electroweak Physics: Lecture V

ee

γx

P and CP-violating processes

June 6, 2005 Electroweak Physics: Lecture V

Electric dipole moment (EDM) searches may test new CP-violation

f dSM dexp dfuture

e−

n199Hg

µ

< 10−40

< 10−30

< 10−33

< 10−38

< 1.6 ×10−27

< 6.3 ×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

If new CP violation is responsible for abundance of matter, will these experiments see an EDM?

CKM

June 6, 2005 Electroweak Physics: Lecture V

Proton Decay & Neutrino Mass

• Small amount of baryon number violation expected

• Does the proton decay?• Is the solar neutrino flux as expected?• Birth of Underground Science!• We now know neutrinos have mass• We now understand the dynamics of

hydrogen burning in the sun to ~1%…

June 6, 2005 Electroweak Physics: Lecture V

June 6, 2005 Electroweak Physics: Lecture V

June 6, 2005 Electroweak Physics: Lecture V

Dirac or Majorana neutrinos?

June 6, 2005 Electroweak Physics: Lecture V

June 6, 2005 Electroweak Physics: Lecture V

June 6, 2005 Electroweak Physics: Lecture V

Double Beta Decay

June 6, 2005 Electroweak Physics: Lecture V

June 6, 2005 Electroweak Physics: Lecture V

Future Underground Science

• Precision solar neutrino spectra• Neutrino MNS matrix parameters

– CP Violation?• Proton Decay• Double Beta Decay• …

• Capture on Nucleus: µ-N(Z,A) νµN(Z-1,A)• Decay in Orbit: µ- νµe-νe (DIO)

When a muon stops in matter, the principal interactions are:Lepton Flavor Violation

Coherent conversion is µ-N(Z,A) e-N(Z,A), and the signalis a monoenergetic electron beyond the DIO endpoint.

The MECO experiment at BNL will measure: Rµe= Γ[µ-N(Z,A) e-N(Z,A)]/ Γ[µ-N(Z,A) νµN(Z-1,A)]

A single event implies Rµe > 2 X 10-17.

New Physics at High Energy Scales

µ- e-

q q

χi0~

lj lj~~

q

µ-

q

e-

Supersymmetry CompositenessPredictions at 10-15 =CΛ 3000 TeV

µ- e-

q q

N

WHeavy Neutrinos µ- e-

q q

He-

t

t tHiggs

µ- e-

q q

γ,Z,Z’

µ′

=

→ <

2Z

17

M 3000 TeV/cB(Z ) 10e

Heavy Z’, Anomalous Z coupling

µ- d

d e-

L

After W. Marciano

Leptoquarks

Features of the MECO Experiment• 1000–fold increase in µ beam intensity over existing facilities

– High Z target for improved pion production– Axially-graded 5 T solenoidal field to maximize pion capture

• Curved transport selects low momentum µ−

• Muon stopping target in a 2 T axially-graded field to improve conversion e- acceptance

• High rate capability electron detectors in a constant 1 T field

CalorimeterStraw Tracker

Stopping Target Foils

Pion Production Target

Superconducting Solenoids

Proton Beam

MuonBeam

5 T2.5 T

2 T

1 T

1 T

MECO Detector Elements

Magnetic spectrometer measures electron momentum with precision of 0.3% (rms)—essentialto eliminate decay in orbit background. Consists of ~2800 axial straw tube detectors 2.6 m x5 mm. 25 µm wall thickness.

~1200 element PbWO4 (3.5 x 3.5 x 12 cm) calorimeter measures electron energy to ~5%,providing trigger and confirming trajectory.

Electron starts here.

Position resolution: 0.2 mm transversely,1.5 mm axially

June 6, 2005 Electroweak Physics: Lecture V

Summary

• An extraordinary amount has been learnt about electroweak physics in the past fifty years

• Further progress requires a coherent effort across High Energy Physics, Nuclear Physics and Particle Astrophysics

• Accelerator- and non-accelerator experiments will play equally important roles

• Together, we will finally address some of the outstanding questions unanswered by the current version of the electroweak theory

• Your generation can help towards generating the required unity and coherence

top related