engineering reportstiΛ›ness matrix where 𝑝= {𝑉1,𝑀1,𝑅2 2} 𝑇is the nodal forces or load...

Post on 18-Mar-2020

21 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Engineering report

Derivation of stiοΏ½ness matrix for a beam

Nasser M. Abbasi

July 7, 2016

Contents

1 Introduction 1

2 Direct method 32.1 Examples using the direct beam stiοΏ½ness matrix . . . . . . . . . . . . . . . . 11

2.1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Finite elements or adding more elements 213.1 Example 3 redone with 2 elements . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Generating shear and bending moments diagrams 29

5 Finding the stiοΏ½ness matrix using methods other than direct method 315.1 Virtual work method for derivation of the stiοΏ½ness matrix . . . . . . . . . . 325.2 Potential energy (minimize a functional) method to derive the stiοΏ½ness matrix 33

6 References 35

iii

Contents CONTENTS

iv

Chapter 1

Introduction

A short review for solving the beam problem in 2D is given. The deflection curve, bendingmoment and shear force diagrams are calculated for a beam subject to bending momentand shear force using direct stiοΏ½ness method and then using finite elements method byadding more elements. The problem is solved first by finding the stiοΏ½ness matrix using thedirect method and then using the virtual work method.

1

CHAPTER 1. INTRODUCTION

2

Chapter 2

Direct method

Local contents2.1 Examples using the direct beam stiοΏ½ness matrix . . . . . . . . . . . . . . . . . . 11

3

CHAPTER 2. DIRECT METHOD

Starting with only one element beam which is subject to bending and shear forces. Thereare 4 nodal degrees of freedom. Rotation at the left and right nodes of the beam andtransverse displacements at the left and right nodes. The following diagram shows thesign convention used for external forces. Moments are always positive when anti-clockwisedirection and vertical forces are positive when in the positive 𝑦 direction.

The two nodes are numbered 1 and 2 from left to right. 𝑀1 is the moment at the left node(node 1), 𝑀2 is the moment at the right node (node 2). 𝑉1 is the vertical force at the leftnode and 𝑉2 is the vertical force at the right node.

x

y

1 2

M1 M2

V1V2

The above diagram shows the signs used for the applied forces direction when acting inthe positive sense. Since this is a one dimensional problem, the displacement field (theunknown being solved for) will be a function of one independent variable which is theπ‘₯ coordinate. The displacement field in the vertical direction is called 𝑣 (π‘₯). This is thevertical displacement of point π‘₯ on the beam from the original π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠. The followingdiagram shows the notation used for the coordinates.

x,u

y,v

Angular displacement at distance π‘₯ on the beam is found using πœƒ (π‘₯) = 𝑑𝑣(π‘₯)𝑑π‘₯ . At the left

node, the degrees of freedom or the displacements, are called 𝑣1, πœƒ1 and at the right nodethey are called 𝑣2, πœƒ2. At an arbitrary location π‘₯ in the beam, the vertical displacement is𝑣 (π‘₯) and the rotation at that location is πœƒ (π‘₯).

The following diagram shows the displacement field 𝑣 (π‘₯)

1 21 2

main displacement field quantity we need to find

x dvx

dx

v 1 v 2

vx

x,u

y,v

In the direct method of finding the stiοΏ½ness matrix, the forces at the ends of the beam arefound directly by the use of beam theory. In beam theory the signs are diοΏ½erent from whatis given in the first diagram above. Therefore, the moment and shear forces obtained usingbeam theory (𝑀𝐡 and 𝑉𝐡 in the diagram below) will have diοΏ½erent signs when comparedto the external forces. The signs are then adjusted to reflect the convention as shown inthe diagram above using 𝑀 and 𝑉.

4

CHAPTER 2. DIRECT METHOD

For an example, the external moment 𝑀1 is opposite in sign to 𝑀𝐡1 and the reaction 𝑉2is opposite to 𝑉𝐡2. To illustrate this more, a diagram with both sign conventions is givenbelow.

Beam theory positive sign directions for bending moments and shear forces

Applied external moments and end forces shown in positive sense directions

M1 M2

V1V2

1 2

MB1 MB2

VB1 VB2

The goal now is to obtain expressions for external loads 𝑀𝑖 and 𝑅𝑖 in the above diagramas function of the displacements at the nodes {𝑑} = {𝑣1, πœƒ1, 𝑣2, πœƒ2}𝑇.

In other words, the goal is to obtain an expression of the form �𝑝� = [𝐾] {𝑑} where [𝐾] is thestiοΏ½ness matrix where �𝑝� = {𝑉1,𝑀1, 𝑅2,𝑀2}

𝑇 is the nodal forces or load vector, and {𝑑} isthe nodal displacement vector.

In this case [𝐾] will be a 4 Γ— 4 matrix and �𝑝� is a 4 Γ— 1 vector and {𝑑} is a 4 Γ— 1 vector.

Starting with 𝑉1. It is in the same direction as the shear force 𝑉𝐡1. Since 𝑉𝐡1 =𝑑𝑀𝐡1𝑑π‘₯ then

𝑉1 =𝑑𝑀𝐡1𝑑π‘₯

Since from beam theory 𝑀𝐡1 = βˆ’πœŽ (π‘₯) 𝐼𝑦 , the above becomes

𝑉1 = βˆ’πΌπ‘¦π‘‘πœŽ (π‘₯)𝑑π‘₯

But 𝜎 (π‘₯) = πΈπœ€ (π‘₯) and πœ€ (π‘₯) = βˆ’π‘¦πœŒ where 𝜌 is radius of curvature, therefore the above becomes

𝑉1 = 𝐸𝐼𝑑𝑑π‘₯ οΏ½

1𝜌�

Since 1𝜌 =

�𝑑2𝑒𝑑π‘₯2 οΏ½

οΏ½1+�𝑑𝑒𝑑π‘₯ οΏ½

2οΏ½3/2 and for a small angle of deflection 𝑑𝑒

𝑑π‘₯ β‰ͺ 1 then 1𝜌 = �𝑑

2𝑒𝑑π‘₯2

οΏ½, and the

above now becomes

𝑉1 = 𝐸𝐼𝑑3𝑒 (π‘₯)𝑑π‘₯3

Before continuing, the following diagram illustrates the above derivation. This comes frombeam theory.

5

CHAPTER 2. DIRECT METHOD

Deflection curve

x

x

Radius of curvature

vx

x dv

dx

1 d 2v

dx2

Now 𝑀1 is obtained. 𝑀1 is in the opposite sense of the bending moment 𝑀𝐡1 hence anegative sign is added giving 𝑀1 = βˆ’π‘€π΅1. But 𝑀𝐡1 = βˆ’πœŽ (π‘₯) 𝐼

𝑦 therefore

𝑀1 = 𝜎 (π‘₯)𝐼𝑦

= πΈπœ€ (π‘₯)𝐼𝑦

= 𝐸 οΏ½βˆ’π‘¦πœŒ οΏ½

𝐼𝑦

= βˆ’πΈπΌ οΏ½1𝜌�

= βˆ’πΈπΌπ‘‘2𝑀𝑑π‘₯2

𝑉2 is now found. It is in the opposite sense of the shear force 𝑉𝐡2, hence a negative sign isadded giving

𝑉2 = βˆ’π‘‰π΅2

= βˆ’π‘‘π‘€π΅2𝑑π‘₯

Since 𝑀𝐡2 = βˆ’πœŽ (π‘₯) 𝐼𝑦 , the above becomes

𝑉2 =πΌπ‘¦π‘‘πœŽ (π‘₯)𝑑π‘₯

But 𝜎 (π‘₯) = πΈπœ€ (π‘₯) and πœ€ (π‘₯) = βˆ’π‘¦πœŒ where 𝜌 is radius of curvature. The above becomes

𝑉2 = βˆ’πΈπΌπ‘‘π‘‘π‘₯ οΏ½

1𝜌�

But 1𝜌 =

�𝑑2𝑀𝑑π‘₯2 οΏ½

οΏ½1+�𝑑𝑀𝑑π‘₯ οΏ½

2οΏ½3/2 and for small angle of deflection 𝑑𝑀

𝑑π‘₯ β‰ͺ 1 hence 1𝜌 = �𝑑

2𝑒𝑑π‘₯2

οΏ½ then the above

becomes

𝑉2 = βˆ’πΈπΌπ‘‘3𝑒 (π‘₯)𝑑π‘₯3

Finally 𝑀2 is in the same direction as 𝑀𝐡2 so no sign change is needed. 𝑀𝐡2 = βˆ’πœŽ (π‘₯) 𝐼𝑦 ,

6

CHAPTER 2. DIRECT METHOD

therefore

𝑀2 = βˆ’πœŽ (π‘₯)𝐼𝑦

= βˆ’πΈπœ€ (π‘₯)𝐼𝑦

= βˆ’πΈ οΏ½βˆ’π‘¦πœŒ οΏ½

𝐼𝑦

= 𝐸𝐼 �1𝜌�

= 𝐸𝐼𝑑2𝑒𝑑π‘₯2

The following is a summary of what was found so far. Notice that the above expressionsare evaluates at π‘₯ = 0 and at π‘₯ = 𝐿. Accordingly to obtain the nodal end forces vector �𝑝�

�𝑝� =

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑉1

𝑀1

𝑉2

𝑀2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝐸𝐼 𝑑3𝑒(π‘₯)𝑑π‘₯3 οΏ½

π‘₯=0

βˆ’πΈπΌ 𝑑2𝑒𝑑π‘₯2 οΏ½π‘₯=0

βˆ’πΈπΌ 𝑑3𝑒(π‘₯)𝑑π‘₯3 οΏ½

π‘₯=𝐿

𝐸𝐼 𝑑2𝑒𝑑π‘₯2 οΏ½π‘₯=𝐿

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

(1)

The RHS of the above is now expressed as function of the nodal displacements 𝑣1, πœƒ1, 𝑣2, πœƒ2.To do that, the field displacement 𝑣 (π‘₯) which is the transverse displacement of the beamis assumed to be a polynomial in π‘₯ of degree 3 or

𝑣 (π‘₯) = π‘Ž0 + π‘Ž1π‘₯ + π‘Ž2π‘₯2 + π‘Ž3π‘₯3

πœƒ (π‘₯) =𝑑𝑣 (π‘₯)𝑑π‘₯

= π‘Ž1 + 2π‘Ž2π‘₯ + 3π‘Ž3π‘₯2 (A)

Polynomial of degree 3 is used since there are 4 degrees of freedom, and a minimum of 4free parameters is needed. Hence

𝑣1 = 𝑣 (π‘₯)|π‘₯=0 = π‘Ž0 (2)

And

πœƒ1 = πœƒ (π‘₯)|π‘₯=0 = π‘Ž1 (3)

Assuming the length of the beam is 𝐿, then

𝑣2 = 𝑣 (π‘₯)|π‘₯=𝐿 = π‘Ž0 + π‘Ž1𝐿 + π‘Ž2𝐿2 + π‘Ž3𝐿3 (4)

And

πœƒ2 = πœƒ (π‘₯)|π‘₯=𝐿 = π‘Ž1 + 2π‘Ž2𝐿 + 3π‘Ž3𝐿2 (5)

Equations (2-5) gives

{𝑑} =

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

π‘Ž0π‘Ž1

π‘Ž0 + π‘Ž1𝐿 + π‘Ž2𝐿2 + π‘Ž3𝐿3

π‘Ž1 + 2π‘Ž2𝐿 + 3π‘Ž3𝐿2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1 0 0 00 1 0 01 𝐿 𝐿2 𝐿3

0 1 2𝐿 3𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

π‘Ž0π‘Ž1π‘Ž2π‘Ž3

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

Solving for π‘Žπ‘– gives⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

π‘Ž0π‘Ž1π‘Ž2π‘Ž3

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1 0 0 00 1 0 0

βˆ’ 3𝐿2 βˆ’ 2

𝐿3𝐿2 βˆ’ 1

𝐿2𝐿3

1𝐿2 βˆ’ 2

𝐿31𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝑣1πœƒ1

3𝐿2𝑣2 βˆ’

1πΏπœƒ2 βˆ’

3𝐿2𝑣1 βˆ’

2πΏπœƒ1

1𝐿2πœƒ1 +

1𝐿2πœƒ2 +

2𝐿3𝑣1 βˆ’

2𝐿3𝑣2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑣 (π‘₯), the field displacement function from Eq. (A) can now be written as a function of the

7

CHAPTER 2. DIRECT METHOD

nodal displacements

𝑣 (π‘₯) = π‘Ž0 + π‘Ž1π‘₯ + π‘Ž2π‘₯2 + π‘Ž3π‘₯3

= 𝑣1 + πœƒ1π‘₯ + οΏ½3𝐿2

𝑣2 βˆ’1πΏπœƒ2 βˆ’

3𝐿2

𝑣1 βˆ’2πΏπœƒ1οΏ½ π‘₯2 + οΏ½

1𝐿2

πœƒ1 +1𝐿2

πœƒ2 +2𝐿3

𝑣1 βˆ’2𝐿3

𝑣2οΏ½ π‘₯3

= 𝑣1 + π‘₯πœƒ1 βˆ’ 2π‘₯2

πΏπœƒ1 +

π‘₯3

𝐿2πœƒ1 βˆ’

π‘₯2

πΏπœƒ2 +

π‘₯3

𝐿2πœƒ2 βˆ’ 3

π‘₯2

𝐿2𝑣1 + 2

π‘₯3

𝐿3𝑣1 + 3

π‘₯2

𝐿2𝑣2 βˆ’ 2

π‘₯3

𝐿3𝑣2

Or in matrix form

𝑣 (π‘₯) = οΏ½1 βˆ’ 3 π‘₯2

𝐿2 + 2 π‘₯3

𝐿3 π‘₯ βˆ’ 2π‘₯2

𝐿 + π‘₯3

𝐿2 3 π‘₯2

𝐿2 βˆ’ 2 π‘₯3

𝐿3 βˆ’π‘₯2

𝐿 + π‘₯3

𝐿2�

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

= οΏ½ 1𝐿3�𝐿3 βˆ’ 3𝐿π‘₯2 + 2π‘₯3οΏ½ 1

𝐿2�𝐿2π‘₯ βˆ’ 2𝐿π‘₯2 + π‘₯3οΏ½ 1

𝐿3οΏ½3𝐿π‘₯2 βˆ’ 2π‘₯3οΏ½ 1

𝐿2οΏ½βˆ’πΏπ‘₯2 + π‘₯3οΏ½οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

The above can be written as

𝑣 (π‘₯) = �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

(5A)

𝑣 (π‘₯) = [𝑁] {𝑑}

Where 𝑁𝑖 are called the shape functions. The shape functions areβŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝑁1 (π‘₯)𝑁2 (π‘₯)𝑁3 (π‘₯)𝑁4 (π‘₯)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1𝐿3�𝐿3 βˆ’ 3𝐿π‘₯2 + 2π‘₯3οΏ½

1𝐿2�𝐿2π‘₯ βˆ’ 2𝐿π‘₯2 + π‘₯3οΏ½1𝐿3οΏ½3𝐿π‘₯2 βˆ’ 2π‘₯3οΏ½

1𝐿2οΏ½βˆ’πΏπ‘₯2 + π‘₯3οΏ½

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We notice that 𝑁1 (0) = 1 and 𝑁1 (𝐿) = 0 as expected. Also𝑑𝑁2 (π‘₯)𝑑π‘₯

οΏ½π‘₯=0

=1𝐿2

�𝐿2 βˆ’ 4𝐿π‘₯ + 3π‘₯2οΏ½οΏ½π‘₯=0

= 1

And𝑑𝑁2 (π‘₯)𝑑π‘₯

οΏ½π‘₯=𝐿

=1𝐿2

�𝐿2 βˆ’ 4𝐿π‘₯ + 3π‘₯2οΏ½οΏ½π‘₯=𝐿

= 0

Also 𝑁3 (0) = 0 and 𝑁3 (𝐿) = 1 and𝑑𝑁4 (π‘₯)𝑑π‘₯

οΏ½π‘₯=0

=1𝐿2

οΏ½βˆ’2𝐿π‘₯ + 3π‘₯2οΏ½οΏ½π‘₯=0

= 0

and𝑑𝑁4 (π‘₯)𝑑π‘₯

οΏ½π‘₯=𝐿

=1𝐿2

οΏ½βˆ’2𝐿π‘₯ + 3π‘₯2οΏ½οΏ½π‘₯=𝐿

= 1

The shape functions have thus been verified. The stiοΏ½ness matrix is now found by substi-tuting Eq. (5A) into Eq. (1), repeated below

�𝑝� =

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑉1

𝑀1

𝑉2

𝑀2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝐸𝐼 𝑑3𝑣(π‘₯)𝑑π‘₯3 οΏ½

π‘₯=0

βˆ’πΈπΌ 𝑑2𝑣𝑑π‘₯2 οΏ½π‘₯=0

βˆ’πΈπΌ 𝑑3𝑣(π‘₯)𝑑π‘₯3 οΏ½

π‘₯=𝐿

𝐸𝐼 𝑑2𝑣𝑑π‘₯2 οΏ½π‘₯=𝐿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8

CHAPTER 2. DIRECT METHOD

Hence

�𝑝� =

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑉1

𝑀1

𝑉2

𝑀2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝐸𝐼 𝑑3

𝑑π‘₯3(𝑁1𝑣1 + 𝑁2πœƒ1 + 𝑁3𝑣2 + 𝑁4πœƒ2)

βˆ’πΈπΌ 𝑑2

𝑑π‘₯2(𝑁1𝑣1 + 𝑁2πœƒ1 + 𝑁3𝑣2 + 𝑁4πœƒ2)

βˆ’πΈπΌ 𝑑3

𝑑π‘₯3(𝑁1𝑣1 + 𝑁2πœƒ1 + 𝑁3𝑣2 + 𝑁4πœƒ2)

𝐸𝐼 𝑑2

𝑑π‘₯2(𝑁1𝑣1 + 𝑁2πœƒ1 + 𝑁3𝑣2 + 𝑁4πœƒ2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

But𝑑3

𝑑π‘₯3𝑁1 (π‘₯) =

1𝐿3

𝑑3

𝑑π‘₯3�𝐿3 βˆ’ 3𝐿π‘₯2 + 2π‘₯3οΏ½

=12𝐿3

And𝑑3

𝑑π‘₯3𝑁2 (π‘₯) =

1𝐿2

𝑑3

𝑑π‘₯3�𝐿2π‘₯ βˆ’ 2𝐿π‘₯2 + π‘₯3οΏ½

=6𝐿2

And𝑑3

𝑑π‘₯3𝑁3 (π‘₯) =

1𝐿3

𝑑3

𝑑π‘₯3οΏ½3𝐿π‘₯2 βˆ’ 2π‘₯3οΏ½

=βˆ’12𝐿3

And𝑑3

𝑑π‘₯3𝑁4 (π‘₯) =

1𝐿2

𝑑3

𝑑π‘₯3οΏ½βˆ’πΏπ‘₯2 + π‘₯3οΏ½

=6𝐿2

For the second derivatives𝑑2

𝑑π‘₯2𝑁1 (π‘₯) =

1𝐿3

𝑑2

𝑑π‘₯2�𝐿3 βˆ’ 3𝐿π‘₯2 + 2π‘₯3οΏ½

=1𝐿3

(12π‘₯ βˆ’ 6𝐿)

And𝑑2

𝑑π‘₯2𝑁2 (π‘₯) =

1𝐿2

𝑑2

𝑑π‘₯2�𝐿2π‘₯ βˆ’ 2𝐿π‘₯2 + π‘₯3οΏ½

=1𝐿2

(6π‘₯ βˆ’ 4𝐿)

And𝑑2

𝑑π‘₯2𝑁3 (π‘₯) =

1𝐿3

𝑑2

𝑑π‘₯2οΏ½3𝐿π‘₯2 βˆ’ 2π‘₯3οΏ½

=1𝐿3

(6𝐿 βˆ’ 12π‘₯)

And𝑑2

𝑑π‘₯2𝑁4 (π‘₯) =

1𝐿2

𝑑2

𝑑π‘₯2οΏ½βˆ’πΏπ‘₯2 + π‘₯3οΏ½

=1𝐿2

(6π‘₯ βˆ’ 2𝐿)

9

CHAPTER 2. DIRECT METHOD

Hence Eq. (6) becomes

�𝑝� =

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑉1

𝑀1

𝑉2

𝑀2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝐸𝐼 𝑑3

𝑑π‘₯3(𝑁1𝑣1 + 𝑁2πœƒ1 + 𝑁3𝑣2 + 𝑁4πœƒ2)οΏ½

π‘₯=0

βˆ’πΈπΌ 𝑑2

𝑑π‘₯2(𝑁1𝑣1 + 𝑁2πœƒ1 + 𝑁3𝑣2 + 𝑁4πœƒ2)οΏ½

π‘₯=0

βˆ’πΈπΌ 𝑑3

𝑑π‘₯3(𝑁1𝑣1 + 𝑁2πœƒ1 + 𝑁3𝑣2 + 𝑁4πœƒ2)οΏ½

π‘₯=𝐿

𝐸𝐼 𝑑2

𝑑π‘₯2(𝑁1𝑣1 + 𝑁2πœƒ1 + 𝑁3𝑣2 + 𝑁4πœƒ2)οΏ½

π‘₯=𝐿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝐸𝐼 οΏ½ 12𝐿3𝑣1 +6𝐿2πœƒ1 βˆ’

12𝐿3𝑣2 +

6𝐿2πœƒ2οΏ½

π‘₯=0

βˆ’πΈπΌ οΏ½ 1𝐿3(12π‘₯ βˆ’ 6𝐿) 𝑣1 +

1𝐿2(6π‘₯ βˆ’ 4𝐿) πœƒ1 +

1𝐿3(6𝐿 βˆ’ 12π‘₯) 𝑣2 +

1𝐿2(6π‘₯ βˆ’ 2𝐿) πœƒ2οΏ½

π‘₯=0

βˆ’πΈπΌ οΏ½ 12𝐿3𝑣1 +6𝐿2πœƒ1 βˆ’

12𝐿3𝑣2 +

6𝐿2πœƒ2οΏ½

π‘₯=𝐿

𝐸𝐼 οΏ½ 1𝐿3(12π‘₯ βˆ’ 6𝐿) 𝑣1 +

1𝐿2(6π‘₯ βˆ’ 4𝐿) πœƒ1 +

1𝐿3(6𝐿 βˆ’ 12π‘₯) 𝑣2 +

1𝐿2(6π‘₯ βˆ’ 2𝐿) πœƒ2οΏ½

π‘₯=𝐿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6πΏβˆ’ (12π‘₯ βˆ’ 6𝐿)π‘₯=0 βˆ’πΏ (6π‘₯ βˆ’ 4𝐿)π‘₯=0 βˆ’ (6𝐿 βˆ’ 12π‘₯)π‘₯=0 βˆ’πΏ (6π‘₯ βˆ’ 2𝐿)π‘₯=0

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿(12π‘₯ βˆ’ 6𝐿)π‘₯=𝐿 𝐿 (6π‘₯ βˆ’ 4𝐿)π‘₯=𝐿 (6𝐿 βˆ’ 12π‘₯)π‘₯=𝐿 𝐿 (6π‘₯ βˆ’ 2𝐿)π‘₯=𝐿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

(7)

Or in matrix form, after evaluating the expressions above for π‘₯ = 𝐿 and π‘₯ = 0 as⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑉1

𝑀1

𝑉2

𝑀2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’ 12𝐿3 βˆ’ 6

𝐿212𝐿3 βˆ’ 6

𝐿2

(12𝐿 βˆ’ 6𝐿) 𝐿 (6𝐿 βˆ’ 4𝐿) (6𝐿 βˆ’ 12𝐿) 𝐿 (6𝐿 βˆ’ 2𝐿)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿6𝐿 2𝐿2 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

The above now is in the form

�𝑝� = [𝐾] {𝑑}

Hence the stiοΏ½ness matrix is

[𝐾] =𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿6𝐿 2𝐿2 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Knowing the stiοΏ½ness matrix means knowing the nodal displacements {𝑑} when giventhe forces at the nodes. The power of the finite element method now comes after all thenodal displacements 𝑣1, πœƒ1, 𝑣2, πœƒ2 are calculated by solving �𝑝� = [𝐾] {𝑑}. This is becausethe polynomial 𝑣 (π‘₯) is now completely determined and hence 𝑣 (π‘₯) and πœƒ (π‘₯) can now beevaluated for any π‘₯ along the beam and not just at its end nodes as the case with finitediοΏ½erence method. Eq. 5A above can now be used to find the displacement 𝑣 (π‘₯) and πœƒ (π‘₯)everywhere.

𝑣 (π‘₯) = [𝑁] {𝑑}

𝑣 (π‘₯) = �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

To summarise, these are the steps to obtain 𝑣 (π‘₯)

1. An expression for [𝐾] is found.

2. �𝑝� = [𝐾] {𝑑} is solved for {𝑑}

10

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

3. 𝑣 (π‘₯) = [𝑁] {𝑑} is calculated by assuming 𝑣 (π‘₯) is a polynomial. This gives the displace-ment 𝑣 (π‘₯) to use to evaluate the transverse displacement anywhere on the beam andnot just at the end nodes.

4. πœƒ (π‘₯) = 𝑑𝑣(π‘₯)𝑑π‘₯ = 𝑑

𝑑π‘₯ [𝑁] {𝑑} is obtained to evaluate the rotation of the beam any whereand not just at the end nodes.

5. The strain πœ– (π‘₯) = βˆ’π‘¦ [𝐡] {𝑑} is found, where [𝐡] is the gradient matrix [𝐡] = 𝑑2

𝑑π‘₯2 [𝑁].

6. The stress from 𝜎 = πΈπœ– = βˆ’πΈπ‘¦ [𝐡] {𝑑} is found.

7. The bending moment diagram from 𝑀(π‘₯) = 𝐸𝐼 [𝐡] {𝑑} is found.

8. The shear force diagram from 𝑉 (π‘₯) = 𝑑𝑑π‘₯𝑀(π‘₯) is found.

2.1 Examples using the direct beam stiοΏ½ness matrix

The beam stiοΏ½ness matrix is now used to solve few beam problems. Starting with simpleone span beam

2.1.1 Example 1

A one span beam, a cantilever beam of length 𝐿, with point load 𝑃 at the free end

L

P

The first step is to make the free body diagram and show all moments and forces at thenodes

L

P

R

M1M2

𝑃 is the given force. 𝑀2 = 0 since there is no external moment at the right end. Hence�𝑝� = [𝐾] {𝑑} for this system is

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑅𝑀1

βˆ’π‘ƒ0

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿6𝐿 2𝐿2 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

Now is an important step. The known end displacements from boundary conditions issubstituted into {𝑑}, and the corresponding row and columns from the above system ofequations are removed1. Boundary conditions indicates that there is no rotation on theleft end (since fixed). Hence 𝑣1 = 0 and πœƒ1 = 0. Hence the only unknowns are 𝑣2 and πœƒ2.Therefore the first and the second rows and columns are removed, giving

⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©βˆ’π‘ƒ0

⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭=

𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽ12 βˆ’6πΏβˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎠

⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘£2πœƒ2

⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭

1Instead of removing rows/columns for known boundary conditions, we can also just put a 1 on thediagonal of the stiοΏ½ness matrix for that boundary conditions. I will do this example again using this method

11

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Now the above is solved for

⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘£2πœƒ2

⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭. Let 𝐸 = 30 Γ— 106 psi (steel), 𝐼 = 57 𝑖𝑛4, 𝐿 = 144 𝑖𝑛, and

𝑃 = 400 lb, henceοΏ½ οΏ½1 P=400;2 L=144;3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[P;P*L;-P;0];11 x=A(3:end,3:end)\load(3:end)οΏ½ οΏ½

Λ™

which givesx =-0.2324-0.0024

Therefore the vertical displacement at the right end is 𝑣2 = 0.2324 inches (downwards) andπœƒ2 = βˆ’0.0024 radians. Now that all nodal displacements are found, the field displacementfunction is completely determined.

{𝑑} =

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00

βˆ’0.2324βˆ’0.0024

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

From Eq. 5A

𝑣 (π‘₯) = [𝑁] {𝑑}

= �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00

βˆ’0.2324βˆ’0.0024

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

= οΏ½ 1𝐿3�𝐿3 βˆ’ 3𝐿π‘₯2 + 2π‘₯3οΏ½ 1

𝐿2�𝐿2π‘₯ βˆ’ 2𝐿π‘₯2 + π‘₯3οΏ½ 1

𝐿3οΏ½3𝐿π‘₯2 βˆ’ 2π‘₯3οΏ½ 1

𝐿2οΏ½βˆ’πΏπ‘₯2 + π‘₯3οΏ½οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00

βˆ’0.2324βˆ’0.0024

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=0.002 4𝐿2

�𝐿π‘₯2 βˆ’ π‘₯3οΏ½ +0.232 4𝐿3

οΏ½2π‘₯3 βˆ’ 3𝐿π‘₯2οΏ½

But 𝐿 = 144 inches, and the above becomes

𝑣 (π‘₯) = 3.992 0 Γ— 10βˆ’8π‘₯3 βˆ’ 1.695 6 Γ— 10βˆ’5π‘₯2

To verify, let π‘₯ = 144 in the above

𝑣 (π‘₯ = 144) = 3.992 0 Γ— 10βˆ’81443 βˆ’ 1.695 6 Γ— 10βˆ’51442

= βˆ’0.232 40

The following is a plot of the deflection curve for the beamοΏ½ οΏ½1 v=@(x) 3.992*10^-8*x.^3-1.6956*10^-5*x.^22 x=0:0.1:144;3 plot(x,v(x),'r-','LineWidth',2);4 ylim([-0.8 0.3]);5 title('beam deflection curve');6 xlabel('x inch'); ylabel('deflection inch');7 gridοΏ½ οΏ½

12

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Λ™

Now instead of removing rows/columns for the known boundary conditions, a 1 is put onthe diagonal. Starting again with

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑅𝑀1

βˆ’π‘ƒ0

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿6𝐿 2𝐿2 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

Since 𝑣1 = 0 and πœƒ1 = 0, then⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00βˆ’π‘ƒ0

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1 0 0 00 1 0 00 0 12 βˆ’6𝐿0 0 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

The above system is now solved as before. 𝐸 = 30Γ— 106 psi, 𝐼 = 57 𝑖𝑛4, 𝐿 = 144 in, 𝑃 = 400 lbοΏ½ οΏ½1 P=400;2 L=144;3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[0;0;-P;0]; %put zeros for known B.C.11 A(:,1)=0; A(1,:)=0; A(1,1)=1; %put 1 on diagonal12 A(:,2)=0; A(2,:)=0; A(2,2)=1; %put 1 on diagonal13 AοΏ½ οΏ½

Λ™A =1.0e+07 *0.0000 0 0 00 0.0000 0 00 0 0.0007 -0.04960 0 -0.0496 4.7583οΏ½ οΏ½

1 sol=A\load %SOLVEοΏ½ οΏ½Λ™sol =00-0.2324-0.0024

The same solution is obtained as before, but without the need to remove rows/column from

13

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

the stiοΏ½ness matrix. This method might be easier for programming than the first methodof removing rows/columns.

The rest now is the same as was done earlier and will not be repeated.

2.1.2 Example 2

This is the same example as above, but the vertical load 𝑃 is now placed in the middle ofthe beam

L

P

In using stiοΏ½ness method, all loads must be on the nodes. The vector �𝑝� is the nodal forcesvector. Hence equivalent nodal loads are found for the load in the middle of the beam.The equivalent loading is the following

L

P/2P/2 PL/8PL/8

Therefore, the problem is as if it was the following problem

L

P/2P/2

PL/8PL/8

Now that equivalent loading is in place, we continue as before. Making a free body diagramshowing all loads (including reaction forces)

L

P/2

P/2

PL/8PL/8

M1

R

14

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

The stiοΏ½ness equation is now written as

�𝑝� = [𝐾] {𝑑}⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑅 βˆ’ 𝑃/2𝑀1 βˆ’ 𝑃𝐿/8

βˆ’π‘ƒ/2𝑃𝐿/8

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿6𝐿 2𝐿2 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

There is no need to determine 𝑅 and 𝑀1 at this point since these rows will be removed dueto boundary conditions 𝑣1 = 0 and πœƒ1 = 0 and hence those quantities are not needed tosolve the equations. Note that the rows and columns are removed for the known boundarydisplacements before solving �𝑝� = [𝐾] {𝑑}. Hence, after removing the first two rows andcolumns, the above system simplifies to

⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©βˆ’π‘ƒ/2𝑃𝐿/8

⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭=

𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽ12 βˆ’6πΏβˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎠

⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘£2πœƒ2

⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭

The above is now solved for

⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘£2πœƒ2

⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭using the same numerical values for 𝑃, 𝐸, 𝐼, 𝐿 as in the

first exampleοΏ½ οΏ½1 P=400;2 L=144;3 E=30*10^6;4 I=57.1;5 A=(E*I/L^3)*[12 6*L -12 6*L;6 6*L 4*L^2 -6*L 2*L^2;7 -12 -6*L 12 -6*L;8 6*L 2*L^2 -6*L 4*L^29 ];10 load=[-P/2;P*L/8];11 x=A(3:end,3:end)\loadοΏ½ οΏ½

Λ™x =-0.072630472854641-0.000605253940455

Therefore

{𝑑} =

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00

βˆ’0.072630472854641βˆ’0.000605253940455

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

This is enough to obtain 𝑣 (π‘₯) as before. Now the reactions 𝑅 and 𝑀1 can be determined ifneeded. Going back to the full �𝑝� = [𝐾] {𝑑}, results in

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑅 βˆ’ 𝑃/2𝑀1 βˆ’ 𝑃𝐿/8

βˆ’π‘ƒ/2𝑃𝐿/8

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿6𝐿 2𝐿2 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00

βˆ’0.072630472854641βˆ’0.000605253940455

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

0.871 57 βˆ’ 3.631 5 Γ— 10βˆ’3𝐿0.435 78𝐿 βˆ’ 1.210 5 Γ— 10βˆ’3𝐿2

3.631 5 Γ— 10βˆ’3𝐿 βˆ’ 0.871 570.435 78𝐿 βˆ’ 2.421 Γ— 10βˆ’3𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the first equation becomes

𝑅 βˆ’ 𝑃/2 =𝐸𝐼𝐿3

οΏ½0.871 57 βˆ’ 3.631 5 Γ— 10βˆ’3𝐿�

and since 𝐸 = 30 Γ— 106 psi (steel) and 𝐼 = 57 𝑖𝑛4and 𝐿 = 144 in and 𝑃 = 400 lb, then

15

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

𝑅 =οΏ½30Γ—106οΏ½57

1443οΏ½0.871 57 βˆ’ 3.631 5 Γ— 10βˆ’3 (144)οΏ½ + 400/2 . Therefore

𝑅 = 400 lb

and 𝑀1 βˆ’ 𝑃𝐿/8 = 𝐸𝐼𝐿3οΏ½0.435 78𝐿 βˆ’ 1.210 5 Γ— 10βˆ’3𝐿2οΏ½ + 𝑃𝐿/8 , hence

𝑀1 = 28 762 lb-ft

Now that all nodal reactions are found, the displacement field is found and the deflectioncurve can be plotted.

𝑣 (π‘₯) = [𝑁] {𝑑}

𝑣 (π‘₯) = �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

= �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00

βˆ’0.072630472854641βˆ’0.000605253940455

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

= οΏ½ 1𝐿3οΏ½3𝐿π‘₯2 βˆ’ 2π‘₯3οΏ½ 1

𝐿2οΏ½βˆ’πΏπ‘₯2 + π‘₯3οΏ½οΏ½

βŽ›βŽœβŽœβŽœβŽœβŽβˆ’0.072630472854641βˆ’0.000605253940455

⎞⎟⎟⎟⎟⎠

=6.052 5 Γ— 10βˆ’4

𝐿2�𝐿π‘₯2 βˆ’ π‘₯3οΏ½ +

0.072 63𝐿3

οΏ½2π‘₯3 βˆ’ 3𝐿π‘₯2οΏ½

Since 𝐿 = 144 inches, the above becomes

𝑣 (π‘₯) =6.052 5 Γ— 10βˆ’4

(144)2οΏ½(144) π‘₯2 βˆ’ π‘₯3οΏ½ +

0.072 63(144)3

οΏ½2π‘₯3 βˆ’ 3 (144) π‘₯2οΏ½

= 1.945 9 Γ— 10βˆ’8π‘₯3 βˆ’ 6.304 7 Γ— 10βˆ’6π‘₯2

The following is the plot

2.1.3 Example 3

Assuming the beam is fixed on the left end as above, but simply supported on the rightend, and the vertical load 𝑃 now at distance π‘Ž from the left end and at distance 𝑏 from theright end, and a uniform distributed load of density π‘š lb/in is on the beam.

16

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Pm (lb/in

a b

M1

Using the following values: π‘Ž = 0.625𝐿, 𝑏 = 0.375𝐿, 𝐸 = 30 Γ— 106 psi (steel), 𝐼 = 57 𝑖𝑛4,𝐿 = 144 in, 𝑃 = 1000 lb, π‘š = 200 lb/in.

In the above, the left end reaction forces are shown as 𝑅1 and moment reaction as 𝑀1 andthe reaction at the right end as 𝑅2. Starting by finding equivalent loads for the point load𝑃 and equivalent loads for for the uniform distributed load π‘š. All external loads must betransferred to the nodes for the stiοΏ½ness method to work. Equivalent load for the abovepoint load is

Pb2L2a

L3Pa2L2b

L3

a b

Pab2

L2

Pa2b

L2

Equivalent load for the uniform distributed loading is

mL2

mL2

12mL2

mL2

12

Using free body diagram, with all the loads on it gives the following diagram (In thisdiagram 𝑀 is the reaction moment and 𝑅1, 𝑅2 are the reaction forces)

17

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

Now that all loads are on the nodes, the stiοΏ½ness equation is applied

�𝑝� = [𝐾] {𝑑}⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑅1 βˆ’π‘ƒπ‘2(𝐿+2π‘Ž)

𝐿3 βˆ’ π‘šπΏ2

π‘€βˆ’ π‘ƒπ‘Žπ‘2

𝐿2 βˆ’ π‘šπΏ2

12

𝑅2 βˆ’π‘ƒπ‘Ž2(𝐿+2𝑏)

𝐿3 βˆ’ π‘šπΏ2

π‘ƒπ‘Ž2𝑏𝐿2 + π‘šπΏ2

12

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿6𝐿 2𝐿2 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

Boundary conditions are now applied. 𝑣1 = 0, πœƒ1 = 0,𝑣2 = 0. Therefore the first, second andthird rows/columns are removed giving

π‘ƒπ‘Ž2𝑏𝐿2

+π‘šπΏ2

12=

𝐸𝐼𝐿3

4𝐿2πœƒ2

Hence

πœƒ2 = οΏ½π‘ƒπ‘Ž2𝑏𝐿2

+π‘šπΏ2

12 � �𝐿4𝐸𝐼�

Substituting numerical values for the above as given at the top of the problem results in

πœƒ2 =βŽ›βŽœβŽœβŽœβŽ(1000) (0.625 (144))2 (0.375 (144))

(144)2+(200) (144)2

12

⎞⎟⎟⎟⎠

βŽ›βŽœβŽœβŽœβŽœβŽ

1444 οΏ½30 Γ— 106οΏ½ (57)

⎞⎟⎟⎟⎟⎠

= 7.719 9 Γ— 10βˆ’3π‘Ÿπ‘Žπ‘‘

Hence the field displacement 𝑒 (π‘₯) is now found

𝑣 (π‘₯) = [𝑁] {𝑑}

𝑣 (π‘₯) = �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

= �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

000

7.719 9 Γ— 10βˆ’3

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=1𝐿2

οΏ½βˆ’πΏπ‘₯2 + π‘₯3οΏ½ οΏ½7.719 9 Γ— 10βˆ’3οΏ½

= 3.722 9 Γ— 10βˆ’7π‘₯3 βˆ’ 5.361 Γ— 10βˆ’5π‘₯2

And a plot of the deflection curve isοΏ½ οΏ½1 clear all; close all;2 v=@(x) 3.7229*10^-7*x.^3-5.361*10^-5*x.^23 x=0:0.1:144;4 plot(x,v(x),'r-','LineWidth',2);5 ylim([-0.5 0.3]);6 title('beam deflection curve');7 xlabel('x inch'); ylabel('deflection inch');

18

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

8 gridοΏ½ οΏ½Λ™

19

2.1. Examples using the direct beam . . . CHAPTER 2. DIRECT METHOD

20

Chapter 3

Finite elements or adding moreelements

Finite elements generated displacements are smaller in value than the actual analyticalvalues. To improve the accuracy, more elements are added. To add more elements, thebeam is divided into 2,3,4 and more beam elements. To show how this works, example 3above is solved again using two elements. It is found that displacement field 𝑣 (π‘₯) becomesmore accurate (By comparing the the result with the exact solution based on using thebeam 4th order diοΏ½erential equation. It is found to be almost the same with only 2 elements)

3.1 Example 3 redone with 2 elements

The first step is to divide the beam into two elements and number the degrees of freedomand global nodes as follows

Pm (lb/inP

L

L/2 L/2

m (lb/in)Divide into 2 elements

There is 6 total degrees of freedom. two at each node. Hence the stiοΏ½ness matrix for thewhole beam (including both elements) will be 6 by 6. For each element however, the samestiοΏ½ness matrix will be used as above and that will remain as before 4 by 4.

21

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

1 2 3

1 2 3

v 1 v 2 v 3

The stiοΏ½ness matrix for each element is found and then the global stiοΏ½ness matrix isassembled. Then οΏ½π‘π‘”π‘™π‘œπ‘π‘Žπ‘™οΏ½ = οΏ½πΎπ‘”π‘™π‘œπ‘π‘Žπ‘™οΏ½ οΏ½π‘‘π‘”π‘™π‘œπ‘π‘Žπ‘™οΏ½ is solved as before. The first step is to move allloads to the nodes as was done before. This is done for each element. The formulas forequivalent loads remain the same, but now 𝐿 becomes 𝐿/2. The following diagram showthe equivalent loading for 𝑃

1 2 3

a b

L/2 L/2

Pb2L/22a

L/23Pa2L/22b

L/23Pab2

L/22Pa2b

L/22

a 0.125L

b 0.375L

Equivalent loading of point load P after moving to nodes

of second element

The equivalent loading for distributed load π‘š is

1 2 3

L/2 L/2

mL/22

mL/22

mL/22

mL/22

12

mL/22

12

mL/22

12

mL/22

12

Now the above two diagrams are put together to show all equivalent loads with the originalreaction forces to obtain the following diagram

22

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

1 2 3

L/2 L/2

mL/22

mL/22

mL/22

mL/22

12

mL/22

12

mL/22

12

mL/22

12

Pb2L/22a

L/23

Pa2L/22b

L/23

Pab2

L/22

Pa2b

L/22

R1R3

M1

Nodal loading for 2 elements beam after performing equivalent loading

�𝑝� = [𝐾] {𝑑} for each element is now constructed. Starting with the first elementβŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝑅1 βˆ’π‘šοΏ½ 𝐿2 οΏ½

2

𝑀1 βˆ’π‘šοΏ½ 𝐿2 οΏ½

2

12

βˆ’π‘ƒπ‘2οΏ½ 𝐿2+2π‘ŽοΏ½

(𝐿/2)3βˆ’

π‘šοΏ½ 𝐿2 οΏ½

2

π‘šοΏ½ 𝐿2 οΏ½2

12 βˆ’π‘šοΏ½ 𝐿2 οΏ½

2

12 βˆ’ π‘ƒπ‘Žπ‘2

� 𝐿2 �2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=𝐸𝐼

�𝐿2�3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6 �𝐿2οΏ½ βˆ’12 6 �𝐿2οΏ½

6 �𝐿2� 4 �𝐿2�2

βˆ’6 �𝐿2οΏ½ 2 �𝐿2οΏ½2

βˆ’12 βˆ’6 �𝐿2οΏ½ 12 βˆ’6 �𝐿2οΏ½

6 �𝐿2� 2 �𝐿2�2

βˆ’6 �𝐿2οΏ½ 4 �𝐿2οΏ½2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

And for the second elementβŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’π‘ƒπ‘2οΏ½ 𝐿2+2π‘ŽοΏ½

(𝐿/2)3βˆ’

π‘šοΏ½ 𝐿2 οΏ½

2

π‘šοΏ½ 𝐿2 οΏ½2

12 βˆ’π‘šοΏ½ 𝐿2 οΏ½

2

12 βˆ’ π‘ƒπ‘Žπ‘2

� 𝐿2 �2

𝑅3 βˆ’π‘ƒπ‘Ž2οΏ½ 𝐿2+2𝑏�

οΏ½ 𝐿2 οΏ½3 βˆ’

π‘šοΏ½ 𝐿2 οΏ½

2

π‘šοΏ½ 𝐿2 οΏ½2

12 + π‘ƒπ‘Ž2𝑏

� 𝐿2 �2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=𝐸𝐼

�𝐿2�3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6 �𝐿2οΏ½ βˆ’12 6 �𝐿2οΏ½

6 �𝐿2� 4 �𝐿2�2

βˆ’6 �𝐿2οΏ½ 2 �𝐿2οΏ½2

βˆ’12 βˆ’6 �𝐿2οΏ½ 12 βˆ’6 �𝐿2οΏ½

6 �𝐿2� 2 �𝐿2�2

βˆ’6 �𝐿2οΏ½ 4 �𝐿2οΏ½2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣2πœƒ2

𝑣3πœƒ3

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

23

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

The 2 systems above are assembled to obtain the global stiοΏ½ness matrix equation givingβŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝑅1 βˆ’π‘šοΏ½ 𝐿2 οΏ½

2

𝑀1 βˆ’π‘šοΏ½ 𝐿2 οΏ½

2

12

βˆ’2𝑃𝑏2οΏ½ 𝐿2+2π‘ŽοΏ½

οΏ½ 𝐿2 οΏ½3 βˆ’ 2

π‘šοΏ½ 𝐿2 οΏ½

2

βˆ’2π‘ƒπ‘Žπ‘2

� 𝐿2 �2

𝑅3 βˆ’π‘ƒπ‘Ž2οΏ½ 𝐿2+2𝑏�

οΏ½ 𝐿2 οΏ½3 βˆ’

π‘šοΏ½ 𝐿2 οΏ½

2

π‘šοΏ½ 𝐿2 οΏ½2

12 + π‘ƒπ‘Ž2𝑏

� 𝐿2 �2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=𝐸𝐼

�𝐿2�3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6 �𝐿2οΏ½ βˆ’12 6 �𝐿2οΏ½ 0 0

6 �𝐿2� 4 �𝐿2�2

βˆ’6 �𝐿2οΏ½ 2 �𝐿2οΏ½2

0 0

βˆ’12 βˆ’6 �𝐿2οΏ½ 12 + 12 βˆ’6 �𝐿2οΏ½ + 6 �𝐿2οΏ½ βˆ’12 6 �𝐿2οΏ½

6 �𝐿2� 2 �𝐿2�2

βˆ’6 �𝐿2οΏ½ + 6 �𝐿2οΏ½ 4 �𝐿2οΏ½2+ 4 �𝐿2οΏ½

2βˆ’6 �𝐿2οΏ½ 2 �𝐿2οΏ½

2

0 0 βˆ’12 βˆ’6 �𝐿2οΏ½ 12 βˆ’6 �𝐿2οΏ½

0 0 6 �𝐿2� 2 �𝐿2�2

βˆ’6 �𝐿2οΏ½ 4 �𝐿2οΏ½2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

𝑣3πœƒ3

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

The boundary conditions are now applied giving 𝑣1 = 0, πœƒ1 = 0 since the first node is fixed,and 𝑣3 = 0. And putting 1 on the diagonal of the stiοΏ½ness matrix corresponding to theseknown boundary conditions results in

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

00

βˆ’2𝑃𝑏2οΏ½ 𝐿2+2π‘ŽοΏ½

(𝐿/2)3βˆ’ 2π‘š(𝐿/2)2

βˆ’2 π‘ƒπ‘Žπ‘2

(𝐿/2)2

0π‘šοΏ½ 𝐿2 οΏ½

2

12 + π‘ƒπ‘Ž2𝑏

� 𝐿2 �2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=𝐸𝐼

�𝐿2�3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1 0 0 0 0 00 1 0 0 0 0

0 0 24 0 0 6 �𝐿2�

0 0 0 8 �𝐿2�2

0 2 �𝐿2�2

0 0 0 0 1 0

0 0 6 �𝐿2� 2 �𝐿2�2

0 4 �𝐿2�2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

00𝑣2πœƒ2

0πœƒ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As was mentioned earlier, another method would be to remove the rows/columns whichresults in βŽ›

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βˆ’2𝑃𝑏2οΏ½ 𝐿2+2π‘ŽοΏ½

(𝐿/2)3βˆ’ 2

π‘šοΏ½ 𝐿2 οΏ½

2

βˆ’2π‘ƒπ‘Žπ‘2

� 𝐿2 �2

π‘šοΏ½ 𝐿2 οΏ½2

12 + π‘ƒπ‘Ž2𝑏

� 𝐿2 �2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=𝐸𝐼

�𝐿2�3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

24 0 6 �𝐿2�

0 8 �𝐿2�2

2 �𝐿2�2

6 �𝐿2� 2 �𝐿2�2

4 �𝐿2�2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

𝑣2πœƒ2

πœƒ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Giving the same solution. There are 3 unknowns to solve for. Once these unknowns aresolved for, 𝑣 (π‘₯) for the first element and for the second element are fully determined. Thefollowing code displays the deflection curve for the above beamοΏ½ οΏ½

1 clear all; close all;2 P=400;3 L=144;4 E=30*10^6;5 I=57.1;6 m=200;7 a=0.125*L;8 b=0.375*L;9 A=E*I/(L/2)^3*[1 0 0 0 0 0;10 0 1 0 0 0 0;11 0 0 24 0 0 6*L/2;12 0 0 0 8*(L/2)^2 0 2*(L/2)^2;13 0 0 0 0 1 0;14 0 0 6*L/2 2*(L/2)^2 0 4*(L/2)^2];15 A16 load = [0;17 0;18 -(m*L/2) - 2*P*b^2*(L/2+2*a)/(L/2)^3;

24

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

19 -2*P*a*b^2/(L/2)^2;20 0;21 P*a^2*b/(L/2)^2+(m*(L/2)^2)/12]22 sol=A\loadοΏ½ οΏ½

Λ™A =1.0e+08 *0.0000 0 0 0 0 00 0.0000 0 0 0 00 0 0.0011 0 0 0.01980 0 0 1.9033 0 0.47580 0 0 0 0.0000 00 0 0.0198 0.4758 0 0.9517load =00-15075-8100087750sol =00-0.2735-0.001900.0076

The above solution gives 𝑣2 = βˆ’0.2735 in (downwards displacement) and πœƒ2 = βˆ’0.0019radians and πœƒ3 = 0.0076 radians. 𝑣 (π‘₯) polynomial is now found for each element

π‘£π‘’π‘™π‘’π‘š1 (π‘₯) = �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣1πœƒ1

𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

�𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

00𝑣2πœƒ2

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

=βŽ›βŽœβŽœβŽœβŽ

1

� 𝐿2 �3 �3 �

𝐿2οΏ½ π‘₯2 βˆ’ 2π‘₯3οΏ½ 1

οΏ½ 𝐿2 οΏ½2 οΏ½βˆ’ οΏ½

𝐿2οΏ½ π‘₯2 + π‘₯3οΏ½

⎞⎟⎟⎟⎠

βŽ›βŽœβŽœβŽœβŽœβŽβˆ’0.2735βˆ’0.0019

⎞⎟⎟⎟⎟⎠

=2.188𝐿3 οΏ½2π‘₯3 βˆ’

32𝐿π‘₯2οΏ½ βˆ’

0.007 6𝐿2 οΏ½π‘₯3 βˆ’

12𝐿π‘₯2οΏ½

The above polynomial is the transverse deflection of the beam for the region 0 ≀ π‘₯ ≀ 𝐿/2.

25

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

𝑣 (π‘₯) for the second element is found in similar way

π‘£π‘’π‘™π‘’π‘š2 (π‘₯) = �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

𝑣2πœƒ2

0πœƒ3

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

= �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁3 (π‘₯) 𝑁4 (π‘₯)οΏ½

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’0.2735βˆ’0.0019

00.0076

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= �𝑁1 (π‘₯) 𝑁2 (π‘₯) 𝑁4 (π‘₯)οΏ½

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’0.2735βˆ’0.00190.0076

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=βŽ›βŽœβŽœβŽœβŽœβŽ

1

� 𝐿2 �3 ��

𝐿2οΏ½3βˆ’ 3 �𝐿2οΏ½ π‘₯

2 + 2π‘₯3οΏ½1

� 𝐿2 �2 ��

𝐿2οΏ½2π‘₯ βˆ’ 2 �𝐿2οΏ½ π‘₯

2 + π‘₯3οΏ½1

οΏ½ 𝐿2 οΏ½2 οΏ½βˆ’ οΏ½

𝐿2οΏ½ π‘₯2 + π‘₯3οΏ½

⎞⎟⎟⎟⎟⎠

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

βˆ’0.2735βˆ’0.00190.0076

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

π‘£π‘’π‘™π‘’π‘š2 (π‘₯) =0.030 4𝐿2 οΏ½π‘₯3 βˆ’

12𝐿π‘₯2οΏ½ βˆ’

0.007 6𝐿2 �

14𝐿2π‘₯ βˆ’ 𝐿π‘₯2 + π‘₯3οΏ½ βˆ’

2.188𝐿3 �

18𝐿3 βˆ’

32𝐿π‘₯2 + 2π‘₯3οΏ½

Which is valid for 𝐿/2 ≀ π‘₯ ≀ 𝐿. The following is a plot of the deflection curve using theabove 2 equations

When the above plot is compared to the case with one element, the deflection is seen to belarger now. Comparing the above to the analytical solution shows that the deflection nowis almost exactly the same as the analytical solution. Hence by using only two elementsinstead of one element, the solution has become more accurate and almost agrees withthe analytical solution.

The following diagram shows the deflection curve of problem three above when using oneelement and two elements on the same plot to help illustrate the diοΏ½erence in the resultmore clearly.

26

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

The analytical deflection for the beam in problem three above (fixed on the left and simplysupported at the right end) when there is uniformly loaded with 𝑀 lbs per unit length isgiven by

𝑣 (π‘₯) = βˆ’π‘€π‘₯2

48𝐸𝐼�3𝐿2 βˆ’ 5𝐿π‘₯ + 2π‘₯2οΏ½

While the analytical deflection for the same beam but when there is a point load P atdistance π‘Ž from the left end is given by

𝑣 (π‘₯) = βˆ’π‘ƒ(⟨𝐿 βˆ’ π‘ŽβŸ©3 (3𝐿 βˆ’ π‘₯)π‘₯2 + 𝐿2(3(𝐿 βˆ’ π‘Ž)(𝐿 βˆ’ π‘₯)π‘₯2 + 2𝐿 ⟨π‘₯ βˆ’ π‘ŽβŸ©3))

Therefore, the analytical expression for deflection is given by the sum of the above expres-sions, giving

𝑣 (π‘₯) = βˆ’π‘€π‘₯2

48𝐸𝐼�3𝐿2 βˆ’ 5𝐿π‘₯ + 2π‘₯2οΏ½ βˆ’ 𝑃(⟨𝐿 βˆ’ π‘ŽβŸ©3 (3𝐿 βˆ’ π‘₯)π‘₯2 + 𝐿2(3(𝐿 βˆ’ π‘Ž)(𝐿 βˆ’ π‘₯)π‘₯2 + 2𝐿 ⟨π‘₯ βˆ’ π‘ŽβŸ©3))

Where ⟨π‘₯ βˆ’ π‘ŽβŸ©means it is zero when π‘₯βˆ’π‘Ž is negative. In other words ⟨π‘₯ βˆ’ π‘ŽβŸ© = (π‘₯ βˆ’ π‘Ž)π‘ˆπ‘›π‘–π‘‘π‘†π‘‘π‘’π‘ (π‘₯ βˆ’ π‘Ž)

The following diagram is a plot of the analytical deflection with the two elements deflectioncalculated using Finite elements above.

In the above, the blue dashed curve is the analytical solution, and the red curve is thefinite elements solution using 2 elements. It can be seen that the finite element solutionfor the deflection is now in a very good agreement with the analytical solution.

27

3.1. Example 3 redone with 2 elements CHAPTER 3. FINITE ELEMENTS OR . . .

28

Chapter 4

Generating shear and bendingmoments diagrams

After solving the problem using finite elements and obtaining the field displacement func-tion 𝑣 (π‘₯) as was shown in the above examples, the shear force and bending moments along

the beam can be calculated. Since the bending moment is given by 𝑀(π‘₯) = βˆ’πΈπΌπ‘‘2𝑣(π‘₯)𝑑π‘₯2 and

shear force is given by 𝑉 (π‘₯) = 𝑑𝑀𝑑π‘₯ = βˆ’πΈπΌπ‘‘

3𝑣(π‘₯)𝑑π‘₯3 then these diagrams are now readily plotted

as shown below for example three above using the result from the finite elements with 2elements. Recalling from above that

𝑣 (π‘₯) =2.188𝐿3

οΏ½2π‘₯3 βˆ’ 32𝐿π‘₯

2οΏ½ βˆ’ 0.007 6𝐿2

οΏ½π‘₯3 βˆ’ 12𝐿π‘₯

2�0.030 4𝐿2

οΏ½π‘₯3 βˆ’ 12𝐿π‘₯

2οΏ½ βˆ’ 0.007 6𝐿2

�14𝐿

2π‘₯ βˆ’ 𝐿π‘₯2 + π‘₯3οΏ½ βˆ’ 2.188𝐿3

�18𝐿

3 βˆ’ 32𝐿π‘₯

2 + 2π‘₯3οΏ½

⎫βŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺ⎭

0 ≀ π‘₯ ≀ 𝐿/2𝐿/2 ≀ π‘₯ ≀ 𝐿

Hence

𝑀(π‘₯) = βˆ’πΈπΌβˆ’0.0076(6π‘₯βˆ’πΏ)

𝐿2 + 2.188(12π‘₯βˆ’3𝐿)𝐿3

βˆ’0.0076(6π‘₯βˆ’2𝐿)𝐿2 + 0.0304(6π‘₯βˆ’πΏ)

𝐿2 βˆ’ 2.188(12π‘₯βˆ’3𝐿)𝐿3

⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭

0 ≀ π‘₯ ≀ 𝐿/2𝐿/2 ≀ π‘₯ ≀ 𝐿

using 𝐸 = 30 Γ— 106 psi and 𝐼 = 57 in4 and 𝐿 = 144 in, the bending moment diagram plot is

The bending moment diagram clearly does not agree with the bending moment diagramthat can be generated from the analytical solution given below (generated using my otherprogram which solves this problem analytically)

The reason for this is because the solution 𝑣 (π‘₯) obtained using the finite elements methodis a third degree polynomial and after diοΏ½erentiating twice to obtain the bending moment

29

CHAPTER 4. GENERATING SHEAR . . .

(𝑀(π‘₯) = βˆ’πΈπΌπ‘‘2𝑣𝑑π‘₯2 ) the result becomes a linear function in π‘₯ while in the analytical solution

case, when the load is distributed, the solution 𝑣 (π‘₯) is a fourth degree polynomial. Hencethe bending moment will be quadratic function in π‘₯ in the analytical case.

Therefore, in order to obtain good approximation for the bending moment and shear forcediagrams using finite elements, more elements will be needed.

30

Chapter 5

Finding the stiοΏ½ness matrix usingmethods other than direct method

Local contents5.1 Virtual work method for derivation of the stiοΏ½ness matrix . . . . . . . . . . . . 325.2 Potential energy (minimize a functional) method to derive the stiοΏ½ness matrix 33

31

5.1. Virtual work method for derivation . . . CHAPTER 5. FINDING THE . . .

There are three main methods to obtain the stiοΏ½ness matrix

1. Variational method (minimizing a functional). This functional is the potential energyof the structure and loads.

2. Weighted residual. Requires the diοΏ½erential equation as a starting point. Approxi-mated in weighted average. Galerkin weighted residual method is the most commonmethod for implementation.

3. Virtual work method. Making the virtual work zero for an arbitrary allowed displace-ment.

5.1 Virtual work method for derivation of the stiοΏ½nessmatrix

In virtual work method, a small displacement is assumed to occur. Looking at small volumeelement, the amount of work done by external loads to cause the small displacement is setequal to amount of increased internal strain energy. Assuming the field of displacement isgiven by 𝒖 = {𝑒, 𝑣, 𝑀} and assuming the external loads are given by �𝑝� acting on the nodes,

hence these point loads will do work given by {𝛿𝑑}𝑇 �𝑝� on that unit volume where {𝑑} is thenodal displacements. In all these derivations, only loads acting directly on the nodes areconsidered for now. In other words, body forces and traction forces are not considered inorder to simplify the derivations.

The increase of strain energy is {π›Ώπœ€}𝑇 {𝜎} in that same unit volume.

This area is the Strain energy per

unit volume

Hence, for a unit volume

{𝛿𝑑}𝑇 �𝑝� = {π›Ώπœ€}𝑇 {𝜎}

And for the whole volume

{𝛿𝑑}𝑇 �𝑝� = �𝑉{π›Ώπœ€}𝑇 {𝜎} 𝑑𝑉 (1)

Assuming that displacement can be written as a function of the nodal displacements ofthe element results in

𝒖 = [𝑁] {𝑑}

Therefore

𝛿𝒖 = [𝑁] {𝛿𝑑}

{𝛿𝒖}𝑇 = {𝛿𝑑}𝑇 [𝑁]𝑇 (2)

Since {πœ€} = πœ• {𝒖} then {πœ€} = πœ• [𝑁] {𝑑} = [𝐡] {𝑑} where 𝐡 is the strain displacement matrix[𝐡] = πœ• [𝑁], hence

{πœ€} = [𝐡] {𝑑}{π›Ώπœ€} = [𝐡] {𝛿𝑑}

{π›Ώπœ€}𝑇 = {𝛿𝑑}𝑇 [𝐡]𝑇 (3)

Now from the stress-strain relation {𝜎} = [𝐸] {πœ€}, hence

{𝜎} = [𝐸] [𝐡] {𝑑} (4)

32

5.2. Potential energy (minimize a . . . CHAPTER 5. FINDING THE . . .

Substituting Eqs. (2,3,4) into (1) results in

{𝛿𝑑}𝑇 �𝑝� βˆ’οΏ½π‘‰{𝛿𝑑}𝑇 [𝐡]𝑇 [𝐸] [𝐡] {𝑑} 𝑑𝑉 = 0

Since {𝛿𝑑} and {𝑑} do not depend on the integration variables they can be moved outsidethe integral, giving

{𝛿𝑑}𝑇 ��𝑝� βˆ’ {𝑑}�𝑉[𝐡]𝑇 [𝐸] [𝐡] 𝑑𝑉� = 0

Since the above is true for any admissible 𝛿𝑑 then the only condition is that

�𝑝� = {𝑑}�𝑉[𝐡]𝑇 [𝐸] [𝐡] 𝑑𝑉

This is in the form 𝑃 = 𝐾Δ, therefore

[𝐾] = �𝑉[𝐡]𝑇 [𝐸] [𝐡] 𝑑𝑉

knowing [𝐡] allows finding [π‘˜] by integrating over the volume. For the beam element though,

𝒖 = 𝑣 (π‘₯) the transverse displacement. This means [𝐡] = 𝑑2

𝑑π‘₯2 [𝑁]. Recalling from the abovethat for the beam element,

[𝑁] = οΏ½ 1𝐿3�𝐿3 βˆ’ 3𝐿π‘₯2 + 2π‘₯3οΏ½ 1

𝐿2�𝐿2π‘₯ βˆ’ 2𝐿π‘₯2 + π‘₯3οΏ½ 1

𝐿3οΏ½3𝐿π‘₯2 βˆ’ 2π‘₯3οΏ½ 1

𝐿2οΏ½βˆ’πΏπ‘₯2 + π‘₯3οΏ½οΏ½

Hence

[𝐡] =𝑑2

𝑑π‘₯2[𝑁] = οΏ½ 1

𝐿3(βˆ’6𝐿 + 12π‘₯) 1

𝐿2(βˆ’4𝐿 + 6π‘₯) 1

𝐿3(6𝐿 βˆ’ 12π‘₯) 1

𝐿2(βˆ’2𝐿 + 6π‘₯)οΏ½

Hence

[𝐾] = �𝑉[𝐡]𝑇 [𝐸] [𝐡] 𝑑𝑉

= �𝑉

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

1𝐿3(βˆ’6𝐿 + 12π‘₯)

1𝐿2(βˆ’4𝐿 + 6π‘₯)

1𝐿3(6𝐿 βˆ’ 12π‘₯)

1𝐿2(βˆ’2𝐿 + 6π‘₯)

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

𝐸 οΏ½ 1𝐿3(βˆ’6𝐿 + 12π‘₯) 1

𝐿2(βˆ’4𝐿 + 6π‘₯) 1

𝐿3(6𝐿 βˆ’ 12π‘₯) 1

𝐿2(βˆ’2𝐿 + 6π‘₯)οΏ½ 𝑑𝑉

= 𝐸𝐼�𝐿

0

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

1𝐿3(βˆ’6𝐿 + 12π‘₯)

1𝐿2(βˆ’4𝐿 + 6π‘₯)

1𝐿3(6𝐿 βˆ’ 12π‘₯)

1𝐿2(βˆ’2𝐿 + 6π‘₯)

⎫βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎬βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎭

οΏ½ 1𝐿3(βˆ’6𝐿 + 12π‘₯) 1

𝐿2(βˆ’4𝐿 + 6π‘₯) 1

𝐿3(6𝐿 βˆ’ 12π‘₯) 1

𝐿2(βˆ’2𝐿 + 6π‘₯)οΏ½ 𝑑π‘₯

= 𝐸𝐼�𝐿

0

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1𝐿6(6𝐿 βˆ’ 12π‘₯)2 1

𝐿5(4𝐿 βˆ’ 6π‘₯) (6𝐿 βˆ’ 12π‘₯) βˆ’ 1

𝐿6(6𝐿 βˆ’ 12π‘₯)2 1

𝐿5(2𝐿 βˆ’ 6π‘₯) (6𝐿 βˆ’ 12π‘₯)

1𝐿5(4𝐿 βˆ’ 6π‘₯) (6𝐿 βˆ’ 12π‘₯) 1

𝐿4(4𝐿 βˆ’ 6π‘₯)2 βˆ’ 1

𝐿5(4𝐿 βˆ’ 6π‘₯) (6𝐿 βˆ’ 12π‘₯) 1

𝐿4(2𝐿 βˆ’ 6π‘₯) (4𝐿 βˆ’ 6π‘₯)

βˆ’ 1𝐿6(6𝐿 βˆ’ 12π‘₯)2 βˆ’ 1

𝐿5(4𝐿 βˆ’ 6π‘₯) (6𝐿 βˆ’ 12π‘₯) 1

𝐿6(6𝐿 βˆ’ 12π‘₯)2 βˆ’ 1

𝐿5(2𝐿 βˆ’ 6π‘₯) (6𝐿 βˆ’ 12π‘₯)

1𝐿5(2𝐿 βˆ’ 6π‘₯) (6𝐿 βˆ’ 12π‘₯) 1

𝐿4(2𝐿 βˆ’ 6π‘₯) (4𝐿 βˆ’ 6π‘₯) βˆ’ 1

𝐿5(2𝐿 βˆ’ 6π‘₯) (6𝐿 βˆ’ 12π‘₯) 1

𝐿4(2𝐿 βˆ’ 6π‘₯)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑑π‘₯

= 𝐸𝐼

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12𝐿3

6𝐿2 βˆ’ 12

𝐿36𝐿2

6𝐿2

4𝐿 βˆ’ 6

𝐿22𝐿

βˆ’ 12𝐿3 βˆ’ 6

𝐿212𝐿3 βˆ’ 6

𝐿26𝐿2

2𝐿 βˆ’ 6

𝐿24𝐿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=𝐸𝐼𝐿3

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

12 6𝐿 βˆ’12 6𝐿6𝐿 4𝐿2 βˆ’6𝐿 2𝐿2

βˆ’12 βˆ’6𝐿 12 βˆ’6𝐿6𝐿 2𝐿2 βˆ’6𝐿 4𝐿2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which is the stiοΏ½ness matrix found earlier.

5.2 Potential energy (minimize a functional) method toderive the stiοΏ½ness matrix

This method is very similar to the first method actually. It all comes down to finding afunctional, which is the potential energy of the system, and minimizing this with respectto the nodal displacements. The result gives the stiοΏ½ness matrix.

33

5.2. Potential energy (minimize a . . . CHAPTER 5. FINDING THE . . .

Let the system total potential energy by called Ξ  and let the total internal energy in thesystem be π‘ˆ and let the work done by external loads acting on the nodes be Ξ©, then

Ξ  = π‘ˆ βˆ’Ξ©

Work done by external loads have a negative sign since they are an external agent to thesystem and work is being done onto the system. The internal strain energy is given by12βˆ«π‘‰{𝜎}𝑇 {πœ€} 𝑑𝑉 and the work done by external loads is {𝑑}𝑇 �𝑝�, hence

Ξ  =12 �𝑉

{𝜎}𝑇 {πœ€} 𝑑𝑉 βˆ’ {𝑑}𝑇 �𝑝� (1)

Now the rest follows as before. Assuming that displacement can be written as a functionof the nodal displacements {𝑑}, hence

𝒖 = [𝑁] {𝑑}

Since {πœ€} = πœ• {𝒖} then {πœ€} = πœ• [𝑁] {𝑑} = [𝐡] {𝑑} where 𝐡 is the strain displacement matrix[𝐡] = πœ• [𝑁], hence

{πœ€} = [𝐡] {𝑑}

Now from the stress-strain relation {𝜎} = [𝐸] {πœ€}, hence

{𝜎}𝑇 = {𝑑}𝑇 [𝐡]𝑇 [𝐸] (4)

Substituting Eqs. (2,3,4) into (1) results in

Ξ  =12 �𝑉

{𝑑}𝑇 [𝐡]𝑇 [𝐸] [𝐡] {𝑑} 𝑑𝑉 βˆ’ {𝑑}𝑇 �𝑝�

Setting πœ•Ξ πœ•{𝑑} = 0 gives

0 = {𝑑}�𝑉[𝐡]𝑇 [𝐸] [𝐡] 𝑑𝑉 βˆ’ �𝑝�

Which is on the form 𝑃 = [𝐾]𝐷 which means that

[𝐾] = �𝑉[𝐡]𝑇 [𝐸] [𝐡] 𝑑𝑉

As was found by the virtual work method.

34

Chapter 6

References

1. A first course in Finite element method, 3rd edition, by Daryl L. Logan

2. Matrix analysis of framed structures, 2nd edition, by William Weaver, James Gere

35

top related