functional programming with groovy

Post on 04-Dec-2014

12.420 Views

Category:

Technology

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

My talk about Functional Programming with Groovy at Greach Greach http://greach.es/ the Groovy spanish conf Date: 04-11-2011

TRANSCRIPT

Functional Programmingwith Groovλ

@ArturoHerrero

http://arturoherrero.com

Working at OSOCO

Small but outstanding software development shop

Groovy and Grails hackers

on EC2 cloud nine

TDD mantra singers

Quality preachers

(define (factorial n) (if (= n 1) 1 (* n (factorial (- n 1)))))

LISt Processing

( (factorial ) ( ( ) ( (factorial ( )))))

Lots of Insipid Stupid Parentheses

Code Complete

The Pragmatic Programmer

Structure and Interpretation of Computer Programs

A language that doesn't affect the way you think

about programming, is not worth knowing

Alan Perlis

Functional Programming

Function

Functional Programming

Avoiding Mutable State Side-Effect-Free Functions Referential Transparency First-Class Citizens Higher-Order Functions Lambdas and Closures Lazy Evaluation Recursion

λλ

λλ

λλ

λλ

Why Functional Programming?

Referential transparency Unit testing Debbuging Parallelization Modularity and composition Increases the quality of code Abstractions

λλ

λλ

λλ

λ

Imperative vs. Declarative

Imperative: how to achieve our goal Take the next customer from a list. If the customer lives in Spain, show their details. If there are more customers in the list, go to the beginning

Declarative: what we want to achieve Show customer details of every customer living in Spain

Imperative vs. Declarative

Functional programming is like describing your problem to a mathematician.

Imperative programming is like giving instructions to an idiot.

arcus, #scheme on Freenode

Functional Programmingwith Groovy?

is an imperative language,

but we still can apply functional principles

It's basically a programmer's choice

Immutability

Simple Immutable objects can only be in exactly one state, the state in which it was created

Always consistent Less prone to errors and more secure

Immutable objects can be shared freely Freedom to cache

Inherently thread-safe

Immutability

NO: (even being a name rebind and not a real update)

book = 'Fooled by Randomness'book = "$book - Nassim Taleb"book = "$book (2001)"assert 'Fooled by Randomness - Nassim Taleb (2001)' == book

YES:book = 'Fooled by Randomness'bookWithAuthor = "$book - Nassim Taleb"completeBook = "$bookWithAuthor (2001)"assert 'Fooled by Randomness - Nassim Taleb (2001)' == completeBook

Immutability

NO:years = [2001, 2002]years << 2003years += [2004, 2005]assert [2001, 2002, 2003, 2004, 2005] == years

YES:years = [2001, 2002]allYears = years + 2003 + [2004, 2005]assert [2001, 2002, 2003, 2004, 2005] == allYears

Immutability

def list = ['Gr', 'vy']

NO:

list.addAll 1, 'oo'assert list == ['Gr', 'oo', 'vy']

YES:

assert list.plus(1, 'oo') == ['Gr', 'oo', 'vy']assert list == ['Gr', 'vy']

Immutability

def list = [1, 2, 2, 3]

NO:

list.removeAll 2assert list == [1, 3]

YES:

assert list.minus(2) == [1, 3]assert list == [1, 2, 2, 3]

Immutability

def list = ['Scala', 'Groovy', 'Java']

NO:

sortedList = list.sort()assert sortedList == ['Groovy', 'Java', 'Scala']assert list == ['Groovy', 'Java', 'Scala']

YES:

sortedList = list.sort(false)assert sortedList == ['Groovy', 'Java', 'Scala']assert list == ['Scala', 'Groovy', 'Java']

Immutability

def list = ['Java', 'Groovy', 'Java']

NO:

uniqueList = list.unique()assert uniqueList == ['Java', 'Groovy']assert list == ['Java', 'Groovy']

YES:

uniqueList = list.unique(false)assert uniqueList == ['Java', 'Groovy']assert list == ['Java', 'Groovy', 'Java']

Immutability

def list = ['Java', 'Groovy']

NO:

reverseList = list.reverse(true)assert reverseList == ['Groovy', 'Java']assert list == ['Groovy', 'Java']

YES:

reverseList = list.reverse()assert reverseList == ['Groovy', 'Java']assert list == ['Java', 'Groovy']

Immutability Collection

def list = ['Groovy', 'Java'].asImmutable()assert 'Groovy' == list.first()

try { list.add 'Scala' // Cannot add item} catch (e) { assert e instanceof UnsupportedOperationException}

try { list.remove 'Java' // Cannot remove item} catch (e) { assert e instanceof UnsupportedOperationException}

Immutability Class

@Immutable class Coordinates { Double latitude, longitude }

def c1 = new Coordinates(latitude: 48.824068, longitude: 2.531733)

def c2 = new Coordinates(48.824068, 2.531733)

assert c1 == c2

Higher-Order Functions

First-Class Citizen Can be stored in variables Can be passed as function parameter Can be returned from functions

Higher-Order Functions (First-Class Functions)

Functions that take other functions as arguments or return them as results

Closures

def closure = { 'Hello world!' } assert closure() == 'Hello world!'

def sum = { a, b -> a + b } assert sum(2,3) == 5

def square = { it * it } assert square(9) == 81

final BASE = 1000 def salary = { variable -> BASE + variable } assert salary(500) == 1500

Turn Methods into Closures

def salary(variable) { final BASE = 1000 BASE + variable } assert salary(500) == 1500

def salaryClosure = this.&salary assert salaryClosure(500) == 1500

Closures Composition

def minutesToSeconds = { it * 60 }def hoursToMinutes = { it * 60 }def daysToHours = { it * 24 } def hoursToSeconds = minutesToSeconds << hoursToMinutesdef daysToSeconds = hoursToSeconds << daysToHours

assert daysToSeconds(1) == 86400

Closures Composition

def upper = { it.toUpperCase() }def firstLetter = { it.charAt(0) }

def words = ["Don't", "Repeat", "Yourself"]def acronym = words.collect(firstLetter >> upper).join()

assert acronym == 'DRY'

Currying

given: ƒ: (X x Y) -> Z

then: curry(ƒ): X -> (Y -> Z)

Takes a function with a particularnumber of parameters and returns afunction with some of the parametervalues fixed, creating a new function

Currying

def modulus = { mod, num -> num % mod } assert modulus(2, 5) == 1 assert modulus(3, 5) == 2

def mod2 = modulus.curry(2) assert mod2(5) == 1 def mod3 = modulus.curry(3) assert mod3(5) == 2

Currying

def bill = { amount, currency -> "$amount $currency" } assert bill(1000, '$') == '1000 $' assert bill(1000, '€') == '1000 €'

def billInDollars = bill.rcurry('$') assert billInDollars(1000) == '1000 $'

def billInEuros = bill.rcurry('€') assert billInEuros(1000) == '1000 €'

Currying

def joinWithSeparator = { one, sep, two -> one + sep + two }

def joinWithAmpersand = joinWithSeparator.ncurry(1, '&')

assert joinWithAmpersand('a', 'b') == 'a&b'

Classic Operations on Functional Data Types

list filter

map

fold

Classic Operations on Functional Data Types

list findAll

collect

inject

Classic Operations on Functional Data Types

list any

sort

sum

every

min

findAll()NO:

def result = [][1, 2, 3, 4].each { if (it > 2) { result << it }}assert result == [3, 4]

YES:

assert [1, 2, 3, 4].findAll{ it > 2 } == [3, 4]

collect()NO:

def result = [][1, 2, 3].each { result << it * 2}assert result == [2, 4, 6]

YES:

assert [1, 2, 3].collect{ it * 2 } == [2, 4, 6]

inject()NO:

def total = 0[1, 2, 3].each { total += it}assert total == 6

YES:

def total = [1, 2, 3].inject(0) { acc, n -> acc + n}assert total == 6

find()NO:

def resulttry { [1, 2, 3].each { if (it > 1) { result = it throw new Exception() // monstrous } }} catch(exception) { }assert result == 2

YES:

assert [1, 2, 3].find{ it > 1 } == 2

max() @TupleConstructor // import groovy.transform.* class Person { String name Integer age }

def person1 = new Person('Arturo', 26) def person2 = new Person('Luis', 61) def person3 = new Person('Laura', 19) def family = [] << person1 << person2 << person3

assert family.max{ it.age }.age == 61 assert family.collect{ it.age }.max() == 61 assert family*.age.max() == 61

Refactoring def exists = false family.each { person -> if (person.age > 60) { exists = true } } assert exists == true

def exists = family.inject(false) { found, person -> if (person.age > 60) { found = true } return found } assert exists == true

assert family.any{ it.age > 60 } == true

@TupleConstructor // import groovy.transform.* class Person { String name String lastname Integer age }

def rafa = new Person('Rafael', 'Luque', 36) def marcin = new Person('Marcin', 'Gryszko', 34) def arturo = new Person('Arturo', 'Herrero', 26) def osokers = [] << rafa << marcin << arturo << rafa assert osokers.unique(false) .findAll{ it.age > 30} .sort{ it.lastname } == [marcin, rafa]

assert osokers == [rafa, marcin, arturo, rafa]

Combinator Functions

Combinator Functions // Procedural style def count = 0 for (i in (1 .. 1000)) { if (i % 2) { count += ("$i".size()) } } assert count == 1445

// Functional style def count = (1 .. 1000).findAll{ it % 2 } .collect{ "$it" } .inject(0) { sum, num -> sum + num.size() } assert count == 1445

Lazy Evaluation

Only does as much work as necessary Delays the evaluation of the expression until it's needed

CPU efficient The value is not calculated or assigned until the value is requested

Manage potentially infinite data structures Only a manageable subset of the data will actually be used

Lazy Evaluation

class Person { @Lazy String name = 'Arturo' } def person = new Person() assert !(person.dump().contains('Arturo'))

assert person.name.size() == 6 assert person.dump().contains('Arturo')

Lazy Evaluation

class Get { String url @Lazy URL urlObj = { url?.toURL() }() @Lazy(soft=true) String text = urlObj?.text }

def get = new Get(url: 'http://arturoherrero.com') assert get.url == 'http://arturoherrero.com' assert get.dump().contains('text=null') assert get.dump().contains('urlObj=null')

assert get.urlObj.protocol == 'http' assert get.urlObj.host == 'arturoherrero.com' assert get.text.contains('Arturo Herrero')

Lazy Evaluation

groovy.sql.DataSet.DataSet groovy.util.XmlSlurper

@Singleton(lazy=true) class Util { Integer count(text) { text.size() } } assert 6 == Util.instance.count('Arturo')

Infinite structures

class LazyList { ...}

def naturalnumbers = integers(1)assert '1 2 3 4 5 6' == naturalnumbers.take(6).join(' ')

def evennumbers = naturalnumbers.filter{ it % 2 == 0 }assert '2 4 6 8 10 12' == evennumbers.take(6).join(' ')

Infinite structures

@Grab('org.functionaljava:functionaljava:3.0')import fj.data.Stream

Stream.metaClass.filter = { Closure c -> delegate.filter(c as fj.F) }

Stream.metaClass.asList = { delegate.toCollection().asList() }

def evens = Stream.range(1).filter{ it % 2 == 0 }assert [2, 4, 6, 8, 10, 12] == evens.take(6).asList()

Recursive factorial(6) 6 * factorial(5) 6 * (5 * factorial(4)) 6 * (5 * (4 * factorial(3))) 6 * (5 * (4 * (3 * factorial(2)))) 6 * (5 * (4 * (3 * (2 * factorial(1))))) 6 * (5 * (4 * (3 * (2 * 1)))) 6 * (5 * (4 * (3 * 2))) 6 * (5 * (4 * 6)) 6 * (5 * 24) 6 * 120 720

Recursive factorial(6) 6 * factorial(5) 6 * (5 * factorial(4)) 6 * (5 * (4 * factorial(3))) 6 * (5 * (4 * (3 * factorial(2)))) 6 * (5 * (4 * (3 * (2 * factorial(1))))) 6 * (5 * (4 * (3 * (2 * 1)))) 6 * (5 * (4 * (3 * 2))) 6 * (5 * (4 * 6)) 6 * (5 * 24) 6 * 120 720

Tail-Recursive factorial(6, 1) factorial(5, 6) factorial(4, 30) factorial(3, 120) factorial(2, 360) factorial(1, 720)

Tail-Recursive factorial(6, 1) factorial(5, 6) factorial(4, 30) factorial(3, 120) factorial(2, 360) factorial(1, 720)

Tail Call Optimization

3 techniques:

The compiler transform the recursion into a loop

Let the JVM recognize the recursion and eliminate it

Transform the recursion into iterative by hand

λλ

λ

Tail Call Optimization

3 techniques:

The compiler transform the recursion into a loop

Let the JVM recognize the recursion and eliminate it

Transform the recursion into iterative by hand

λλ

λ

really?

Tail Call Optimization

def factorial

factorial = { n -> n == 1 ? 1 : n * factorial(n - 1) }

factorial(1000)

Tail Call Optimization

def factorial

factorial = { n -> n == 1 ? 1 : n * factorial(n - 1) }

factorial(1000)

Stack Overflow

Tail Call Optimization

def factorial

factorial = { n, BigInteger acc = 1 -> n == 1 ? acc : factorial(n - 1, n * acc) }

factorial(1000)

Tail Call Optimization

def factorial

factorial = { n, BigInteger acc = 1 -> n == 1 ? acc : factorial(n - 1, n * acc) }

factorial(1000)

Stack Overflow

Tail Call Optimization

def factorial

factorial = { n, BigInteger acc = 1 -> n == 1 ? acc : factorial.trampoline(n - 1, n * acc) }.trampoline()

factorial(1000)

Trampolining

def even, odd

even = { x -> x == 0 ? true : odd.trampoline(x - 1) }.trampoline()

odd = { x -> x == 0 ? false : even.trampoline(x - 1) }.trampoline()

assert even(1000) == true

Memoization

def fibonacci

fibonacci = { n -> n <= 1 ? n : fibonacci(n - 1) + fibonacci(n - 2) }

fibonacci(35) // 9.935 seconds

Memoization

def fibonacci

fibonacci = { n -> n <= 1 ? n : fibonacci(n - 1) + fibonacci(n - 2) }.memoize()

fibonacci(35) // 0.002 seconds

def plus = { a, b -> sleep 1000; a + b }.memoize()

assert plus(1, 2) == 3 // after 1000ms assert plus(1, 2) == 3 // return immediately assert plus(2, 2) == 4 // after 1000ms assert plus(2, 2) == 4 // return immediately def plusAtLeast = { ... }.memoizeAtLeast(10) def plusAtMost = { ... }.memoizeAtMost(10) def plusBetween = { ... }.memoizeBetween(10, 20)

Memoization

“Functional” is more a way of thinkingthan a tool set

Neal Ford

Be a craftsman

Thank you! @ArturoHerrero

Join us at OSOCO

top related