geometrİk programlama

Post on 12-Jan-2016

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

GEOMETRİK PROGRAMLAMA. Geometrik Programlama lineer olmayan programlama problemlerinin çözümünde yeni bir metottur Metodun tek dezavantajı amaç fonksiyonu ve kısıtların “ posynomial “ şeklinde olması gerektiğidir. - PowerPoint PPT Presentation

TRANSCRIPT

GEOMETRİK PROGRAMLAMA

Geometrik Programlama lineer olmayan programlama problemlerinin çözümünde yeni bir metottur Metodun tek dezavantajı amaç fonksiyonu ve kısıtların “ posynomial “ şeklinde olması gerektiğidir.

İlk önce amaç fonksiyonunun optimum değeri bulunur . Daha sonra tasarım değişkenleri hesaplanır.

Posynomial :

Amaç fonksiyonu f(x)Ui’ lerin toplamı şeklinde

f(x) = Ux + U2 + • . • + UN ifade ediliyorsa ve

Ui’ler

şeklinde ise f(x) fonksiyonu bir ‘posynomial’ dır.

Ci pozitif sabit

aij gerçel sabit ( + , 0 , - )

x1 , x2 , … , xn pozitif

Örneğin ;

f (x1,x2,x3) = 6 + 3x1 – 8x2 + 7x3 + 2x1x3 – 3x1x3 + x2x3 + x12 – 9 x2

2 + x3

2

ikinci dereceden bir polinom iken ,

g ( x1 , x2 , x3 ) = x1.x2.x3 + x12.x2 + 4x3 + (2/x1x2)+5x3

-1/2

bir “ posynomial “ dır .

Kısıtlı ve kısıtsız olmak üzere iki tip çözümü vardır.

Problemlerde çözüme başlamadan önce problemin “ zorluk derecesi “ belirlenir.

Eğer N – n – 1 = 0 ise problem “ 0 “ zorluk derecesine sahiptir . Problem ortogonallik ve normallik şartlarından çözülebilir .

Eğer N – n – 1 < 0 ise çözüm yapılamaz .

Kısıtsız Minimizasyon Problemi

Fonksiyonunu minimize eden

değerlerinin bulunması şeklinde tanımlanır.

Problem geometrik eşitsizlik veya diferansiyel hesap yöntemlerinden biri ile çözülebilir.

Diferansiyel hesap yöntemine göre, f(x) fonksiyonunu minimum yapmak için gerekli şart,

(1)

Yukarıdaki ifadeyi xk ile çarparak aşağıdaki gibi yazarız.

Minimize vektörü bulmak için

Eşitlik (1) de verilen n tane denklem birlikte çözülür.

(2)

X* vektörünün f(x) fonksiyonunun minimumu olduğundan emin olabilmek için yeterlilik şartının da sağlanması gerekir. X* vektörü eşitlik (2)’yi sağladığı için aşağıdaki eşitlik elde edilir.

(3)

Eşitlik (2) amaç fonksiyonunun f* minimum değerine bölünerek

(4)

(4) Eşitliği elde edilir. Burada

şeklindedir.

(5)

(5) eşitliğinden

elde edilir.

(6)

Eşitlik (4) ortogonallik şartı, Eşitlik (6) normalite şartıdır. Amaç fonksiyonunu minimum değerini f* , elde etmek

için aşağıdaki yol takip edilir.

(7)

Buradan (8)

ve (5)’den eşitlik (7) yeniden aşağıdaki gibi yazılır.

(9)

İfadesini eşitlik (9) da yerine koyarsak,

Amaç fonksiyonun minimum değeri “f* ” değeri bulunur.

(10)

yi bulmak için eşitlik (4) ve (6) kullanılır. Buradan N bilinmeyenli n+1 denklem olduğu görülür.

Zorluk Derecesi :

N – n – 1 problemin zorluk derecesini verir .  

N posiynomdaki ( amaç fonksiyonundaki ) toplam terim sayısı

n tasarım değişkeni sayısı

ÖRNEK :

Tahılların bir tahıl ambarından fabrikaya üstü açık bir kutuda taşınmasına karar verilmiş. Kutu uzunluğu x1 metre , genişliği x2 ve yüksekliği x3 metredir. Kutu tabanı $80 , kenarları $10 ve yanları $20 mal oluyor. Kutunun ambar – fabrika arasındaki bir geliş gidişi $1 dır . 80 m3 tahıl nakliyesi düşünülüyor. Taşımadaki toplam maliyeti minimum yapan x1 , x2 , x3 boyutları ne olmalıdır ?

ÇÖZÜM :

Toplam Maliyet = Kutu Maliyeti + Taşıma Maliyeti

f(x) = 80. x1. x2 + 40. x2. x3 + 20. x1. x3 + 80. x1-1. x2

-1. x3

-1

f(x) = c1. x1a11

. x2a21… xn

an1 + c2. x1a12. x2

a22…xnan2 + … + c3. x1

a1n. x2

a2n… xnann

 c1 = 80 c2 = 40 c3 = 20 c4 = 80

N = 4 ( Toplam terim sayısı )

n = 3 ( Tasarım değişkeni sayısı )

N – n – 1 = 4 – 3 – 1 = 0 zorluk derecesinde

f(x) = 80. x1. x2 + 40. x2. x3 + 20. x1. x3 + 80. x1-1. x2

-1. x3-1

Ortogonallik ve normalite şartından

2 , 3 ve 4 nolu denklemler ortagonallik ; 5 nolu denklem normallik şartını sağlar …

Denklem 2 ve 3 ‘ den ;

∆4 = ∆1 + ∆3 = ∆1 + ∆2

∆2 = ∆3

Denklem 3 ve 4 ‘ten ;

∆4 = ∆1 + ∆2 = ∆2 + ∆3

∆1 = ∆3

2

5

Minimum Maliyet …

top related