gsm physical layer - · pdf filegsm physical layer } m ö ² z v´ ² l u...

Post on 09-Mar-2018

219 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

GSM Physical Layer

���}mÖ

²Z�v´�²

L�U�÷`�Ò¬

Advanced Technology Center Chung-Wei Ku

Advanced Technology Center Chung-Wei Ku

Outlines

■ Overview of PHY

■ Source Coding

■ GMSK Demod and Equalization

■ Baseband Process

■ Burst Structure

Advanced Technology Center Chung-Wei Ku

References

■ M. Mouly and M. Pautet, The GSM System forMobile communications, 1992.

■ A. M. Kondoz, Digital Speech Coding for LowBit-Rate Communications Systems, WileyPublishers, 1994.

■ ETSI GSM related standards documents.

Advanced Technology Center Chung-Wei Ku

GSM Physical Layer

■ Involved techniques:• Source coding/decoding

• Error correction code

• Interleaving/De-interleaving

• Channel equalization

• GMSK modulation/demodulation

• Synchronization

• TDD with combined TDMA and FHMA

Advanced Technology Center Chung-Wei Ku

Block Diagram

digitizing

and source coding

channel coding

interleaving

burstformatting

ciphering

modulation

source decoding

and D/A

channel decoding

de-interleaving

burstde-formatting

deciphering

demodulation

speech speech

Advanced Technology Center Chung-Wei Ku

Source Coding

■ source sampling, A/D conversion• A-law, u-law

■ full-rate speech coding• RPE-LTP (CELP-based coding): 13 Kbps

■ half-rate speech coding• VSELP (CELP-based coding): 5.6 Kbps

Advanced Technology Center Chung-Wei Ku

General CELP Codec

W(z)

1/Aw(z)

1/Aw(z)1/P(z)

find D, β

1/Aw(z)1/P(z)

weighted LPC

weighted LPC

Zero excitation

Zero excitation

code-book

find index and G

G

originalspeech

Advanced Technology Center Chung-Wei Ku

CELP Parameters

■ LPC: short-term prediction• LPC is the envelope of spectrum

• LPC can be effectively expressed by LSF

■ Pitch: long-term prediction• pitch represents the periodic part; tone of the

speaker

■ Excitation:• near white noise

Advanced Technology Center Chung-Wei Ku

RPE-LTP Speech Coding

■ Regular Pulse Excitation - Long TermPrediction.

■ Encoding is much time-consuming thandecoding.

■ Complexity: around 2 to 3 MIPS.

LTPFilter

InverseLPC Filter

De-emphasis

ExcitationSignal

SynthesizedSpeech

Advanced Technology Center Chung-Wei Ku

RPE-LTP Codec

LPC InverseFilter

Pitch InverseFilter

WeightingFilter and RPEGrid Selection

ADPCMQuantizer

LPCAnalysis

PitchAnalysis

MUXLPC Parameter

Pitch Parameter

Grid Position

Inputspeech

ResidualDecoder

Up-Sampling

PitchSynthesis

Filter

LPCSynthesis

FilterDEMUX

Pitch Parameter

Grid Position

LPC Parameter

DecompressedSpeech

Advanced Technology Center Chung-Wei Ku

Process for Blocks

■ 1. Information bits are coded with a systematicblock code: info+parity bits.

■ 2. info + parity bits are encoded with aconvolutional code, building coded bits.

■ 3. Reordering and interleaving the coded bits,adding stealing flag, gives the interleaved bits.

Advanced Technology Center Chung-Wei Ku

Channel Coding

■ Convolutional Coding• depends on the channels

■ Fire Code (Cyclic coding)• (X23+1)(X17+X3+1)

■ Parity Coding

■ Interleaving

Advanced Technology Center Chung-Wei Ku

Convolutional Codes

■ Punctured convolutional code:• Ex: D3+D+1 and D2+D+1 (goal: 2/3)

Source block (12 bits)Addition of tail bits

Delay = 1 bitDelay = 2 bitsDelay = 3 bits

1st conv. seq. (15 bits)2nd conv. seq. (15 bits)

punctured 2nd seq. (8 bits)transmitted block (23 bits)

1 0 0 1 0 0 1 1 0 1 0 10 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 00 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 01 1 0 0 1 0 0 0 1 0 0 1 0 0 11 0 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 11101010000011001101011

Eventual: 12/23

Advanced Technology Center Chung-Wei Ku

Summary of Convolutional Codes

Advanced Technology Center Chung-Wei Ku

Fire Code

■ Generation function:• g(D)=(X23+1)(X17+X3+1)

• add 40 coded bits

■ Basically, Fire Code is used for controlchannels.

■ Traffic channels are only convolutional codedwith parity bits then interleaved.

Advanced Technology Center Chung-Wei Ku

Interleaving

■ To avoid burst errors which are fetal forconvolutional coding, interleaving is necessary.

■ Implementation: transpose memory

Advanced Technology Center Chung-Wei Ku

GSM Interleaving

■ 456 (4 x 114) bits can be divided into• 4 parts of 114 bits, each for one burst

• 8 parts of 57 bits, each for half a burst

• 24 parts of 19 bits, each for 1/6 burst

• 76 parts of 6 bits, using 1/19 burst– 16 pieces of 24 bits, 2 pieces of 18 bits, 2 pieces of 12 bits

and 2 pieces of 6 bits

– a burst includes 4 pieces of 24 bits plus either one pieceof 18 bits or two pieces of 12 and 6 bits.

Advanced Technology Center Chung-Wei Ku

8bit A-law to 13bitUniform Converter

RPE-LTP Encoder

Low-Pass Filter A/D Converter RPE-LTP Encoder

Mobile StationMobile Station

MSCMSC

Analog Signal

Digital Signal

13×8000=104 kbps

13 ×8000=104 kbps

13 kbps

13 kbps

ToChannel Encoder

ToChannel Encoder

• Source (Speech) Coding– Mobile Station (Analog Signal)

• Low-pass filter, then A/D converter, then RPE-LTP speech encoder

– MSC (Base Station) (Digital Signal)• 8-bit A-law to 13-bit Uniform converter, then RPE-LTP speech encoder

Speech Coding

Advanced Technology Center Chung-Wei Ku

bits per 5 ms Bits per 20 ms

Linear Prediction Coding (LPC) filter 36Long Term Prediction (LTP) filter 9 36Excitation Signal 47 188Total 260Class I 182

(class Ia=50, class Ib=132)Class II 78

• Source (Speech) Coding– Regular Pulse Excited Long-Term Prediction (RPE-LTP) Encoder

• Input has bit rate of 104 kbps

• Has net bit rate of 13 kbps

• Output from RPE-LTP 260 bits every 20 ms

Speech Data Formatting

Advanced Technology Center Chung-Wei Ku

RPE-LTP Speech EncoderRPE-LTP Speech Encoder

Cyclic Redundancy EncoderCyclic Redundancy Encoder

1/2 Convolutional Encoder1/2 Convolutional Encoder

260 bits

20 msClass I: 182 bits

Class II: 78 bits

50 bits

132 bits

53 bits

185 bits4 tail bits all equal to zero

189 bits

378 bits

456 bits

20 ms

Speech and Channel Coding

Advanced Technology Center Chung-Wei Ku

• Structure of Interleaver– interleaving speech frames onto TDMA frame

Interleaver

Advanced Technology Center Chung-Wei Ku

TCH/F9.6• 9.6 Kbps refers to the user’s transmission rate, the actual rate is brought up to 12 Kbps through channel

coding in the terminal equipment; that is, 12 Kbps is the rate delivered to the MS.

User InformationUser Information

1/2 Convolutional Encoder1/2 Convolutional Encoder

240 bits

20 msAdd 4 “0” bits

488 coded bits

456 bits

20 msPuncturing of 32 coded bitsPuncturing of 32 coded bits

Data and Channel Coding

Advanced Technology Center Chung-Wei Ku

Channel Coding of Signaling Channels• Signaling information contains a maximum of 184 bits. It does NOT make a difference whether the type ofsignaling information to be transmitted is mapped onto a BCCH, PCH, SDCCH or SACCH. The formatalways stays the same.

• Special format are reserved for the SCH & RACH• FCCH requires no coding at all

Signaling InformationSignaling Information

Block Encoder (Fire Code)Block Encoder (Fire Code)

184 bits

Fire coded adds 40 parity bits to the 184 bit = 224 fire-coded bits, then adds 4 “0” bits

456 bits

1/2 Encoder 1/2 Convolutional Encoder

Signaling and Channel Coding

Advanced Technology Center Chung-Wei Ku

Ciphering

■ XOR operation of data and a specific key

■ Double-XOR recovers the original data• A/5 algorithm generates the pseudo random key

sequence

• phone No., SIM info, time/date

Data

Key

Ciphered

Advanced Technology Center Chung-Wei Ku

GMSK Modulation

■ Information becomes NRZ signals.• k=1, if di=di-1

• k=-1, if di di-1≠φ π

µ σπ

πσσ

πσ σ

© ª © © ª © ªª

­íï

¯¯

© ª

ùÕ È ù È ù

Õ ô

È ù ù æ æ

õù õ

= + − −

= = =

= +−

−∞

³

²

³

²

³

µ¹

²´

³

³ ± ´± µµ²·¹µ

²

³ ³

³

³

³

³³ ³

Æ õ â õ õ

õ ì õ êÕê

õ

© ª äðô© © ªª

© ª © ª

= × +

= + −∑ω ϕ

ϕ ϕ φ±

±

is equal to a ramp convolved with Gaussian functionφ

Advanced Technology Center Chung-Wei Ku

GMSK Modulation

■ ROM table lookup for Gaussian, I and Q

■ Digital multiplier for IF modulation

Advanced Technology Center Chung-Wei Ku

Gaussian Filter

■ BT=0.3; the low-pass filter is equal to a 5-tagFIR.

1 2 3 4 5 6 7 8 9 10 110

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000 12000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-3

Advanced Technology Center Chung-Wei Ku

GMSK Graph

0 200 400 600 800 1000 1200 1400 1600 1800 2000-1.5

-1

-0.5

0

0.5

1

1.5

0 500 1000 1500 2000 25001

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 500 1000 1500 2000 25000

1

2

3

4

5

6

0 500 1000 1500 2000 2500-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

NRZ:

phase:

Gaussian:

Carrier:

Advanced Technology Center Chung-Wei Ku

GMSK Properties

■ 1 bit difference:

Advanced Technology Center Chung-Wei Ku

GMSK Demodulation

■ Maximum Likelihood Estimation• Viterbi Algorithm

■ Training sequence pattern is utilized fordemodulation decision

■ Combined demodulation and channelequalization

■ Demodulation and Error decoding

Advanced Technology Center Chung-Wei Ku

GMSK Demodulation

■ 5-bits state: Gaussian filter

■ 20 us separated multipath

Advanced Technology Center Chung-Wei Ku

Frequency Assignment

■ Frequency allocation (GSM-900):• Ful( n ) = 890.0 MHz + (0.2 MHz) n

• Fdl( n ) = ful( n )+ 45 MHz

■ Frequency allocation (DCS-1800):• Ful( n ) = 1710.0 MHz + (0.2 MHz)( n - 511 )

• Fdl( n ) = ful( n )+ 95 MHz

Advanced Technology Center Chung-Wei Ku

GSM Key Words

■ GSM: combined FDM and TDMA (200 KHz)

■ 1 TDMA frame = 8 time slots (577 s)

6 7 20 1 3 4 5 6 7 0 1

4.615 ms

2 320 1 3 4 5 6 7 0 1

6 7 20 1 3 4 5 6 7 05

BTS

MS

Time-Division Duplex

µ

Advanced Technology Center Chung-Wei Ku

GSM Key Words

■ Pulsed Transmission• power vs. time template: burst

■ Timing Advance (Synchronization for TDMA)• delay time due to distance

• avoidance of collision

■ Power Control• signal attenuation due to distance

Advanced Technology Center Chung-Wei Ku

GSM Keywords

■ Radio Channel Properties• Shanon’s Eq.:

• C=B log2 (1+S/N)

■ R/B=1/BTbit (bps/Hz)• B=81.3 KHz, R=270833 bps

• for GSM with GMSK, BT=0.3 or 3.33 bps/Hz

Advanced Technology Center Chung-Wei Ku

GSM Key Words

■ Physical Channel• Different bursts for different situations

• 147bits = 542.8 s (3.69 s/bit)

■ Logical Channel• Messages for the communication between BTS and

MS.

• Logical channels are mapped into physical channelburst structure.

µµ

Advanced Technology Center Chung-Wei Ku

Burst Structure

147 (87) bits

-70dB(-36dBm)

-30dB

-6dB

+4dB 2dB

10 8 10 10 8 10 (us)

Advanced Technology Center Chung-Wei Ku

Burst Structure

■ Normal Burst (MS, BTS)• The most common burst in GSM

• 8 kinds of training sequences (good correlation)

• The mid 16 in TS are used for equalization

• Stealing flag indicates signaling or user data

T3

Coded Data57

S1

Training Sequence26

S1

Coded Data57

T3

GP8.25

148 bits = 546.12 sµ

Advanced Technology Center Chung-Wei Ku

Burst Structure

■ Random Access Burst (MS)• MS randomly transmits it to gain initial access

• 68.25 s x 3 x 108 m/s = 75.5 km

T8

Synchronization Sequence 41

Training Sequence36

T3

GP68.25

88 bits = 324.72 sµ

µ

Advanced Technology Center Chung-Wei Ku

Burst Structure

■ Frequency Correction Burst (BTS)• BTS transmit it for MS with correct reference

• Due to the properties of GMSK, stuffing data canrepresent sinusoidal waveforms.

T3

fixed bit sequence142

T3

GP8.25

148 bits = 546.12 sµ

Advanced Technology Center Chung-Wei Ku

Burst Structure

■ Synchronization Burst (BTS)• some valuable system parameters

• BSIC=NCC+ BCC (3 bits) in coded data

• longer synchronization sequence

T3

Coded Data39

SynchronizationSequence 64

Coded Data39

T3

GP8.25

148 bits = 546.12 sµ

Advanced Technology Center Chung-Wei Ku

Burst Structure

■ Dummy Burst (BTS)• Rate-matching purpose

• The same as normal burst but with a fixed pattern

T3

Coded Data57

S1

Training Sequence26

S1

Coded Data57

T3

GP8.25

148 bits = 546.12 sµ

Advanced Technology Center Chung-Wei Ku

Cell Size

■ Recall 68.25 s x 3 x 108 m/s = 75.5 km

• cell size is approximate 37.75 km

■ Timing advance is from 0 to 63• 63 x 3.69 s/bit x 3 x 108 = 70 km

• cell size is around 35 km

■ Larger cell will cause signaling troubles andpower issues.

µ

µ

Advanced Technology Center Chung-Wei Ku

N v m u j . g s b n f t T u s v d u v s f

■ 1 t i m e sl o t = 57 7 s• 1 4 8 b i t s f o r a b o u t 54 7

s

■ 1 T DM A f r a m e = 4 . 61 6m s

■ 1 su p e r f r a m e = 1 3 2 6T DM A f r a m e s• 51 2 6- m u l t i f r a m e s o r 2 6

51 - m u l t i f r a m e s

• sm a l l e st c y c l e f o r

µ

µ

Advanced Technology Center Chung-Wei Ku

Frame Structure

Advanced Technology Center Chung-Wei Ku

Logical Channels

■ S e v e n k i n d s o fc o m b i n a t i o n s• T CH/ F S + F ACCH/ F S + S ACCH/ F S

• T CH/ HS ( 0 , 1 ) + F ACCH/ HS ( 0 , 1 ) +S ACCH/ HS ( 0 , 1 )

• T CH/ HS ( 0 ) + F ACCH/ HS ( 0 ) + S ACCH/ HS ( 0 ) +T CH/ HS ( 1 ) + F ACCH/ HS ( 1 ) + S ACCH/HS ( 1 )

• F CCH+ S CH+ CCCH+ B CCH

• F CCH+ S CH+ CCCH+ B CCH+ S DCCH/ 4 + S ACCH/ 4

Advanced Technology Center Chung-Wei Ku

Channel to Burst Mapping

Advanced Technology Center Chung-Wei Ku

Mapping Example

Advanced Technology Center Chung-Wei Ku

Synchronization■ Q u a r t e r b i t n u m b e r

( Q N) ( 0 - 62 4 )

■ B i t n u m b e r ( B N) ( 0 -1 56)

■ T i m e sl o t n u m b e r ( T N)( 0 - 7 )

■ T DM A f r a m e n u m b e r( F N) ( 0 - 2 7 1 564 7 )• Q N i s se t b y t r a i n i n g

se q u e n c e

T N i

Advanced Technology Center Chung-Wei Ku

Transmission Process

■ Up l i n k :• R a n d o m a c c e ss b u r st

f r o m M S t o B S

• No r m a l b u r st f o rt r a f f i c d a t a

■ Do wn l i n k• F r e q u e n c y c o r r e c t i o n

b u r st f r o m B S t o M S

• S y n c h r o n i z a t i o n b u r stf r o m B S t o M S

l b f

top related