hierarchical)&)spectral)clustering)...

Post on 24-Jun-2020

15 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Hierarchical)&)Spectral)clustering)Lecture)13)

David&Sontag&New&York&University&

Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Agglomerative Clustering •  Agglomerative clustering:

–  First merge very similar instances –  Incrementally build larger clusters out

of smaller clusters

•  Algorithm: –  Maintain a set of clusters –  Initially, each instance in its own

cluster –  Repeat:

•  Pick the two closest clusters •  Merge them into a new cluster •  Stop when there’s only one cluster left

•  Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative Clustering •  How should we define �closest� for clusters

with multiple elements?

Agglomerative Clustering •  How should we define �closest� for clusters

with multiple elements?

•  Many options: –  Closest pair

(single-link clustering) –  Farthest pair

(complete-link clustering) –  Average of all pairs

•  Different choices create different clustering behaviors

Agglomerative Clustering •  How should we define �closest� for clusters

with multiple elements?

Farthest pair (complete-link clustering)

Closest pair (single-link clustering) Single Link Example

1 2

3 4

5 6

7 8

Complete Link Example

1 2

3 4

5 6

7 8

[Pictures from Thorsten Joachims]

Clustering&Behavior&Average

Mouse tumor data from [Hastie et al.]

Farthest Nearest

Agglomera<ve&Clustering&

When&can&this&be&expected&to&work?&

Closest pair (single-link clustering) Single Link Example

1 2

3 4

5 6

7 8

Strong separation property: All points are more similar to points in their own cluster than to any points in any other cluster

Then, the true clustering corresponds to some pruning of the tree obtained by single-link clustering!

Slightly weaker (stability) conditions are solved by average-link clustering

(Balcan et al., 2008)

Spectral)Clustering)

Slides adapted from James Hays, Alan Fern, and Tommi Jaakkola

Spectral)clustering)

[Shi & Malik ‘00; Ng, Jordan, Weiss NIPS ‘01]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5nips, 8 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5lineandballs, 3 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5fourclouds, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5squiggles, 4 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5twocircles, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 3 clusters

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Rows of Y (jittered, randomly subsampled) for twocircles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5two circles, 2 clusters (K−means)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 3 clusters (connected components)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5lineandballs, 3 clusters (Meila and Shi algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5nips, 8 clusters (Kannan et al. algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5nips, 8 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5lineandballs, 3 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5fourclouds, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5squiggles, 4 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5twocircles, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 3 clusters

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Rows of Y (jittered, randomly subsampled) for twocircles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5two circles, 2 clusters (K−means)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 3 clusters (connected components)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5lineandballs, 3 clusters (Meila and Shi algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5nips, 8 clusters (Kannan et al. algorithm)

K-means Spectral clustering

Spectral)clustering)

[Figures from Ng, Jordan, Weiss NIPS ‘01]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5nips, 8 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5lineandballs, 3 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5fourclouds, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5squiggles, 4 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5twocircles, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 3 clusters

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Rows of Y (jittered, randomly subsampled) for twocircles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5two circles, 2 clusters (K−means)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 3 clusters (connected components)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5lineandballs, 3 clusters (Meila and Shi algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5nips, 8 clusters (Kannan et al. algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5nips, 8 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5lineandballs, 3 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5fourclouds, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5squiggles, 4 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5twocircles, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 3 clusters

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Rows of Y (jittered, randomly subsampled) for twocircles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5two circles, 2 clusters (K−means)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5threecircles−joined, 3 clusters (connected components)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5lineandballs, 3 clusters (Meila and Shi algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5nips, 8 clusters (Kannan et al. algorithm)

Spectral)clustering)

))Group)points)based)on)links)in)a)graph)

A B

[Slide from James Hays]

!"#�$"�%&'($'�$)'�*&(+)�,

• -$�./�0"11"2�$"�3/'�(�*(3//.(2�4'&2'5�$"�0"1+3$'�/.1.5(&.$6�7'$#''2�"78'0$/

� ��

�• 92'�0"35:�0&'($'�– ;�<3556�0"22'0$':�=&(+)– 4�2'(&'/$�2'.=)7"&�=&(+)�>'(0)�2":'�./�"256�0"22'0$':�$"�.$/�4�2'(&'/$�2'.=)7"&/?

A B

[Slide from Alan Fern]

Can)we)use)minimum)cut)for)clustering?)

!"#$%&'( #$" '")!"*#+#,%* -.,#".,+ /'"& ,* !%'# %0 #$"! +."1+'"& %* 2%-+2 3.%3".#,"' %0 #$" ).+3$4 5"-+/'" 3".-"3#/+2).%/3,*) ,' +1%/# "6#.+-#,*) #$" )2%1+2 ,!3."'',%*' %0 +'-"*"( +' 7" '+7 "+.2,".( #$,' 3+.#,#,%*,*) -.,#".,%* %0#"*0+22' '$%.# %0 #$,' !+,* )%+24

8* #$,' 3+3".( 7" 3.%3%'" + *"7 ).+3$9#$"%."#,- -.,#".,%*0%. !"+'/.,*) #$" )%%&*"'' %0 +* ,!+)" 3+.#,#,%*:#$"!"#$%&'()* +,-4 ;" ,*#.%&/-" +*& </'#,0= #$,' -.,#".,%* ,*>"-#,%* ?4 @$" !,*,!,A+#,%* %0 #$,' -.,#".,%* -+* 1"0%.!/2+#"& +' + )"*".+2,A"& ",)"*B+2/" 3.%12"!4 @$"",)"*B"-#%.' -+* 1" /'"& #% -%*'#./-# )%%& 3+.#,#,%*' %0#$" ,!+)" +*& #$" 3.%-"'' -+* 1" -%*#,*/"& ."-/.',B"2= +'&"',."& C>"-#,%* ?4DE4 >"-#,%* F ),B"' + &"#+,2"& "632+*+#,%*%0 #$" '#"3' %0 %/. ).%/3,*) +2)%.,#$!4 8* >"-#,%* G( 7"'$%7 "63".,!"*#+2 ."'/2#'4 @$" 0%.!/2+#,%* +*& !,*,!,A+9#,%* %0 #$" *%.!+2,A"& -/# -.,#".,%* &.+7' %* + 1%&= %0."'/2#' 0.%! #$" 0,"2& %0 '3"-#.+2 ).+3$ #$"%.= C>"-#,%* HE4I"2+#,%*'$,3 #% 7%.J ,* -%!3/#". B,',%* ,' &,'-/''"& ,*>"-#,%* K +*& -%!3+.,'%* 7,#$ ."2+#"& ",)"*B"-#%. 1+'"&'")!"*#+#,%* !"#$%&' ,' ."3."'"*#"& ,* >"-#,%* K4D4 ;"-%*-2/&" ,* >"-#,%* L4

@$" !+,* ."'/2#' ,* #$,' 3+3". 7"." 0,.'# 3."'"*#"& ,* M?NO4

! "#$%&'(" )* "#)&+ &)#,','$('("

P ).+3$ ! ! ""!## -+* 1" 3+.#,#,%*"& ,*#% #7% &,'<%,*#'"#'( "!#( " $# ! $ ( " %# ! &( 1= ',!32= ."!%B,*) "&)"'-%**"-#,*) #$" #7% 3+.#'4 @$" &")."" %0 &,'',!,2+.,#=1"#7""* #$"'" #7% 3,"-"' -+* 1" -%!3/#"& +' #%#+2 7",)$#%0 #$" "&)"' #$+# $+B" 1""* ."!%B"&4 8* ).+3$ #$"%."#,-2+*)/+)"( ,# ,' -+22"& #$" +,-Q

%&'""!## !!

&'"!('#)"&! (#* "!#

@$" %3#,!+2 1,3+.#,#,%*,*) %0 + ).+3$ ,' #$" %*" #$+#!,*,!,A"' #$,' +,- B+2/"4 P2#$%/)$ #$"." +." +* "63%*"*#,+2*/!1". %0 '/-$ 3+.#,#,%*'( 0,*&,*) #$" $'!'$,$ +,- %0 +).+3$ ,' + 7"229'#/&,"& 3.%12"! +*& #$"." "6,'# "00,-,"*#+2)%.,#$!' 0%. '%2B,*) ,#4

;/ +*& R"+$= M?HO 3.%3%'"& + -2/'#".,*) !"#$%& 1+'"&%* #$,' !,*,!/! -/# -.,#".,%*4 8* 3+.#,-/2+.( #$"= '""J #%3+.#,#,%* + ).+3$ ,*#% J9'/1).+3$' '/-$ #$+# #$" !+6,!/!-/# +-.%'' #$" '/1).%/3' ,' !,*,!,A"&4 @$,' 3.%12"! -+* 1""00,-,"*#2= '%2B"& 1= ."-/.',B"2= 0,*&,*) #$" !,*,!/! -/#'#$+# 1,'"-# #$" "6,'#,*) '")!"*#'4 P' '$%7* ,* ;/ +*&R"+$=S' 7%.J( #$,' )2%1+22= %3#,!+2 -.,#".,%* -+* 1" /'"& #%3.%&/-" )%%& '")!"*#+#,%* %* '%!" %0 #$" ,!+)"'4

T%7"B".( +' ;/ +*& R"+$= +2'% *%#,-"& ,* #$",. 7%.J(#$" !,*,!/! -/# -.,#".,+ 0+B%.' -/##,*) '!+22 '"#' %0,'%2+#"& *%&"' ,* #$" ).+3$4 @$,' ,' *%# '/.3.,',*) ',*-"#$" -/# &"0,*"& ,* CDE ,*-."+'"' 7,#$ #$" */!1". %0 "&)"')%,*) +-.%'' #$" #7% 3+.#,#,%*"& 3+.#'4 U,)4 D ,22/'#.+#"' %*"'/-$ -+'"4 P''/!,*) #$" "&)" 7",)$#' +." ,*B".'"2=3.%3%.#,%*+2 #% #$" &,'#+*-" 1"#7""* #$" #7% *%&"'( 7"'"" #$" -/# #$+# 3+.#,#,%*' %/# *%&" +! %. +" 7,22 $+B" + B".='!+22 B+2/"4 8* 0+-#( +*= -/# #$+# 3+.#,#,%*' %/# ,*&,B,&/+2*%&"' %* #$" .,)$# $+20 7,22 $+B" '!+22". -/# B+2/" #$+* #$"-/# #$+# 3+.#,#,%*' #$" *%&"' ,*#% #$" 2"0# +*& .,)$# $+2B"'4

@% +B%,& #$,' /**+#/.+2 1,+' 0%. 3+.#,#,%*,*) %/# '!+22'"#' %0 3%,*#'( 7" 3.%3%'" + *"7 !"+'/." %0 &,'+''%-,+#,%*

1"#7""* #7% ).%/3'4 8*'#"+& %0 2%%J,*) +# #$" B+2/" %0 #%#+2"&)" 7",)$# -%**"-#,*) #$" #7% 3+.#,#,%*'( %/. !"+'/."-%!3/#"' #$" -/# -%'# +' + 0.+-#,%* %0 #$" #%#+2 "&)"-%**"-#,%*' #% +22 #$" *%&"' ,* #$" ).+3$4 ;" -+22 #$,'&,'+''%-,+#,%* !"+'/." #$" !"#$%&'()* +,- C.+,-EQ

,%&'""!## ! %&'""!##-../%""! $ #

( %&'""!##-../%"#! $ #

! ""#

7$"." -../%""! $ # !"

&'"!''$ )"&! '# ,' #$" #%#+2 -%**"-#,%*

0.%! *%&"' ,* P #% +22 *%&"' ,* #$" ).+3$ +*& -../%"#! $ # ,'

',!,2+.2= &"0,*"&4 ;,#$ #$,' &"0,*,#,%* %0 #$" &,'+''%-,+#,%*

1"#7""* #$" ).%/3'( #$" -/# #$+# 3+.#,#,%*' %/# '!+22

,'%2+#"& 3%,*#' 7,22 *% 2%*)". $+B" '!+22 .+,- B+2/"( ',*-"

#$" +,- B+2/" 7,22 +2!%'# -".#+,*2= 1" + 2+.)" 3".-"*#+)" %0

#$" #%#+2 -%**"-#,%* 0.%! #$+# '!+22 '"# #% +22 %#$". *%&"'4 8*

#$" -+'" ,22/'#.+#"& ,* U,)4 D( 7" '"" #$+# #$" %&'! B+2/"

+-.%'' *%&" +! 7,22 1" DNN 3".-"*# %0 #$" #%#+2 -%**"-#,%*

0.%! #$+# *%&"48* #$" '+!" '3,.,#( 7" -+* &"0,*" + !"+'/." 0%. #%#+2

*%.!+2,A"& +''%-,+#,%* 7,#$,* ).%/3' 0%. + ),B"* 3+.#,#,%*Q

,-../%""!## ! -../%""!"#-../%""! $ #

( -../%"#!##-../%"#! $ #

! "##

7$"." -../%""!"# +*& -../%"#!## +." #%#+2 7",)$#' %0"&)"' -%**"-#,*) *%&"' 7,#$,* " +*& #( ."'3"-#,B"2=4 ;"'"" +)+,* #$,' ,' +* /*1,+'"& !"+'/."( 7$,-$ ."02"-#' $%7#,)$#2= %* +B".+)" *%&"' 7,#$,* #$" ).%/3 +." -%**"-#"& #%"+-$ %#$".4

P*%#$". ,!3%.#+*# 3.%3".#= %0 #$,' &"0,*,#,%* %0 +''%-,+9#,%* +*& &,'+''%-,+#,%* %0 + 3+.#,#,%* ,' #$+# #$"= +."*+#/.+22= ."2+#"&Q

,%&'""!## ! %&'""!##-../%""! $ # (

%&'""!##-../%"#! $ #

! -../%""! $ # ) -../%""!"#-../%""! $ #

( -../%"#! $ # ) -../%"#!##-../%"#! $ #

! ") -../%""!"#-../%""! $ # (

-../%"#!##-../%"#! $ #

# $

! "),-../%""!##*

T"*-"( #$" #7% 3+.#,#,%* -.,#".,+ #$+# 7" '""J ,* %/.).%/3,*) +2)%.,#$!( !,*,!,A,*) #$" &,'+''%-,+#,%* 1"#7""*#$" ).%/3' +*& !+6,!,A,*) #$" +''%-,+#,%* 7,#$,* #$"

!"# $%& '$(#)* %+,'$(#-.& /01! $%& #'$2. !.2'.%1$1#+% 334

5678 98 $ :;<= >?=@= A6B6ACA :CD 76E=< ; F;G H;@D6D6IB8

[Shi & Malik ‘00]

Graph�partitioning

Graph�Terminologies• Degree�of�nodes

• Volume�of�a�set

Graph�Cut• Consider�a�partition�of�the�graph�into�two�parts�A�and�B

• Cut(A,�B):�sum�of�the�weights�of�the�set�of�edges�that�connect�the�two�groups

• An�intuitive�goal�is�find�the�partition�that��minimizes�the�cut

Normalized�Cut

• Consider�the�connectivity�between�groups�relative�to�the�volume�of�each�group

A

B)(),(

)(),(),(

BVolBAcut

AVolBAcut

BANcut ��

)()()()(),(),(

BVolAVolBVolAVol

BAcutBANcut�

Minimized�when�Vol(A)�and�Vol(B)�are�equal.�Thus�encourage�balanced�cut

01�DyTSubject�to:

Solving�NCut• How�to�minimize�Ncut?

• With�some�simplifications,�we�can�show:

DyyyWDy

xNcut T

T

yx)(

min)(min�

Rayleigh�quotient

NP�Hard!

.1)(,}1,1{ in vector a be Let );,(),( matrix, diag. thebe DLet ;),( matrix, similarity thebe Let ,

AiixxjiWiiD

WjiWW

Nj

ji

�����

��

(y takes discrete values)

• Relax�the�optimization�problem�into�the�continuous�domain�by�solving�generalized�eigenvalue�system:

���" �� � ' � � subject�to����� ( �

• Which�gives: � ' � � ( ���• Note�that� � ' � � ( �,�so�the�first�eigenvector�is��� ( �

with�eigenvalue��.• The�second�smallest�eigenvector�is�the�real�valued�solution�to�

this�problem!!

Solving�NCut

2�way�Normalized�Cuts

1. Compute�the�affinity�matrix�W,�compute�the�degree�matrix�(D),�D�is�diagonal�and�

!��2. Solve� ,�where� is�

called�the�Laplacian matrix3. Use�the�eigenvector�with�the�second�smallest�

eigen�value�to�bipartition�the�graph�into�two�parts.

Creating�Bi�partition�Using�2ndEigenvector

• Sometimes�there�is�not�a�clear�threshold�to�split�based�on�the�second�vector�since�it��takes�continuous�values

• How�to�choose�the�splitting�point?�a) Pick�a�constant�value�(0,�or�0.5).b) Pick�the�median�value�as�splitting�point.c) Look�for�the�splitting�point�that�has�the�minimum�Ncut

value:1. Choose�n possible�splitting�points.2. Compute�Ncut value.3. Pick�minimum.

Spectral clustering: example

−3 −2 −1 0 1 2 3 4 5−2

−1

0

1

2

3

4

5

6

−4 −2 0 2 4 6−2

−1

0

1

2

3

4

5

6

Tommi Jaakkola, MIT CSAIL 18

Spectral clustering: example cont’d

0 5 10 15 20 25 30 35 40−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Components of the eigenvector corresponding to the secondlargest eigenvalue

Tommi Jaakkola, MIT CSAIL 19

K�way�Partition?

• Recursive�bi�partitioning�(Hagen�et�al.,̂ 91)– Recursively�apply�bi�partitioning�algorithm�in�a�hierarchical�divisive�manner.

– Disadvantages:�Inefficient,�unstable• Cluster�multiple�eigenvectors– Build�a�reduced�space�from�multiple�eigenvectors.– Commonly�used�in�recent�papers– A�preferable�approach`�its�like�doing�dimension�reduction�then�k�means

top related