high energy cosmic-radiation detection (herd) facility onboard china’s space station shuang-nan...

Post on 17-Jan-2018

224 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

HERD Cosmic Ray Capability Requirement P ( ~ 1) He ( ~ 4) L ( ~ 8) M ( ~ 14) H ( ~ 25) VH ( ~ 35) Fe ( ~ 56) Except for L, up to PeV spectra feasible with GF~2-3 in ~years: discriminate between models. N(E>E0; 2 yr) PeV Model 1 Light model Model 2 Heavy Model TeV PeV HERD Detection limit: N = 10 events 3/51

TRANSCRIPT

High Energy cosmic-Radiation Detection (HERD) Facility onboard

China’s Space Station

Shuang-Nan Zhang (张双南 )zhangsn@ihep.ac.cn

Center for Particle Astrophysics Institute of High Energy PhysicsChinese Academy of Sciences

1/51

Science goals Mission requirements

Dark matter search

R1: Better statistical measurements of e/γ between 100 GeV to 10 TeV

Origin of Galactic Cosmic rays

R2: Better spectral and composition measurements of CRs between 300 GeV to PeV* with a large geometrical factor

HERD: High Energy cosmic-Radiation Detector

Secondary science: γ-ray astronomy monitoring of GRBs, microquasars, Blazars and other transients down to 100 MeV for γ -rays plastic scintillator shields for γ -ray selection*complementary to high altitude cosmic-ray observations

2/51

HERD Cosmic Ray Capability Requirement

P (<A> ~ 1)He (<A> ~ 4)L (<A> ~ 8)M (<A> ~ 14)H (<A> ~ 25)VH (<A> ~ 35) Fe (<A> ~ 56)

Except for L, up to PeV spectra feasible with GF~2-3 in ~years: discriminate between models.

N(E

>E0;

2 y

r) PeV

PeV

Model 1Light model

Model 2Heavy Model

TeV TeV

PeV PeV

HERD HERD

Detection limit: N = 10 events

3/51

Characteristics of all components

  type size X0,λ unit main functionstracker(top)

Si strips

70 cm ×70 cm

2 X0 7 x-y(W foils)

ChargeEarly showerTracks

tracker4 sides

Si strips

65 cm ×50 cm

2 X0 7 x-y(W foils)

ChargeEarly showerTracks

CALO ~10KLYSO cubes

63 cm ×63 cm ×63 cm

55 X03 λ

3 cm ×3 cm ×3 cm

 e/γ energynucleon energye/p separation

4/51

Expected performance of HERDγ/e energy range (CALO) tens of GeV-10TeV

nucleon energy range (CALO) up to PeV

γ/e angular resol. 0.1o

nucleon charge resol. 0.1-0.15 c.u

γ/e energy resolution (CALO) <1%@200GeVproton energy resolution (CALO) 20%

e/p separation power (CALO) <10-5

electron eff. geometrical factor (CALO) 3.7 m2sr@600 GeV

proton eff. geometrical factor (CALO) 2.6 m2sr@400 TeV

Acceptance & H-energy > n10X all others

5/51

Other detectors: Top down “small” FoV

ISS-CREAM: 2017?

ISS-CALET: 2015

ISS-AMS: 2011

DAMPE2015

6/51

HERD Design: 3D Calo & 5-Side Sensitive

n10X acceptance than others, but weight 2.3 T ~1/3 AMS

3D CALOe/G/CR energye/p discriminationSTK(W+SSD)

STK(W+SSD)Chargegamma-ray directionCR back scatter

7/51

Simulation results: energy resolutions

Electron < 1%; Proton: ~20%Essential for spectral features!

Electrons

Protons

8/51

Energy Resolution for gamma-rays

500 MeV-100 GeV result

9/51

HERD Eff. Geometrical Factor: CALO

All five sidesAll five sides

10/51

Expected HERD Proton and He Spectra Horandel model as HERD inputOnly statistical error

Protons

He

11/51

Expected HERD Spectra of C and Fe

C

Fe

12/51

Gamma-ray Sky Survey Sensitivity

Narrow FoV

13/51

PAMELA: 2006-2016 CALET: 2015-2020; AMS: 2011-2021; DAMPE: 2015-2020; Fermi: 2008-2018; HERD: 2020-2021

HERD sensitivity to gamma-ray line

HERD 1 yr

14/51

000

00

Z

DM annihilation line of HERD

15/51

Sensitivity of Dark Matter Search in MW

16

41

90

180

16/51

95% upper limits on photon fluxes ~ energy

Five year sky survey

17/51

Comparison of DM sensitivity from γ-line

HERD R16

18/51

95% upper limits on decay lifetime of DM

19/51

Comparison with DM models

γγ γZ

20/51

CALO readout

Trigger

Fast FrameCCD

Optical Coupling

Image Intensifier

21/51

Proof of principle

2×2×6 CsI crystal array

ICCD image of cosmic ray events

22/51

HERD progress – ICCD development

23/51

Scintillator signal readouts• LYSO scintillator WLSF

• Fiber to ICCD system

Image intensifier

Taper

ICCD system

Optical fiber winding Crystal packing

24/51

Fiber Image on CCD

Signal: 3000 pe; gain of image intensifier: 4000

25/51

Fiber Image on CCD

Signal: 3000 pe; gain of image intensifier: 50000

26/51

CERN Beam Test in Nov 10-20, 2015

27/51

Requirements on the prototype• Requirement on dynamic range: ~6000

– Starting from 1/3 MIPs=10 MeV– Ending at max. energy deposition: 60 GeV

• Requirement on frame rate of ICCD: > 500 fps– Since the electrons arrive randomly in time

28/51

Requirements on the prototype• Scale of the prototype: 5×5×10, 3×3×3 cm3

– Larger than envelope of 280 GeV e- shower– 36% of the total energy for protons

1/40 size of HERD

Along the beam

Transverse direction29/51

LYSO light output

for 3cm×3cm×3cm cubic LYSO, but signal << 30 MeV MIP

30/51

LYSO performanceVariation of LYSO light output:(Max-Min)/Mean ≈25%

Energy resolution (σ/E) for 662keV γ peak:< 5%

31/51

Realization of two readout ranges

T HLow

Low H

T

32/51

Signal ratios ~ 50:1

33/51

Fiber winding development

Slot instead of holeFiber insert hole

34/51

Fiber winding development

35/51

Fiber winding development

36/51

Fiber winding development

37/51

Fiber winding development

38/51

Making ESR wrapping

39/51

Assembly and lab test of the prototype

40/51

@CERN: beam test starts on Nov. 10, 2015

Final test @ IHEP

Packing @ IHEP

Oct 28 @ CERN

41/51

HERD beam test @ SPS H4

• 1 LYSO array– 5*5*10 crystals

• 2 ICCD systems• 2 PMT systems• Envelope

– 560*580*240 mm3

• Purposes – To verify the WLSF+ICCD design– To verify the design specifications of

energy resolution, angular resolution (by only CALO), and particle discrimination.

• Requirements– Large dynamic range, ~ 6000– Frame rate, > 300 fps

42/51

Beam runs & counts

0 1000 2000 3000 40000

1000

2000

3000

4000

5000

6000

PS trigger timestamp(minutes)PS

trig

ger c

ount

s p

er

min

ute

• Triggered events– ~5 M events during e & p runs– ~1 M events during Pb runs till this morning

Time Beam ParticleStart Time 2015/Nov/

(D/h:m)

Stop Time 2015/Nov/

(D/h:m)

Type P(GeV/c)

13/00:38 13/04:23 pion+ 5013/04:46 13/09:02 e- 20013/09:02 13/12:41 beam tuning by CCC13/12:41 13/18:40 proton 40013/18:42 13/20:00 pion+ 5013/20:00 13/23:30 no beam13/23:39 14/02:23 pion+ 5014/02:50 14/09:15 proton 35014/09:23 14/21:43 e- 150, 100, 50, 40, 1014/23:16 15/03:05 pion+ 5015/03:17 15/13:16 e- 30 ,20, 10, 25015/13:58 15/15:27 e+ 10015/15:27 15/16:40 no beam15/16:43 15/21:00 e- 100, 5015/21:11 15/22:10 e+ 5015/22:30 15/23:20 e- 80GeV15/23:30 16/3:38 pion+ 5016/03:38 16/5:30 proton 35016/05:30 16/6:00 e- 200

43/51

Beam - calibration

Stable hadron beam!

44/51

250 GeV electron shower

CCD camera3D shower

45/51

20 GeV electron shower

CCD camera

3D shower

46/51

Preliminary result – PMT readout

0 50 100 150 200 250 3000

0.020.040.060.080.1

Energy (GeV)

Sig

ma

PMT spectrum @ 100 GeV

47/51

Preliminary result – ICCD low range readout

Sigma ~ 5%@10 GeV without correction

48/51

1st HERD workshop, Oct.17-18, 2012, IHEP, Beijing

49/51

2nd HERD Workshop @IHEP 2013/12/2-3

50/51

The HERD Proto-Collaboration Team• Chinese institutions (more welcome!)

– Institute of High Energy Physics, Purple Mountain Observatory, Xi’an Institute of Optical and Precision Mechanics, University of Science and Technology of China, Nanjing University, Peking University, Yunnan University, China University of Geosciences, Ningbo University, Guangxi University

• International institutions (more welcome!)– Switzerland: University of Geneva– Italy: Università di Pisa/INFN, IAPS/INAF, University of

Florence/INFN, University of Perugia/INFN, University of Trento/INFN, University of Bari/INFN, University of Salento/INFN-Lecce

– Sweden: KTH– USA: MIT/Harvard

51/51

top related