high energy frontier recent results from the lhc: heavy ions ischoning/vorlesungen/recentl… ·...

Post on 15-Jun-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Ralf Averbeck

ExtreMe Matter Institute EMMI and Research Division

GSI Helmholtzzentrum für Schwerionenforschung

Darmstadt, Germany

Winter Term 2012

Ruprecht-Karls-University, Heidelberg

High Energy Frontier –

Recent Results from the

LHC: Heavy Ions I

R. Averbeck, 2 Heidelberg, 22.11.2012

Pb-Pb @ √sNN=2.76 TeV

R. Averbeck, 3 Heidelberg, 22.11.2012

lecture 1 (22.11.): introduction

basics of relativistic heavy-ion collisions

lecture 2 (29.11.): soft probes

hadron yields & spectra

hydrodynamics & collective motion

lecture 3 (13.12.): hard probes

jets

heavy-flavor hadrons

lecture 4 (20.12.): quarkonia & el.magn. probes

quest for J/y suppression/enhancement

direct & thermal photons

dileptons

Outline

R. Averbeck, 4 Heidelberg, 22.11.2012

Some books (not needed)

R. Averbeck, 5 Heidelberg, 22.11.2012

strong interaction binds quarks in hadrons

binds nucleons in nuclei

described by QCD interaction between particles

carrying color charge

mediated by gluon exchange

gluons are colored themselves! (→ complicated vacuum)

QCD: a very successful theory jets / particle production at high pT

heavy-flavor production

….

with two fundamental properties/puzzles

QCD (Quantum Chromo Dynamics)

R. Averbeck, 6 Heidelberg, 22.11.2012

strong color field

potential energy grows with distance !!! “white” proton

let’s look at an atom…

…isolating the constituents works

nucleus

electron

quark

quark-antiquark pair

from the vacuum

“white” proton (baryon) (confinement)

“white” 0 (meson) (confinement)

confinement: fundamental property of QCD:

- colored objects can’t be isolated

neutral atom

Confinement

Animation: C. Markert

isolated quarks have never been detected

R. Averbeck, 7 Heidelberg, 22.11.2012

Hadron masses

proton: two up quarks and a down quark sum of quark masses: ~12 MeV

proton mass: ~938 MeV

how does nature generate massive

hadrons from (almost) massless quarks? it happened a long time ago …

R. Averbeck, 8 Heidelberg, 22.11.2012

A short history of the universe

first step towards

the generation

of mass

T ~ 100 GeV elementary particles get mass via Higgs mechanism

R. Averbeck, 9 Heidelberg, 22.11.2012

current quark mass generated by spontaneous symmetry breaking

(Higgs mass)

contributes ~2% to the visible (our) mass

Quark masses

1

10

100

1000

10000

100000

1000000

u d s c b t

QCD Mass

Higgs Mass

constituent quark

mass (QCD mass) generated during

hadronization

related to chiral symmetry

breaking

quark & gluon condensates

R. Averbeck, 10 Heidelberg, 22.11.2012

A short history of the universe

second step towards

the generation

of mass

T ~ 100 MeV hadronization

R. Averbeck, 11 Heidelberg, 22.11.2012

Hadrons as complex objects hadron = complex excitation of valence

quarks in the presence of quark and gluon

condensates

Frank Wilczek: mass without mass

mass given by

energy stored in

motion of quarks

energy in color

gluon fields

R. Averbeck, 12 Heidelberg, 22.11.2012

mass of ordinary matter ~2% via Higgs

~98% via QCD

can we prove this experimentally?

Hadronization in vacuum

(successful?!) Higgs

search at the LHC

QCD:

study transition

between quark-gluon

and hadronic matter arXiv:1207.7235

R. Averbeck, 13 Heidelberg, 22.11.2012

Phase transitions hadronization took place a few

microseconds after the Big Bang

common phenomenon: phase transition examples

– water vapor water ide – electromagnetic interaction QED

– quarks/gluons protons/neutrons nuclei – strong interaction QCD

R. Averbeck, 14 Heidelberg, 22.11.2012

nuclear matter hadronic matter Quark-Gluon-Plasma

Strongly interacting matter

naive picture of different phases of strongly

interacting matter

increasing temperature thermal motion and production of mesons

increasing density

hadrons „overlap“

quarks and gluons

become the relevant

degrees of freedom

R. Averbeck, 15 Heidelberg, 22.11.2012

main goal of relativistic heavy-ion physics study the properties of nuclear matter,

hadronic matter, and partonic matter

Phase diagram

only (!) experimental approach in the lab:

nucleus-nucleus collisions

relations to

other fields nuclear physics

– collective effects

– in-medium effects

astrophysics – neutron stars

– Supernovae

cosmology – early universe

R. Averbeck, 16 Heidelberg, 22.11.2012

„Mini Bang“ in the laboratory

Quark-Gluon Plasma hadron gas at T ~ 1012 K ~100000 times hotter than the core of the sun

reflects the early universe at a few

microseconds after the Big Bang

R. Averbeck, 17 Heidelberg, 22.11.2012

Some relevant energy densities

inside an atomic nucleus nucleon density: 𝝆𝟎 = 𝟎. 𝟏𝟔 nucleons/𝒇𝒎𝟑

nucleon mass: 𝑴 ≈ 𝟎. 𝟗𝟑𝟏 𝑮𝒆𝑽

energy density: 𝜺𝟎 = 𝝆𝟎𝑴 ≈ 𝟎. 𝟏𝟓 𝑮𝒆𝑽/𝒇𝒎𝟑

inside a nucleon

radius: 𝒓 ≈ 𝟎. 𝟖 𝒇𝒎

mass: 𝑴 ≈ 𝟎. 𝟗𝟒 𝑮𝒆𝑽

energy density:

𝜺 =𝑴

𝟒𝟑 𝝅𝒓𝟑

≈ 𝟎. 𝟒𝟒 𝑮𝒆𝑽/𝒇𝒎𝟑

R. Averbeck, 18 Heidelberg, 22.11.2012

Phase transition in lattice QCD

“stolen” from K. Reygers

R. Averbeck, 19 Heidelberg, 22.11.2012

Pb-Pb collision in UrQMD

R. Averbeck, 20 Heidelberg, 22.11.2012

Schematic A-A collision time

hard parton scattering

Au Au

hadronization

freeze-out

formation of QGP and

thermalization

space

time Jet cc g g e m f p K L

QCD tests:

confinement

chiral symmetry

R. Averbeck, 21 Heidelberg, 22.11.2012

electromagnetic radiation: g, e+e-, m+m-

rare, probes for all time scales, because of lack of strong final state interaction –black body radiation

initial temperature

– in-medium properties of light vector mesons chiral symmetry restoration

hadrons: , K, p common, produced late

(at freeze out) – energy density

– thermalization

– collective motion

Probes for all time scales

production of ~18000 charged

particles per central collision

b ~ 0

Pb nucleus Pb nucleus

p

p

K

cc

J/y

q q

e- e+

g

hard probes: jets, heavy

quarks, direct g rare, produced very early

(prior to QGP formation) – interaction with produced hot and

dense medium

R. Averbeck, 22 Heidelberg, 22.11.2012

Heavy-ion physics programs

R. Averbeck, 23 Heidelberg, 22.11.2012

Bevalac-LBL

2.2 GeV

AGS-BNL

4.8 GeV

SPS-CERN

17.3 GeV

TEVATRON-FNAL

38.7 GeV

RHIC-BNL 200.0 GeV

LHC-CERN

2760.0 GeV

Net Baryon Density ~ Potential mB [MeV]

Te

mp

era

ture

Tc

h [

Me

V]

0

200

250

150

100

50

0 200 400 600 800 1000 1200

AGS

LBL/SIS

SPS

RHIC/LHC

quark-gluon plasma

hadron

gas

atomic nuclei

Most of the important goals have

NOT changed over the last 20

years..

Properties of the produced

medium depend strongly on

energy.

High energies give access to

more experimental probes and

theoretical tools.

nuclear fragmentation

production of resonances

strangeness threshold

“resonance matter”

large baryon density

strangeness important

charm production relevant

small baryon density

hard parton scattering

beauty production

Why high energy?

R. Averbeck, 24 Heidelberg, 22.11.2012

BEVALAC = SuperHILAC + BEVATRON

BEVALAC @ Berkeley

R. Averbeck, 25 Heidelberg, 22.11.2012

AGS @ Brookhaven Alternating Gradient Synchrotron

R. Averbeck, 26 Heidelberg, 22.11.2012

Super Proton Synchrotron

SPS @ CERN

R. Averbeck, 27 Heidelberg, 22.11.2012

RHIC

NSRL LINAC Booster

AGS

Tandems

STAR 6:00 o’clock

PHENIX 8:00 o’clock

PHOBOS 10:00 o’clock Jet Target

12:00 o’clock

RF 4:00 o’clock

BRAHMS 2:00 o’clock

RHIC @ Brookhaven Relativistic Heavy-Ion Collider

p+p: √s ≤ 500 GeV (polarized p spin physics)

A+A: √sNN ≤ 200 GeV (per nucleon-nucleon pair)

STAR

experiments with

specific focus BRAHMS (- 2006)

PHOBOS (- 2005)

general purpose

experiments PHENIX

STAR

R. Averbeck, 28 Heidelberg, 22.11.2012

LHC

8.6 km

CMS

ATLAS

LHCb

ALICE

Large Hadron Collider @ CERN

dedicated heavy-

ion experiment:

ALICE

R. Averbeck, 29 Heidelberg, 22.11.2012

Facility for Antiproton and Ion Research

(Start SIS100: 2018)

FAIR @ GSI

at the moment (GSI):

- Z = 1 – 92 (p – U)

- beam energy: ≤2 AGeV

future:

- Z = -1 – 92 (p – U,

anti protons)

- beam energy:

≤35 AGeV

- beam intensities

10-1000 larger

than at SIS18

R. Averbeck, 30 Heidelberg, 22.11.2012

ALICE at the LHC

R. Averbeck, 31 Heidelberg, 22.11.2012

Inner Tracking System (ITS)

“stolen” from K. Reygers

R. Averbeck, 32 Heidelberg, 22.11.2012

Time Projection Chamber (TPC)

R. Averbeck, 33 Heidelberg, 22.11.2012

Time Projection Chamber

R. Averbeck, 34 Heidelberg, 22.11.2012

Transition Radiation

“stolen” from K. Reygers

R. Averbeck, 35 Heidelberg, 22.11.2012

Transition Radiation Detector (TRD)

R. Averbeck, 36 Heidelberg, 22.11.2012

ALICE TRD

R. Averbeck, 37 Heidelberg, 22.11.2012

Collision Geometry

R. Averbeck, 38 Heidelberg, 22.11.2012

Collision Geometry

R. Averbeck, 39 Heidelberg, 22.11.2012

Nucleus-Nucleus Collision Geometry

ultra relativistic energies DeBroglie wave length << radius of nucleons

nucleon wave character can be ignored for estimate of cross section

nucleus-nucleus collision as collision of two

„black disks“

2

31312

0unel

0

31

0fm2,1mit

BAr

rArR

geo

BA

A

+

+

R. Averbeck, 40 Heidelberg, 22.11.2012

Centrality in AA Collisions K. Reygers

centrality characterized (but NOT directly measured) via: b: impact parameter

Npart: number of nucleons, which took part in at least one inelastic nucleon-nucleon scattering

Ncoll: number of inelastic nucleon-nucleon collisions

b

R. Averbeck, 41 Heidelberg, 22.11.2012

Glauber Model Glauber model assumptions

nucleons travel on straight trajectories, even after (!) NN scattering processes

NN scattering cross section does NOT depend on the number of NN scatterings that took place before

crucial input: nuclear geometry Woods-Saxon parametrization

parameters from e scattering

ignore possible differences between proton and neutron distributions

aRr

Rwrr

/exp1

/1)(

22

0

-+

+

R. Averbeck, 42 Heidelberg, 22.11.2012

MonteCarlo Approach initialization: distribute

nucleons randomly

according to Woods-

Saxon distribution

select random impact

parameter b

two nucleons collide if

they come close enough

to each other

/NN

uneld

<Npart> and <Ncoll> from simulation of

many AA collisions

R. Averbeck, 43 Heidelberg, 22.11.2012

Glauber: Npart and Ncoll vs. b

approximately: Ncoll a Npart4/3

R. Averbeck, 44 Heidelberg, 22.11.2012

Impact parameter distribution Glauber MonteCarlo: b9,6

200@

+ GeVAuAu

unel

R. Averbeck, 45 Heidelberg, 22.11.2012

Centrality in ALICE

measurement ~ number of produced particles

particle yield in Glauber MC 𝑵𝒂𝒏𝒄𝒆𝒔𝒕𝒐𝒓 = 𝒇 ×𝑵𝒑𝒂𝒓𝒕 + (𝟏 − 𝒇) × 𝑵𝒄𝒐𝒍𝒍

each ancestor produces charged particles according to negative

binomial distribution (NBD)

same centrality selection in data and MC <Npart>, <Ncoll>

R. Averbeck, 46 Heidelberg, 22.11.2012

Pb-Pb @ √sNN=2.76 TeV

top related