holographic superlocalization of individual metal...

Post on 24-May-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

NanoLight – Benasque 2016

CCD

Holographic superlocalization of individual metal nanoparticles:

Electrochemical impacts tracking and near-field mapping

Vitor Brasiliense, Pascal Berto, Ariadna Martinez-Marrades, Catherine Combellas, Frederic Kanoufi, Gilles Tessier

Small objects, moving in 3 dimensional way

Dark field imaging , holography

dissolution

2. Imaging Optical Field Distribution

3. Tracking Electrochemical Impacts

Laser

BS

BS

EM-CCD

1. Holographic Superlocalization of NP

Laser

BS

BS

EM-CCD

Holographic Superlocalization of NP

Hologram

Laser @532 nm

BS

BS

EM-CCD FCCD

sample

Digital Holography

M. Gross et M.Atlan, Opt. Lett. 32, 909 (2007)

Holographie

Digital Holography

x (µm) y (µm)

z (µm)

C.Batchelor-McAuley et al., Chem. Phys. Lett. , CP Letters 31938 (2014)

Laser @532 nm

BS

BS

EM-CCD FCCD

sample

1. FT 2. SF 4. (FT)-1

∙ 𝑒𝑖 𝑘𝑧𝑧

3. Z Propagation

Particle Detection

5. Thresholding

GPU

Localization Precision

Localisation position histograms for still particles (Au, 50 nm)

TRANSVERSE AXIAL

Nb o

f o

ccu

rre

nces

Nb o

f o

ccu

rre

nces

For SNR ≈ 70 Lateral localization precision : 3 nm Vertical localization precision : 10 nm Large investigated volume : 100x100x30 mm

(adapted from Moerner et al.)

Imaging Optical Field Distribution

Near-field mapping from Gold Nanoparticles

A. Martinez-Marrades, J. Rupprecht , M. Gross , G.Tessier, Optics Express 22 29191 (2014)

36000 particle detections Large Volume reconstruction

Near-field mapping from Gold Nanoparticles

A. Martinez-Marrades, J. Rupprecht , M. Gross , G.Tessier, Optics Express 22 29191 (2014)

For more details: See P. Berto in Poster Section

Tracking Electrochemical Impacts

Ag

- Partial oxidation? - Single Particle? - Agglomerate Single response?

Seeing with electrochemical eyes

But...

Electrode Surface

Ultra Micro

Electrode

Spacer solution

inlet

outlet

prism >CE/Ref UME

Cover slip

10 mm

Designing a transparent electrode

A.Patel, A.Martinez-Marrades, V.Brasiliense, et al Nanoletters 22 29191 (2014)

V.Brasiliense, et al JACS (2016 accepted) DOI: 10.1021/jacs.5b13217

Electrode

Ag

Ag+

Ag+

Ag+

Ag+

Direct particle Oxidation: Synchronized Charge Injection/Dissolution

In presence of NO3- :

Δ𝑡

A.Patel, A.Martinez-Marrades, V.Brasiliense, et al Nanoletters 22 29191 (2014)

op

tica

l

V.Brasiliense, et al JACS (2016 accepted) DOI: 10.1021/jacs.5b13217

A.Patel, A.Martinez-Marrades, V.Brasiliense, et al Nanoletters 22 29191 (2014)

Direct particle Oxidation: Synchronized Charge Injection/Dissolution

-e- Ag+ Ag+

Ag+

Ag

V.Brasiliense, et al JACS (2016 accepted) DOI: 10.1021/jacs.5b13217

Oxidation in a precipitating medium (KSCN): Uncoupled Charge Injection/Dissolution

No

rmal

ize

d O

pti

cal

Inte

nsi

ty

A.Patel, A.Martinez-Marrades, V.Brasiliense, et al Nanoletters 22 29191 (2014)

V.Brasiliense, et al JACS (2016 accepted) DOI: 10.1021/jacs.5b13217

Oxidation in a precipitating medium (KSCN): Uncoupled Charge Injection/Dissolution

Electrode

e-

e- e- e-

Ag

Ag+

Ag+

Ag+

Ag+

In presence of SCN- :

AgSCN

-e-

Ag+ Ag+

Ag+

Ag

AgSCN

A.Patel, A.Martinez-Marrades, V.Brasiliense, et al Nanoletters 22 29191 (2014)

V.Brasiliense, et al JACS (2016 accepted) DOI: 10.1021/jacs.5b13217

Laser

BS

BS

EM-CCD

-e-

Ag+ Ag+

Ag+

Ag

AgSCN

-e- Ag+ Ag+

Ag+

Ag

Conclusions

Lateral precision : 3 nm Vertical precision : 10 nm Investigated volume : 100x100x30 mm

P. Berto R. Kuszelewicz A.Martinez

G. Tessier F. Kanoufi

Thank you!

Interference pattern modulated at 4Hz

Heterodyne Hologram

Laser @785 nm

BS

BS

AOM1

80 MHz

+ DF

AOM2

80MHz

Δf=¼ fCCD

EM-CCD FCCD

sample

M. Gross et al., Opt. Lett. 32, 909 (2007)

Digital Heterodyne Holography

Demodulated Hologram

d

Laser @785 nm

BS

BS

AOM1

80 MHz

+ DF

AOM2

80MHz

Δf=¼ fCCD

EM-CCD FCCD

sample

M. Gross et al., Opt. Lett. 32, 909 (2007)

Digital Heterodyne Holography

1. FT 2. SF

(x,y,z, Intensity) for different particles at different times, Several hundred times faster than CPU calculations

From a single hologram:

4. (FT)-1

∙ 𝑒𝑖 𝑘𝑧𝑧

3. Z Propagation

x Nb of Z plans

Particle Detection

5. Thresholding

x Nb of Holograms (for different times t)

1) Particle localization in z 2) Precise relocalization in (x,y) plan

x Nb of Nanoparticles

6. Localization

GPU

Reconstruction and Superlocalization

top related