hybrid membrane based systems for co capture on natural

Post on 17-Jun-2022

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Stanbridge CapitalOil & EnergyOil & Energy

Hybrid Membrane Based Systems for CO2Capture on Natural Gas and Coal Power Plants

PCCC2, Bergen, 18th September 2013

Bouchra Belaissaoui, Eric FavreLRGP, Nancy, FranceYann Le Moullec

EDF R&D, Chatou, FranceGilles Cabot

CORIA, Rouen, FranceDavid Willson

Stanbridge Capital, New York, USA

1

Post-combustion carbon capture and storage (CCS) technologyPost-combustion CO2 capture

Challenge: Reduction of the energy requirement of the capture step

Separation unitCOFlue gas CO2 to transportCO2 captureFlue gas

CO2 content : 4 -30%CO2 to transport

CO2 purity >=90%Capture ratio >=90%

Target : 2.5 GJ/ton of recovered CO2

Reference (MEA absorption + compression) : 4 GJ/ton of recovered CO2

Target : 2.5 GJ/ton of recovered CO2

Alternative approaches : Membrane based hybrid processes?

2

Outline

1- Membrane process specification

2. Hybrid process I: Coal power plant

3 Hybrid process II: Natural gas turbine

4. Conclusion and perspectives

3. Hybrid process II: Natural gas turbine

3

Membrane unit Post-combustion carbon capture and storage (CCS) technology1- Membrane process

Upstream P’Feed Flue gas Retentate

N2CO2

Downstream Permeable & CO2selective membrane

material

P’’

CO2/N2

Permeate CO2 rich stream 2

CO and N are separated due to their different permeability in the membrane CO2 and N2 are separated due to their different permeability in the membranematerial

The driving force is ensured by an appropriate transmembrane pressureCO f h N CO i h i d i h CO2 permeates faster than N2 CO2 rich stream is recovered in the permeate

4

Retentate :Feed :

1- Membrane process simulation

NCOUpstream

Downstream

P’

P’’

Qout = (1-).Qin

xout

Qin

xin

Pin

N2CO2

Permeate :Qp = .Qin , y

Modeling : Cross-plug flow model*

- Pressure ratio: =P”/P’Operating t

- CO2 permeate purity, y

- Inlet CO2 content , xin

Energy requirementPerformance

parameter

- CO2 recovery ratio, R

- Membrane selectivity: α=CO2/N2

+Material

parameters

- CO2 permeability: CO2 Membrane surface areaproperties

* Bounaceur R. et al, (2006) Energy, 31, 2556-2570. 5

Membranes and post-combustion CCS:A tentative process selection map

3.5

4.0

Standard MEA  absorption process

2.5

3.0

red CO

2)

U.E target : E=< 2+0.5 (compression to 110 bar)GJth/ton CO2 =100

1.5

2.0

on of recove g ( p ) / 2 =100

R = 0.9

0 0

0.5

1.0

E (GJ/to

Coal combustion Biogas Steel industryNatural gas 

turbineBiogas 

combustion

y = 0.9

0.00.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Inlet CO2 mole fraction (xin)

Single stage membrane process  E < 2.5 GJ/tonMultistage memb. 

ce of 

rane

s in 

trategy Hybrid process ?

Key : There is a substantial benefit fromHybrid process : Membrane as a 

preconcentration unit

Plac

mem

bCC

S s t Membrane as a 

polishing unit

B. Belaissaoui , D. Willson , E. Favre, Chemical Engineering Journal, 211‐212 (2012) 122‐132 

Key : There is a substantial benefit from strategically increasing the inlet CO2 content

6

Outline

1- Membrane process specification

2. Hybrid process I: Coal power plant

3 Hybrid process II: Natural gas turbine

4. Conclusion and perspectives

3. Hybrid process II: Natural gas turbine

7

2- Hybrid process: Membrane preconcentration + cryogeny

Qin

T=30°CQout

x >98%Membrane unitQ’

Retentate

Cryogenic unitPin =1bar

xout >98%

Pout=110barMembrane unit x’CO2

P’=1barIncondensable

xin,CO2

Cryogenic unit

CO2 capture ratio >90%

B. Belaissaoui , Y. Le Moullec, D. Willson , E. Favre, Journal of Membrane Science, 415-416 (2012) 424-434 8

2- Hybrid process: Membrane preconcentration + cryogeny

Qin

T=30°C

Pi =1bar

Qout

xout >98%Membrane unit

Q’

x’CO2

P’ 1b

Retentate

Cryogenic unitPin 1bar out

Pout=110barP’=1bar

Incondensable

xin,CO2

y g

Three-stage compression with intercoolers (Aspen software)with coupled turbine & booster compressor

* B. Belaissaoui , Y. Le Moullec, D. Willson , E. Favre, Journal of Membrane Science, 415-416 (2012) 424-434 9

1- Hybrid process: Membrane preconcentration + cryogeny

Q RetentateOptimisation

variableQin

T=30°C

Pin =1bar

Qout

xout >98%

P =110bar

Membrane unit

Q’

x’CO2

P’=1bar

Retentate variable

x

Cryogenic unitPout 110bar

Incondensable

xin,CO2

Occurrence of a minimum overall energy requirement ?

* B. Belaissaoui , Y. Le Moullec, D. Willson , E. Favre, Journal of Membrane Science, 415-416 (2012) 424-434 10

Simulation results10

d C

O2)

of re

cove

red

Feed compression with ERS

CO2/N2=50

E (G

J/to

n o CO2/N2 50

xin=0.15

10.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775

Intermediate CO2 mole fraction (x')

E Membrane decreases significantly whenE-Membrane decreases significantly when a moderate CO2 permeate purity is aimed

11

Simulation results10

d C

O2)

of re

cove

red

E (G

J/to

n o

10.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775

Intermediate CO2 mole fraction (x')

E C d i ifi tl hE-Cryogeny decreases significantly when concentrated CO2 flue gase is treated

12

10

Simulation results

E Hybrid = E Membrane +E Cryogenyd

CO

2)E Hybrid E Membrane +E Cryogeny

of re

cove

red

E (G

J/to

n o

10.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775

Intermediate CO2 mole fraction (x')

Occurrence of a minimum energy requirement towards x’Occurrence of a minimum energy requirement towards x

13

10

Simulation results

d C

O2)

All Cryogeny

St d d MEA b ti i

of re

cove

red Standard MEA absorption+compression

20% energy decrease

E (G

J/to

n o

xin=0.15

CO /N 50

10.375 0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775

CO2/N2=50

Intermediate CO2 mole fraction (x')

The hybrid process significantly decreases the energy requirement compared to the standalone cryogenic separation and MEA absorption

B. Belaissaoui , Y. Le Moullec,  D. Willson , E. Favre,  Journal of Membrane Science, 415‐416 (2012) 424‐434  14

Outline

1- Membrane process specification

2. Hybrid process I: Coal power plant

3 Hybrid process II: Natural gas turbine

4. Conclusion and perspectives

3. Hybrid process II: Natural gas turbine

15

3- Integrated membrane / gas turbine process

Proposed concept : Flue gas recirculation + combustion in oxygen enhanced air (OEA)

Separation unit 1 Separation unit 2Gasturbine

Natural gas Power

O2/N2 OEA CO2 captureturbine cycle

FGR

Moderate O2 enrichment CO2 capture on concentrated flue gas

[O2] : 40- 80% [CO2] >= 30%# # Postcombustion (4% CO2)

Oxycombustion(100%O2)

16* Favre, E. Bounaceur, R., Roizard, D.(2009),, Sep. Purif. Technol , 68, 30-36. 16

3- Integrated membrane / gas turbine process

Capture ratio =90%

Flue gas recycling (FGR)

Key variable 

Membranemodule

Combustion chamber

Natural gas Gas 

Turbine 1‐Z

ZPinxin

C

N2 CO2

Cooler

parameters

Cryogenic 

O2 enriched air(OEA) Patm

Yp=0.9Permeate

Compressor

to CO2 transport and sequestration

Air

process

250 MW NGT GE REF = 0.39

Simulation software EES

17

Combustion in air and without FGR]

2- Integrated membrane / gas turbine process

[, reference = - 15%,

4Cost

MEA absorption reference3,5

ost (

GJ/

TCO

2) MEA absorption referenceEnergy integration

Energy Recovery SystemsHeat exchanger

2 5

3

O2

Cap

ture

Co

7 3%

2

2,5

CO - 7.3%

- 6.3%

E= 1.5 GJ/tonE= 2.7 GJ/ton

0 5 10 15 20 25 30PIN (bar)

- Significant improvement of the energy efficiency of the process

B. Belaissaoui, G. Cabot, M.L. Cabot, D. Wilson, E., Favre   Energy (2012) 38, 167‐175

Significant improvement of the energy efficiency of the process- Membrane selectivity helps to improve the energy effiency

18

• Major outcome of the study:

3- Conclusion and perspectives

• Major outcome of the study:

Membrane + cryogeny: Potential energy decreaseHigh selectivity is not needed (50 is enough)g se ec v y s o eeded ( s e oug )

Membrane / OEA/ NGT Potential energy decreaseLarge selectivity helps

• The use of membrane unit in hybrid processes can offer attractive performances fordiluted flue gas treatment

• Future work: Experiments +Trade-off CAPEX OPEX to be investigated

19

Stanbridge CapitalOil & EnergyOil & Energy

Hybrid Membrane Based Systems for CO2 Capture on Natural Gas and Coal Power Plants

PCCC2, Bergen, 18th September 2013

Thank you for your attention

Bouchra.belaissaoui@univ-lorraine.fr

20

21

Improved approach: Energy Integration Flowsheet

2- Integrated membrane / gas turbine process

e Z

Flue gas recycling (FGR)

er

Membranemodule

Combustion chamber

Natural gas

O2 enriched air(OEA)

Gas 

Turbine 1‐Z Pinxin

PatmYp=0.9

Permeate

Compressor

N2 CO2Ex

pand

e

Heat exchanger

Cooler

to CO2 transport and sequestration

Air

Cryogenic process

1‐ZZ Membrane

Combustion chamber

Membranemodule

PatmYp=0.9Permeate

Heat exchangerCooler

CoolerModified flowsheet:

- Energy Recovery System

CMemb

OEA

Gas 

Turbine

CFGR CFuelCOEANet Power

Pinxin

Expander

(Expander on the retentate)

- Heat exchanger(R t t t h ti i t

Air

Natural gas

Cryogenic process

OEA

N2, O2

Patm (Retentate heating prior to the expander)

22

Integrated approach: Performances

2- Integrated membrane / gas turbine process

3.5

O2)

Reference gas turbine cycle (config. A),  =50

3

ent (GJ/ to

n CO

Reference gas turbine cycle (config .A), =100Reference gas turbine cycle (config. A), =200

Config.B, =50

2

2.5

rgy requ

ireme

Config.B, =200

Config.B, =100

1.5

2

E, overall en

e

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E

- 6.3%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(heat exchanger efficiency)

B. Belaissaoui, G. Cabot, M.L. Cabot, D. Wilson, E., Favre   Chemical Engineering Science  (2013) 97, 256‐263 23

Influence of the membrane selectivity

1000Upper Bound(Robeson 2008)

Prospectives 

100

CO2/N2

membranes

Polaris TM (MTR)Commercial membranes

10Selectivity

 C membranes

11 10 100 1000 10000

CO2 Permeance, GPU

Membrane selectivity  50‐100‐200

CO2 membrane permeance (GPU) 1000 24

A membrane / MEA absorption hybridprocess is (probably) not relevant

5

p (p y)

4.5

4

3.5

30 0.05 0.1 0.15 0.2 0.25 0.3 0.35

% CO2% CO2

Specific energy requirement of a MEA carbon capture processas a function of CO2 inlet concentration in the flue gas 25

Hybrid process: Membrane preconcentration + cryogeny

8

9

)

5

6

7

of re

cove

red

CO

2

Cryogenic CO2 capture is not efficient for low CO2 content

2

3

4

ryog

enic

uni

t (G

J/to

n

Cryogenic CO2 capture can be very

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Inlet CO2 mole fraction (x')

E c efficient for high CO2 content

Qin

Xin

P =1bar

Qout

X t >90%

EMmembrane

ECCryogeny

QP

X’

P’ 1b

Retentate

Pin =1bar Xout >90%

Pout=110bar

CryogenyP’=1barT=30°C

Incondensable outlet 26

Hybrid process NGT / OEA / FGR:  Selectivity helps

0.9

1

3500

4000Cost

0 7

0.8

0.9

3000

3500

MJ/

TCO

2) O2

CO2

0 5

0.6

0.7

2000

2500

X IN

-CO

2-

X O2

Cap

ture

Cos

t (

0 3

0.4

0.5

1000

1500

CO

2C

0.310000 5 10 15 20 25 30

PIN

Si ifi t i t f th ffi i f th

B. Belaissaoui, G. Cabot, M.L. Cabot, D. Wilson, E., Favre   Energy (2012) 38, 167-175

Significant improvement of the energy efficiency of the processMembrane selectivity helps

27

Simulation results of the hybrid process (2)Energy requirement = f(x’CO2) xin, CO2

Feed compression with ERS =50 (available performances)

100ed

CO

2)

xi CO =0 05

All Cryogeny, xin,CO2 =0.05

10

on o

f rec

over

e xin, CO2 =0.05

xin,CO2 =0.15

All Cryogeny, xin,CO2 =0.15

E (G

J/to

xin,CO2 =0.3Standard MEA absorption

All Cryogeny, xin,CO2 =0.30

10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Intermediate CO2 mole fraction x'

The hybrid process appears to be particularly interesting for intermediate CO2 contents, i.e. around 15%, the main target of carbon capture studies.

28

Simulation results of the hybrid process (3)Minimum energy requirement = f(xin, CO2 ) CO2/N2

Feed compression with ERS 10

over

ed C

O2)

Standard MEA absorption+compression

GJ/

ton

of r

eco

10.05 0.1 0.15 0.2 0.25 0.3

Em

in(G

Inlet CO mole fraction x

The minimum energy requirement decreases when CO2 inlet content increases and also when membrane selectivity increases.

Inlet CO2 mole fraction xin

The minimum energy consumption is slightly influenced by membrane selectivity (50 or 100) specially for xin, CO2 > 0.15.

29

Th t i ith i t l ( )

Cryogenic separation: simulation

Three-stage compression with intercoolers (Aspen software)

P’out= 1 barx’CO2

xout >98%Pout=110bar

CO2 capture ratio >0.952 pCO2 purity (xout) >0.98

Pump Isentropic efficiency : 0.8 Compressor isentropic

efficiency : 0.8530

3- Integrated membrane / gas turbine process

Natural gas ECO2

Key variable parameters

O2 Enriched Air

Membrane separation

N2

GasTurbine

ZEOEA

1‐Z

PINXIN

Cryogenicseparation N2, O2

CO2

Z

Flue gas

OEA

CO2 purity=90%Air recycling Capture ratio =90%

250 MW NGT GE REF = 0.39

Simulation software EES

31

PerspectivesPerspectives

For medium oxygen purity production, alternative technology (PSA,membrane air separation) could be investigated

32

2- Gas turbine efficiency

III- Performances for OEA feeding condition

2 Gas turbine efficiency

0,80,4ref

Membrane selectivity CO2/N2=100,  yCO2= 0.9

0,5

0,6

0,7

0,25

0,3

0,35ref

0,3

0,4

0,5

0,15

0,2

0,25

X IN CO2   

therm

AIR feeding

toech.line

0

0,1

0,2

0

0,05

0,1

OEA feedingst

- The thermal efficiency passes through a maximum value as Z increases.

000 0,2 0,4 0,6 0,8 1

Recycling ratio ,  Z

y p g- Concentrated CO2 in the flue gas can obtained (xin, CO2 > 0.2)

33

A single stage membrane module

Membrane unit Post-combustion carbon capture and storage (CCS) technologyMembrane process principal

P

Membrane

RQin Pupstream

PdownstreamCompressor

P t

Retentate

ExpanderPin =1barxin,CO2 =0.15

Q

x’CO2

P’out= 1 barPermeate

CO2 rich streamQin

Y= 90%CO2 capture ratio = 90%

Modeling framework :Cross-plug flow model 1 (M3Pro software)g p g ( f )

Model hypothesis : Binary dry CO2/N2 mixture

I th l diti A t t i iti it f

1 Bounaceur R. et al, (2006) Energy, 31, 2556-2570. 2 N. Matsumiya et al, (2005) Separation and Purification Technology, 46, 26-32.

Isothermal conditions. Isobaric condition in each side.

A strong parametric sensitivity of both units and y and xin

34

Three-stage compression with intercoolers (Aspen software)

Cryogenic separation

P’out= 1 barx’CO2

xout >98%Pout=110bar

CO2 capture ratio >0.952 pCO2 purity (xout) >0.98

Pump Isentropic efficiency : 0.8 Compressor isentropic

efficiency : 0.8535

top related