icrat budapest, hungary june, 2010

Post on 02-Feb-2016

24 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

ICRAT Budapest, Hungary June, 2010. Throughput/Complexity Tradeoffs for Routing Traffic in the Presence of Dynamic Weather. Presented by: Valentin Polishchuk, Ph.D. Team of Collaborators. Jimmy Krozel, Ph.D., Metron Aviation, Inc., USA - PowerPoint PPT Presentation

TRANSCRIPT

June, 2010

ICRATBudapest, HungaryJune, 2010

Presented by:

Valentin Polishchuk, Ph.D.

Throughput/Complexity Tradeoffs for Routing Traffic

in the Presence of Dynamic Weather

June, 2010ICRAT ’10 Budapest, Hungary

Team of Collaborators

• Jimmy Krozel, Ph.D., Metron

Aviation, Inc., USA

• Joseph S.B. Mitchell, Ph.D., Applied

Math, Stony Brook University, USA

• Valentin Polishchuk, Ph.D., and Anne Pääkkö,

Computer Science, University of Helsinki, Finland

Funding provided by: Academy of Finland, NASA and NSF

June, 2010ICRAT ’10 Budapest, Hungary

Algorithmic Problem

• Givenweather-impacted airspace

• Findweather-avoiding trajectories for aircraft

• Assumptionsen-route

fixed flight level (2D, xy)

generally unidirectional (e.g., East-to-West) flow

June, 2010ICRAT ’10 Budapest, Hungary

Airspace

Sector

June, 2010ICRAT ’10 Budapest, Hungary

Airspace

Center

June, 2010ICRAT ’10 Budapest, Hungary

Airspace

FCA

FCA

June, 2010ICRAT ’10 Budapest, Hungary

Generic Model

Sin

k

Sou

rce

• Polygonal domain– outer boundary

• source and sink edges

– obstacles • weather, no-fly zones

June, 2010ICRAT ’10 Budapest, Hungary

Aircraft: Disk

• Radius = RNP = 5nmi

June, 2010ICRAT ’10 Budapest, Hungary

Airlane: “thick path”

• Thickness = 2*RNP = 10nmi

MIT = 10nmi

June, 2010ICRAT ’10 Budapest, Hungary

Algorithmic Problem

• Givenweather-impacted airspace

• Findweather-avoiding trajectories for aircraft

June, 2010ICRAT ’10 Budapest, Hungary

Model

• Givenpolygonal domain with obstacles, source and sink

• Findthick paths

pairwise-disjoint

avoiding obstacles

June, 2010ICRAT ’10 Budapest, Hungary

Solution: Search Underlying Grid

June, 2010ICRAT ’10 Budapest, Hungary

Hexagonal disk packing in free space

June, 2010ICRAT ’10 Budapest, Hungary

• Nodes: disks• Edges between

touching disks• Source, sink

• Every node has capacity 1

Graph

June, 2010ICRAT ’10 Budapest, Hungary

Source-Sink Flow

• Decomposes into disjoint paths

June, 2010ICRAT ’10 Budapest, Hungary

Source-Sink Flow

• Decomposes into disjoint paths

• Inflate thepaths

MaxFlow → Max # of paths MinCost Flow → Shortest paths

June, 2010ICRAT ’10 Budapest, Hungary

Examples

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Additional constraints: Sector boundaries crossing

Communication between ATCs

June, 2010ICRAT ’10 Budapest, Hungary

Higher cost for crossing edges in the graph

June, 2010ICRAT ’10 Budapest, Hungary

Conforming flow

June, 2010

June, 2010

June, 2010ICRAT ’10 Budapest, Hungary

Capacity = length of shortest B-T path in “critical graph”

Maximum Flow Rates for Capacity Estimation in Level Flight with Convective Weather Constraints Krozel, Mitchell, P, Prete Air Traffic Control Quarterly 15(3):209-238, 2007

Theoretical guarantee: Max # of paths

ℓij = floor(dij/w)

June, 2010ICRAT ’10 Budapest, Hungary

Moving obstacles?

• Paths become infeasible

June, 2010ICRAT ’10 Budapest, Hungary

FreeFlight

June, 2010ICRAT ’10 Budapest, Hungary

Solution: Search Time-Expanded Grid

June, 2010ICRAT ’10 Budapest, Hungary

Lifting to (x,y,t)

June, 2010ICRAT ’10 Budapest, Hungary

Obstacles

June, 2010ICRAT ’10 Budapest, Hungary

Time Slicing

June, 2010ICRAT ’10 Budapest, Hungary

Disk Packings

June, 2010ICRAT ’10 Budapest, Hungary

Edges

June, 2010ICRAT ’10 Budapest, Hungary

Node Capacity = 1

June, 2010ICRAT ’10 Budapest, Hungary

Supersource, supersink

June, 2010ICRAT ’10 Budapest, Hungary

Supersource-supersink flow

June, 2010ICRAT ’10 Budapest, Hungary

Examples

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

Holding

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

Holding

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

The two extremes

• Static airlanes– coherent traffic– not adjustable to dynamic constraints

• Flexible flow corridors– paths, morphing with obstacles motion– keep threading amidst obstacles

• FreeFlight– fully dynamic– “ATC nightmare”

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

Computing the Corridors

• Decide– how many are possible– threading amidst obstacles

• At every time slice– route paths– with given threadings

– Shortest paths • “pulled taut” against obstacles →

• morph slowly

June, 2010ICRAT ’10 Budapest, Hungary

Experiments

June, 2010ICRAT ’10 Budapest, Hungary

Airspace• 300 x 210 nmi rectangle• Weather Severity Index (WSI)

– percentage of space covered with obstacles

• Weather organizations– Popcorn Convection (PC)

• scattered obstacles

– Squall Line (SL)• aligned obstacles

June, 2010ICRAT ’10 Budapest, Hungary

Setup

• For WSI = 0,10,…,60– until reaching WSI

• generate random obstacle

• place it randomly in the airspace

• Random velocity

• Squall Line– WSI = 0,5,…,35

June, 2010ICRAT ’10 Budapest, Hungary

100 instances for each WSI

• Static • FreeFlight • Corridors

speed = 420 knots

Compute trajectories

June, 2010ICRAT ’10 Budapest, Hungary

Traffic Complexity

• Average over time and tiles• In a tile, at a time

– # of aircraft– Var(velocites)

June, 2010ICRAT ’10 Budapest, Hungary

Complexity (100 instances / WSI)

June, 2010ICRAT ’10 Budapest, Hungary

Throughput (100 instances / WSI), aircraft / .5 hr

June, 2010ICRAT ’10 Budapest, Hungary

• Airspace capacity estimationFundamental research question: can study either theoretically or empirically

At the root of Traffic Flow Management (TFM):

How do you know that you have a TFM problem, Demand > Airspace Capacity, unless you have a good way of estimating the airspace capacity?

Capacity ≠ function( airspace )

• Different paradigms → different capacity → different complexity

• Operational requirements

– e.g., conforming flows

• Temporal component

– e.g., holding

Help in quantifying tradeoffs

Summary

June, 2010ICRAT ’10 Budapest, Hungary

Future Research

• Sensitivity to complexity parameters• Route Planning in Terminal or Transition Airspace

– Trees (e.g., STARS)• static

• “free”?

• flexible

• Further Dimensions– Multiple Altitudes, Directions of Flows– 4D Space-Time Constraints (flow and weather constraints)– Different route types

• Real Weather

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

June, 2010ICRAT ’10 Budapest, Hungary

top related