industrial application of microalgae in the circular ... · industrial application of microalgae in...

Post on 30-Apr-2020

17 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Industrial application of microalgae in the circular bioeconomyDorinde Kleinegris

[Applied Biotechnology / Microalgae]

Why microalgae?

• High areal productivity

• CO2 mitigation

• No arable land

• Low water use

• Seawater and wastewater

• Can use residual streams for nutrients

• High diversity, many products

[Applied Biotechnology / Microalgae]

CO2

Nutrients (N, P)

+ O2

There is a large gap

[Applied Biotechnology / Microalgae]

CommoditiesMicroalgae

Commercial production: challenges

[Applied Biotechnology / Microalgae]

Product costs

Scale

Production chain analysis

Market development

Biomass Production costs: Model

Netherlands

Saudi Arabia

Canary Islands

Turkish Riviera

South Spain

Curacao

Culture temperature

Daily Dilution

Mixing day/night)

Operation days per year

...

Light Intensity

Electricity costs

Taxes

Labor€ / Kg biomass

CAPEX & OPEX

NER

Sensitivity Analysis

Areas to focus

Output

Location

Cultivation

System

Empirical data

Specific

parameters

Input

Product costs - biomass production

[Applied Biotechnology / Microalgae]

Projections 100ha

Cost breakdown: cultivation costs

[Applied Biotechnology / Microalgae]

Sensitivity analysis

[Applied Biotechnology / Microalgae]

Biomass composition: benchmark on Nannochloropsis

N-replete N-limited

Lipids 20% 50%

SF

A*

MU

FA

*

PU

FA

*

SF

A*

MU

FA

*

PU

FA

*

Glyco-, Phospho-lipids 12% 35% 30% 35%

10% 45% 40% 15%

Triacylglycerides 2% 37.5%

Waxes 3% 1.25% Sterols 3% 1.25%

Proteins 50% 30% Water soluble 20% 12%

Non-water soluble 30% 18%

Carbohydrates 20% 15%

Monosaccharides 5% 3% Polysaccharides 15% 12%

Pigments 3% 1%

Ashes 7% 4%

Microalgae

Lipids

Proteins

WaxesSterols

CosmeticHealth care

Biopolymer

Surfactants

Biolubricant

Paint, Coating

TAGGlyco-lipids

Phospho-lipids

Soluble proteins

Un-solubleproteins

Pharma

Bulk chemicals

Food additives

Food/Feed

BiodieselBiokeroseneBioethanolBiobutanolBiomethane

Carbohydrates

Mono- Oligo-saccharides

StarchCellulose

Mark

et d

em

an

d

Sellin

gp

rice

Ash/minerals

PigmentsChlorophyllCarotenoidPhycobilins

Microalgal biorefinery

Microalgal biorefinerydesign and techno-economical analysis

Biomassproductivity

Biomass composition

Utilities cost

(energy, labour)

Mass andenergy balances

CAPEX

OPEX

Microalgal biomass

Disrupted Biomass

Hexane

Isopropanol

Polar lipids

TAG

Pigments

Waxes

50 C

1 bar

Hexane

Isopropanol

Water

Water

Ash

non water soluble proteins

proteins

carbohydrates

0.4 bar

I.1) BEADM ILLING

III.1) LIPID EXTRACTORIII.2) DISTILLATION COLUM N

FOR SOLVENT RECOVERYIII.3) DECANTER FOR

WAXES REM OVAL

2 C

III.4b) BLEACHING FOR PIGM ENT REM OVAL

IV.1) DIAFILTRATION FOR

PROTEINS WASHING

IV.2) SPARY DRIER

FOR PROTEINS/CARBOHYDRATES

Waxes

Steam

Pigment

Polar lipids

TAG

III.0) SPRAY DRIER

Proteins

Carbohydrates

Ash

Microalgal biorefinerydesign and techno-economical analysis

Food/feed

Microalgal biorefinerydesign and techno-economical analysis

Biofuel

P-14 / R-101

Stoich. Reaction

Microalgal biomass

Disrupted Biomass

Hexane

Isopropanol

Polar lipids

TAG

Pigments

Waxes

50 C

1 bar

Hexane

Isopropanol

FAME

Glycerol

Pigments

Sterols

NaOH

Methanol

Methanol

NaOH

Water

Water

Ash

non water soluble proteins

Proteins

Carbohydrates

Ash

2 bar

60 C

30 min

0.4 bar0.4 bar

WaterFAME

Sterols

Pigments

Glycerol

H3PO4 Na3PO4

I.1) BEADM ILLING

III.1) LIPID EXTRACTORIII.2) DISTILLATION COLUM N

FOR SOLVENT RECOVERYIII.3) DECANTER FOR

WAXES REM OVAL

2 C

III.4) BATCH REACTOR

FOR TRANSESTERIFICATION

III.5) EVAPORATION/CONDENSATION

FOR M ETHANOL RECOVERY

III.6) EXTRACTOR FOR

GLYCEROL WASHING

IV.1) DIAFILTRATION FOR

PROTEINS WASHING

IV.2) SPRAY DRIER

FOR PROTEINS/CARBOHYDRATES

Waxes

III.0) SPRAY DRIER

Proteins

Carbohydrates

Microalgal biorefinerydesign and techno-economical analysis

P-14 / R-101

Stoich. Reaction

Microalgal biomass

Disrupted Biomass

PEG

PEG

water soluble Proteins

Polysaccharides

Monosaccharides

Phosphate

PEG

Hexane

Isopropanol

Polar lipids

TAG

Pigments

Waxes

50 C

1 bar

Hexane

Isopropanol

FAME

Glycerol

Pigments

Sterols

NaOH

Methanol

Methanol

NaOH

Water

Water

Ash

non water soluble proteins

non water soluble proteins

non water soluble proteins

Ash

2 bar

60 C

30 min

0.4 bar

0.4 bar

water soluble Proteins

Polysaccharides

Monosaccharides

Phosphate

PBS buffer

Monosaccharides

water soluble Proteins

WaterFAME

Sterols

Pigments

Glycerol

H3PO4 Na3PO4

1 kDa

Phosphate

II.1) DIRECT PROTEIN

EXTRACTOR

I.1) BEADM ILLING

II.2) BACKWARD PROTEIN

EXTRACTOR II.7) DIAFILTRATION UNIT FOR

PROTEINS/POLYSACCHARIDES

FRACTIONATIONII.3) ULTRAFILTRATION UNIT FOR

PROTEIN/POLYSACCHARIDES

CONCENTRATION

II.9) SPRAY DRIER FOR POLYSACCHARIDES

Polysaccharides

II.4) ULTRAFILTRATION UNIT

FOR PHOSPHATE RECOVERY

II.6) SPRAY DRIER

FOR PHOSPHATE CONCENTRATION

III.1) LIPID EXTRACTORIII.2) DISTILLATION COLUM N

FOR SOLVENT RECOVERYIII.3) DECANTER FOR

WAXES REM OVAL

2 C

III.4) BATCH REACTOR

FOR TRANSESTERIFICATION

III.5) EVAPORATION/CONDENSATION

FOR M ETHANOL RECOVERY

III.6) EXTRACTOR FOR

GLYCEROL WASHING

IV.1) DIAFILTRATION FOR

PROTEINS WASHING

IV.2) SPRAY DRIER

FOR PROTEINS

1 kDa300 kDa

Waxes

10 kDa

Water

II.10) SPRAY DRIER FOR WATER SOLUBLE PROTEIN

II.8) DIAFILTRATION UNIT FOR

PROTEINS/M ONOSACCHARIDES

FRACTIONATION

Complete biorefinery

Biorefinery costs

Cost breakdown

Biorefinery costs

Market value of biomass

Market value of biomass

€ 3.4

+

€ 0.9

€ 4.3

€ 3.4

+

€ 1.1

€ 5.5

€ 3.4

+

€ 0.9

€ 4.3

€ 3.4

+

€ 2.9

€6.3

€ 3.4

+

€ 2.9

€ 6.3

€ 3.4

+

€ 3.0

€ 6.4

Cultivation costs

South of Spain

Biorefinery costs

Total costs

Market value of biomass

€ 3.4

+

€ 0.9

€ 4.3

€ 0.5

+

€ 1.1

€ 1.6

€ 0.5

+

€ 0.9

€ 1.4

€ 3.4

+

€ 2.9

€6.3

€ 3.4

+

€ 2.9

€ 6.3

€ 3.4

+

€ 3.0

€ 6.4

Cultivation costs

South of Spain

Biorefinery costs

Total costs

Scale - Salmon as example

• Objective: replace 10% of fish meal with algae

• There is a proof of concept

1.26 milliontonnes of

Atlantic salmon

1.6 million tonnes of feed

0.16 million tonnes of

algae

Without algae With algae

Scale - Salmon as example• Objective: replace 10% of fish meal with algae

• Productivity: 14-28 (57*) ton ha-1 y-1

• solar conditions Norway / greenhouse + illum.

• 150-300 days cultivation per year

• Hectare needed: 5621-11915 ha

59-119 km2

• Current scale worldwide: ~40.000 ha

1.26 million

tonnes 1.6 million

tonnes

0.16 million

tonnes

Land - County - Area [km2]

Norway - only land 307 860

Østfold 4 181

Akershus 4 918

Oslo 454

Hedmark 27 398

Oppland 25 192

Buskerud 14 911

Vestfold 2 225

Telemark 15 296

Aust-Agder 9 158

Vest-Agder 7 277

Rogaland 9 376

Hordaland 15 438

Sogn og Fjordane 18 623

Møre og Romsdal 15 101

Sør-Trøndelag 18 839

Nord-Trøndelag 22 415

Nordland 38 482

Troms 25 863

Finnmark 48 631

Bergen 446

Sotra 179

Algae – Needed for feed 59-119

[Applied Biotechnology / Microalgae]

Main inputs in the process

• 1.8 tons of CO2 is needed

• 0.09 ton N

• 0.01 ton P

• micronutrients

To produce 1 ton of algal biomass:

CO2

Nutrients

(nitrogen, phosphor)

H2O

Scale - Salmon as example

• Objective: replace 10% of fish meal with algae

• Nutrients needed:

• 293 400 tons CO2

• 14 670 ton N

• 1 630 ton P

• TCM captures 100 000 ton CO2 per year

• Yara produces in Norway alone 2,7 million ton NPK yearly

BUT

• There are other sources as well....

1.26 million

tonnes 1.6 million

tonnes

0.16 million

tonnes

CO2

Fish manure

Insects

Insectmanure

MunicipalityBiodegradable

Waste

CO2

Fish manureInsect manureMunicipality Biodegradable Waste

First experiments

We need:

• More robust strains

• a.o. higher productivity, temperature range

• Smart production chain

• Integration with waste streams

• Market development products

[Applied Biotechnology / Microalgae]

Product costs

Scale

Production chain analysis

Market development

Conclusions

• Microalgae can be used for food/feed/chemicals

and fuels as a by-product

• Decrease of costs and increase of scale

necessary

• E.g.: grow on various residual streams

They form a perfect link between the bioeconomy

and the circular economy

[Applied Biotechnology / Microalgae]

Tusen takk!

Spørsmål?

[Applied Biotechnology / Microalgae]

top related