inference based on robust estimatorsmatias/ulb-1.pdf · ubc - university of british columbia where...

Post on 25-Aug-2020

12 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Inference based on robust estimators

Matias Salibian-Barrera 1

Department of Statistics – University of British Columbia

ECARES - Dec 2007

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 1 / 190

UBC - University of British Columbia

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 2 / 190

UBC - University of British Columbia

Where we are

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 3 / 190

UBC - University of British Columbia

Who we are

I 43000 students – 7700 graduate students

I Department of Statistics

I 15 faculty members – joint appointments with CS, Hospitals, ResearchInstitutes. . .

I Research: Spatial S, Bayesian S, Bioinformatics, Biostatistics, FunctionalData Analysis, Missing and Longitudinal data, Non-normal Multivariate,MCMC, Robustness

I http://www.stat.ubc.ca

I We are friendly! (come visit!)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 5 / 190

Model

X1, . . . , Xn ∼ F ∈ Hε

Hε ={

F : F (x) = (1− ε) Fθ(x) + εH(x) , H arbitrary}

Parameter of interest: θ ∈ Rp (or a subset of it)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 6 / 190

Example

θ = (µ, σ) ∈ R× R+

F(µ,σ)(x) = Φ((x − µ)/σ) ∼ N(µ, σ2)

F(µ,σ)(x) = F(0,1)((x − µ)/σ) , F(0,1) fixed

Model: X = µ + σ W , where W ∼ F = (1− ε)F(0,1) + εH

Parameter of interest: µ ∈ R;

Nuisance parameter: σ > 0.

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 7 / 190

Location-scale

Xi ∼ F0((x − µ)/σ) F0 a fixed dist’n

MLE

(µ, σ) = arg maxµ,σ

n∑i=1

log(f0((Xi − µ)/σ))

Score equations

n∑i=1

g0((Xi − µ)/σ) = 0 , g0(t) = f ′0(t)/f0(t)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 8 / 190

Examples

F0(x) = Φ(x) ∼ N (0, 1)

g0(t) = −t ⇒ µ =n∑

i=1

Xi/n

f0(x) = exp (−|x |) /2

log(f0(x)) = −|x | − log(2) ⇒ µ = arg minµ

n∑i=1

|Xi − µ|

⇒ µ = median (X1, . . . , Xn) = mn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 9 / 190

MLE most efficient at the modelHow much do you trust the model?

I var(Xn) = σ2/nI var(mn) ≈ 1/

`n 4 f (µ)2´

F If data are normal:var(Xn)/var(mn) ≈ 2/π ≈ 0.64

F If data are double exponential:

var(Xn)/var(mn) ≈ 2

F If data are F (x) = 0.85 Φ(x) + 0.15Φ(x/3):

var(Xn)/var(mn) ≈ 1.13

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 10 / 190

F (x) = 0.85 Φ(x) + 0.15Φ(x/3)

Den

sity

Tukey (1960): If ε > 0.10 ⇒ var(Xn) > var(mn).Efficiency over a range of plausible distributionsRobustness measures: influence function, maximum bias, breakdownpoint.

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 11 / 190

M-estimators – Huber (1964)

MLE

(µ, σ) = arg minµ,σ

n∑i=1

− log(f0((Xi − µ)/σ))

n∑i=1

g0((Xi − µ)/σ) = 0 , g0(t) = f ′0(t)/f0(t)

M-estimators

µ = arg minµ

n∑i=1

ρ((Xi − µ)/σ)

n∑i=1

Ψ((Xi − µ)/σ) = 0

Model ⇐⇒| Estimator

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 12 / 190

M-estimators

Simultaneous scale estimation (Huber’s Proposal II)

n∑i=1

Ψ((Xi − µ)/σ) = 0

n∑i=1

χ((Xi − µ)/σ) = b

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 13 / 190

ρρ((x)) ΨΨ((x))

Mean – Median – Huber-type M-estimator

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 14 / 190

(Adaptive) weigthed mean

ΨΨ((x))

Ψc(x) =

x if |x | ≤ c ,

c sign(x) if|x | > c .

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 15 / 190

n∑i=1

Ψ((Xi − µ)/σ) = 0

n∑i=1

[Ψ((Xi − µ)/σ)/((Xi − µ)/σ)] ((Xi − µ)/σ) = 0

n∑i=1

wi (Xi − µ) = 0

wi = wi (µ, σ) = Ψ(ri)/ri =

1 if (Xi − µ) /σ ≤ c ,

c/|Xi − µ| if (Xi − µ) /σ > c .

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 16 / 190

µ =n∑

i=1

wi (µ, σ) Xi

/n∑

j=1

wj (µ, σ)

An iterative algorithm

I µ(0) = median(X1, . . . Xn), σ = MAD(X1, . . . , Xn);

I µ(j+1) =Pn

i=1wi(µ(j), σ) Xi

. Pnj=1wj(µ

(j), σ), j = 0, 1, . . . ,

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 18 / 190

Implementation:

> library(robustbase)> set.seed(31)> x <- c(rnorm(24), rnorm(6, mean=10, sd=.2))> mean(x)[1] 1.949270> median(x)[1] 0.1134845> huberM(x, k=1.345)$mu[1] 0.3952441

$s[1] 1.395404

$it[1] 10> huberM(x, k=0.01)$mu[1] 0.1134845> huberM(x, k=100)$mu[1] 1.949270

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 20 / 190

Intuitively, median is less affected by outliers than mean

Breakdown point – formal measure of resistance to outliers Hampel (1968, 1971);

Donoho and Huber (1983)

“Smallest amount of outliers that are sufficient to make the estimatorunbounded”

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 21 / 190

Finite sample Breakdown Point Donoho & Huber (1983)

µn = µ(X1, . . . , Xn)

ε∗(X1, . . . , Xn) = inf

{m

n + m: sup

V1,...,Vm

|µ(X1, . . . , Xn, V1, . . . , Vm)| = +∞

}

µn = Xn ⇒ ε∗(X1, . . . , Xn) = 1/(n + 1) → 0

µn = mn ⇒ ε∗(X1, . . . , Xn) = n/(n + n) = 1/2

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 22 / 190

Asymptotic Breakdown Point

µ(X1, . . . , Xn) = µ(Fn) Fn(x) =n∑

i=1

I(Xi ≤ x)/n

µ : D −→ R

µ(Fn) −−−→n→∞

µ(F )

ε∗(F ) = inf{

ε : 0 ≤ ε ≤ 1, supG|µ(Fε)− µ(F )| = ∞

}

Fε = (1− ε) F + ε G

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 23 / 190

Breakdown point of M-estimators

see Maronna, Martin and Yohai (2006)

If σ remains bounded (and away from zero) and µn is given by

n∑i=1

Ψ((Xi − µn)/σ) = 0

hasε∗(X1, . . . , Xn) = min(k1, k2)/(k1 + k2)

wherek1 = − lim

x→−∞Ψ(x) k2 = lim

x→+∞Ψ(x)

and k1 < +∞, k2 < +∞

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 24 / 190

Breakdown point of M-estimators

Consider Fε ∈ Hε

Fε = (1− ε)F0 + εG

and let µ(Fε) the solution to

EFε[Ψ (X − µ(Fε))] = 0

(1− ε)EF0 [Ψ (X − µ(Fε))] + ε EG [Ψ (X − µ(Fε))] = 0

Take 0 ≤ ε < ε∗. Then |µ(Fε)| < A for some A < +∞. Take G = δx0

(1− ε)EF0 [Ψ (X − µ(Fε))] + ε Ψ(x0 − µ(Fε)) = 0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 25 / 190

Letting x0 →∞, we have

Ψ(x0 − µ(Fε)) → k2

Also −k1 ≤ Ψ(u), thus

0 = (1− ε)EF0 [Ψ (X − µ(Fε))] + ε Ψ(x0 − µ(Fε))

≥ −k1 (1− ε) + εΨ(x0 − µ(Fε))

→ −k1 (1− ε) + ε k2

k1 (1− ε) ≥ ε k2

ε ≤ k1/ (k1 + k2)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 26 / 190

Letting x0 → −∞, we have

ε ≤ k2/ (k1 + k2)

Thusε ≤ min(k1, k2)/ (k1 + k2) ∀ ε < ε∗

⇒ ε∗ ≤ min(k1, k2)/ (k1 + k2)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 27 / 190

Let ε ≥ ε∗ and let Gn

µn = µ((1− ε)F0 + εGn) → +∞

0 = (1− ε)EF0 [Ψ (X − µn)] + ε EG [Ψ (X − µn)]

≤ (1− ε)EF0 [Ψ (X − µn)] + ε k2

⇒ 0 ≤ limn

(1− ε)EF0 [Ψ (X − µn)] + ε k2

Dominated Convergence Theorem

0 ≤ (1− ε) limn

EF0 [Ψ (X − µn)] + ε k2

≤ −(1− ε) k1 + ε k2

(1− ε) k1 ≤ ε k2

k1/(k1 + k2) ≤ ε ∀ε > ε∗

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 28 / 190

If µn → −∞ we getk2/(k1 + k2) ≤ ε ∀ε > ε∗

Hence, putting all together, we obtain

ε∗ = min(k1, k2)/ (k1 + k2)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 29 / 190

Huber proposed a family of score functions Ψc

Ψc(x) =

x if |x | ≤ c ,

c sign(x) if |x | > c .

Thus, we have k1 = k2 = c and ε∗ = 1/2 (for any c ∈ R)

The median is associated with the function

Ψ(x) = sign(x)

so that k1 = k2 = 1 and ε∗ = 1/2

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 30 / 190

µ = arg minµ

n∑i=1

ρ((Xi − µ)/σ)

n∑i=1

Ψ((Xi − µ)/σ) = 0

⇒ Need a (robust) scale estimator σ

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 31 / 190

Robust scale estimator

Consider r = (r1, . . . , rn)

σ : Rn → R+ such that

I σ(r) ≥ 0;

I σ(b r) = |b| σ(r) for all b ∈ R;

I σ(|r1|, . . . , |rn|) = σ(r); and

I σ is invariant under permutations.

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 32 / 190

Scale estimatorsDifferent scales:

σ(r)2 =n∑

i=1

r2i

/n

σ(r) = median(|r1|, . . . , |rn|)

M-scale (implicitly defined):

1n

n∑i=1

ρ (ri/σ) = b

ρ : R → R+, non-decreasing on [0,+∞);ρ(−r) = ρ(r);ρ(0) = 0; andb = EF0ρ(u) (consistency)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 33 / 190

Scale estimatorsDifferent scales:

σ(r)2 =n∑

i=1

r2i

/n

σ(r) = median(|r1|, . . . , |rn|)

M-scale (implicitly defined):

1n

n∑i=1

ρ (ri/σ) = b

ρ : R → R+, non-decreasing on [0,+∞);ρ(−r) = ρ(r);ρ(0) = 0; andb = EF0ρ(u) (consistency)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 33 / 190

Scale estimatorsDifferent scales:

σ(r)2 =n∑

i=1

r2i

/n

σ(r) = median(|r1|, . . . , |rn|)

M-scale (implicitly defined):

1n

n∑i=1

ρ (ri/σ) = b

ρ : R → R+, non-decreasing on [0,+∞);ρ(−r) = ρ(r);ρ(0) = 0; andb = EF0ρ(u) (consistency)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 33 / 190

ρ(r) =

0 if |r | <= 1

1 if |r | > 1⇒ σ = median (|r1|, . . . , |rn|)

ρ(r) = r2 ⇒ 1n

n∑i=1

ρ (ri/σ) = 1

1n

n∑i=1

r2i /σ2 = 1

1n

n∑i=1

r2i = σ2

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 34 / 190

ρ(r) =

0 if |r | <= 1

1 if |r | > 1⇒ σ = median (|r1|, . . . , |rn|)

ρ(r) = r2 ⇒ 1n

n∑i=1

ρ (ri/σ) = 1

1n

n∑i=1

r2i /σ2 = 1

1n

n∑i=1

r2i = σ2

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 34 / 190

Simultaneous estimation

n∑i=1

Ψ((Xi − µ)/σ) = 0

1n

n∑i=1

ρ ((Xi − µ)/σ) = b

⇒ µ has breakdown point lower than 1/2.

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 35 / 190

Preliminary scale:

σ = median (|X1 −mn|, . . . , |Xn −mn|)

mn = median (X1, . . . , Xn)

n∑i=1

Ψ((Xi − µ)/σ) = 0

⇒ µ has breakdown point 1/2.

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 36 / 190

Asymptotic distribution - heuristic Taylor expansion

Proper derivation - Huber (1967) / He and Shao (1996)

Allows us to compute the efficiency at the central model

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 37 / 190

Asymptotic distribution - heuristic Taylor expansion

Proper derivation - Huber (1967) / He and Shao (1996)

Allows us to compute the efficiency at the central model

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 37 / 190

Asymptotic distribution - heuristic Taylor expansion

Proper derivation - Huber (1967) / He and Shao (1996)

Allows us to compute the efficiency at the central model

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 37 / 190

Asymptotic distribution

µn → µ(F ) and σn → σ(F ) where

EF (Ψ((X − µ(F ))/σ(F ))) = 0

0 =n∑

i=1

Ψ

(Xi − µn

σ

)=

n∑i=1

Ψ

(Xi − µ(F )

σ(F )

)−

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

)1

σ(F )(µn − µ(F ))−

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

) (Xi − µ(F )

σ(F )2

)(σn − σ(F )) + Rn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 38 / 190

Asymptotic distribution

µn → µ(F ) and σn → σ(F ) where

EF (Ψ((X − µ(F ))/σ(F ))) = 0

0 =n∑

i=1

Ψ

(Xi − µn

σ

)=

n∑i=1

Ψ

(Xi − µ(F )

σ(F )

)−

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

)1

σ(F )(µn − µ(F ))−

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

) (Xi − µ(F )

σ(F )2

)(σn − σ(F )) + Rn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 38 / 190

1n

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

)1

σ(F )(µn − µ(F )) =

1n

n∑i=1

Ψ

(Xi − µ(F )

σ(F )

)−

1n

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

) (Xi − µ(F )

σ(F )2

)(σn − σ(F ))− Rn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 39 / 190

a−1n =

1n

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

)> 0

1σ(F )

√n (µn − µ(F )) = a−1

n1√n

n∑i=1

Ψ

(Xi − µ(F )

σ(F )

)+

a−1n√n

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

) (Xi − µ(F )

σ(F )2

)(σn − σ(F ))− a−1

n√

n Rn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 40 / 190

a−1n → a(F )−1 = EF

[Ψ′(

X − µ(F )

σ(F )

)]If F is symmetric then

1n

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

) (Xi − µ(F )

σ(F )2

)→ 0

Ψ(u) odd ⇒ Ψ′(u) even and so Ψ′(u)u is odd

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 41 / 190

If, in addition,√

n (σn − σ(F )) = Op(1), then

an√n

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

) (Xi − µ(F )

σ(F )2

)(σn − σ(F )) =

an

n

n∑i=1

Ψ′(

Xi − µ(F )

σ(F )

) (Xi − µ(F )

σ(F )2

) √n (σn − σ(F )) = op(1)

Finally, we will assume that√

n Rn → 0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 42 / 190

Since

EF

(X − µ(F )

σ(F )

)]= 0

then

1√n

n∑i=1

Ψ

(Xi − µ(F )

σ(F )

)D−−−→

n→∞N (0, Q(F )2)

Q(F )2 = EF

[Ψ2(

Xi − µ(F )

σ(F )

)]

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 43 / 190

1σ(F )

√n (µn − µ(F )) = an

1√n

n∑i=1

Ψ

(Xi − µ(F )

σ(F )

)+ op(1)

√n (µn − µ(F )) = σ(F ) an

1√n

n∑i=1

Ψ

(Xi − µ(F )

σ(F )

)+ op(1)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 44 / 190

√n (µn − µ(F ))

D−−−→n→∞

N (0, V (F ))

where

V (F ) = σ(F )2EF

[Ψ2(

X−µ(F )σ(F )

)]{

EF

[Ψ′(

X−µ(F )σ(F )

)]}2

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 45 / 190

Simple CI for µ

µn ± 1.96√

V (Fn)/n

V (Fn) = σ2

∑ni=1Ψ

2(

Xi−µσ

)/n{∑n

i=1Ψ′(

Xi−µσ

)/n}2

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 46 / 190

Empirical coverage of 95% CI for µ0

Based on a 95%-efficient M-estimator

ε n20 100 200 500

0.00 0.92 (0.86) 0.95 (0.40) 0.93 (0.28) 0.94 (0.18)

0.10 0.91 (1.05) 0.69 (0.49) 0.40 (0.35) 0.05 (0.22)

0.20 0.80 (1.44) 0.08 (0.67) 0.00 (0.47) 0.00 (0.30)

1000 random samples

outliers follow a N (10, 0.22) distribution

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 47 / 190

−1.0 −0.5 0.0 0.5 1.0

CI

n

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[]

n = 50, 100, 500, 1000, 5000, 10000, 100000

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 48 / 190

Bootstrap

Efron (1979)

Brief description (more / better comes later)

To approximate the sampling distribution of T (X1, . . . , Xn)

I For j = 1 in 1:B

I Take a random sample from X1, . . . , Xn with replacement X∗1 , . . . , X∗

n

I Compute T ∗j (X∗

1 , . . . , X∗n )

Use the “sample” T ∗1 , . . . , T ∗B to approximate the sampling distribution ofT (X1, . . . , Xn)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 50 / 190

Bootstrap

Efron (1979)

Brief description (more / better comes later)

To approximate the sampling distribution of T (X1, . . . , Xn)

I For j = 1 in 1:B

I Take a random sample from X1, . . . , Xn with replacement X∗1 , . . . , X∗

n

I Compute T ∗j (X∗

1 , . . . , X∗n )

Use the “sample” T ∗1 , . . . , T ∗B to approximate the sampling distribution ofT (X1, . . . , Xn)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 50 / 190

Bootstrap

Efron (1979)

Brief description (more / better comes later)

To approximate the sampling distribution of T (X1, . . . , Xn)

I For j = 1 in 1:B

I Take a random sample from X1, . . . , Xn with replacement X∗1 , . . . , X∗

n

I Compute T ∗j (X∗

1 , . . . , X∗n )

Use the “sample” T ∗1 , . . . , T ∗B to approximate the sampling distribution ofT (X1, . . . , Xn)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 50 / 190

Bootstrap

Efron (1979)

Brief description (more / better comes later)

To approximate the sampling distribution of T (X1, . . . , Xn)

I For j = 1 in 1:B

I Take a random sample from X1, . . . , Xn with replacement X∗1 , . . . , X∗

n

I Compute T ∗j (X∗

1 , . . . , X∗n )

Use the “sample” T ∗1 , . . . , T ∗B to approximate the sampling distribution ofT (X1, . . . , Xn)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 50 / 190

d(F ∗T ,n, FT ,n

)→ 0

In particular, (depending on d) V (T ) could be approximated by

V ∗(T ) =1B

B∑j=1

(T ∗j − T ∗j

)2

where

T ∗j =1b

B∑j=1

T ∗j

A 95% confidence interval can be constructed as follows

µn ± 1.96√

V ∗(T )

or using estimated quantiles

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 51 / 190

d(F ∗T ,n, FT ,n

)→ 0

In particular, (depending on d) V (T ) could be approximated by

V ∗(T ) =1B

B∑j=1

(T ∗j − T ∗j

)2

where

T ∗j =1b

B∑j=1

T ∗j

A 95% confidence interval can be constructed as follows

µn ± 1.96√

V ∗(T )

or using estimated quantiles

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 51 / 190

d(F ∗T ,n, FT ,n

)→ 0

In particular, (depending on d) V (T ) could be approximated by

V ∗(T ) =1B

B∑j=1

(T ∗j − T ∗j

)2

where

T ∗j =1b

B∑j=1

T ∗j

A 95% confidence interval can be constructed as follows

µn ± 1.96√

V ∗(T )

or using estimated quantiles

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 51 / 190

Empirical coverage of 95% bootstrap CI for µ0

Based on a 95%-efficient M-estimator

ε n20 100 200 500

0.00 0.92 (0.88) 0.93 (0.37) 0.95 (0.28) 0.94 (0.18)

0.10 0.95 (1.24) 0.63 (0.51) 0.45 (0.36) 0.05 (0.23)

0.20 0.99 (2.71) 0.27 (0.84) 0.00 (0.57) 0.00 (0.36)

100 random samples

outliers follow a N (10, 0.22) distribution

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 52 / 190

−1.0 −0.5 0.0 0.5 1.0

CI

n

[ ]

[ ]

[ ]

[ ]

n = 20, 100, 200, 500

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 53 / 190

µn ± 1.96√

V (Fn)/n

We need to study both bias and variance

For large samples, bias becomes more important

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 54 / 190

µn ± 1.96√

V (Fn)/n

We need to study both bias and variance

For large samples, bias becomes more important

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 54 / 190

Maximum Asymptotic Bias

X = µ0 + ε

ε ∼ F ∈ Hε(F0)

Hε(F0) ={

F : (1− ε) F0 + ε H}

µn = µ(Fn) → µ(F ) 6= µ(F0) = µ0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 55 / 190

Maximum asymptotic biases

BF0(ε) = supF∈Hε(F0)

|µ(F )− µ(F0)| /σ0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 56 / 190

We can assume (wlog) that µ(F0) = 0

Let Ψ(u) be non-decreasing

supu

Ψ(u) = k < +∞

g(b) = EF0 (Ψ(X + b))

g(b) is increasing (if either Ψ is, or F ′0(u) = f0(u) > 0 for all u ∈ R

Let 0 ≤ ε < 1/2 and F (x) = (1− ε)F0(x) + εH(x)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 57 / 190

Then µ(F ) solves

EF Ψ(X − µ(F )) = 0 = (1− ε)g(−µ(F )) + εEHΨ(X − µ(F ))

Since −k ≤ Ψ(u) ≤ k we have

(1− ε)g(−µ(F ))− εk ≤ 0 ≤ (1− ε)g(−µ(F )) + εk

−kε/(1− ε) ≤ g(−µ(F )) ≤ kε/(1− ε)

|µ(F )| ≤ g−1(kε/(1− ε))

Taking H = δx0 with x0 →∞ shows that in that case

|µ(F )| = g−1(kε/(1− ε))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 58 / 190

For the median, when F0 = N (0, 1)

Ψ(u) = sign(u) ⇒ k = 1

g(b) = EΦsign(u + b) = PΦ (Z > −b)− PΦ (Z < −b) =

1− 2 Φ(−b) = 2Φ(b)− 1

g(b) = kε/(1− ε) = ε/(1− ε)

2 Φ(b)− 1 = ε/(1− ε) ⇒ Φ(b) = 1/ [2 (1− ε)]

b = Φ−1 (1/ [2 (1− ε)])

Same calculation for any symmetric F0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 59 / 190

ε Median Ψ1.345

0.00 0.00 0.00

0.05 0.07 0.09

0.10 0.14 0.18

0.20 0.32 0.42

F0 = N (0, 1)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 60 / 190

Median minimizes the maximum bias (Huber, 1981), but

√n (mn − µ(F0))

D−−−→n→∞

N(

0,1

4 f (µ(F0))2

)

µ(F0) = F−10 (1/2)

When F0 = Φ

efficiency of the Median: 2/π ≈ 0.64

efficiency of the M estimator with Ψ1.345: 0.95

difficulty of estimating f (µ(F0)) for inference

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 61 / 190

Linear regression

Y = X′β0 + ε

errors are independent from the covariates

βn = arg minβ∈Rp

n∑i=1

(Yi − X′i β)2

n∑i=1

(Yi − X′i β) Xi = 0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 62 / 190

Huber (1973)

βn = arg minβ∈RP

n∑i=1

ρc

(Yi − X′i β

σ

)

n∑i=1

Ψc

(Yi − X′i βn

σ

)Xi = 0

n∑i=1

χ

(Yi − X′i βn

σ

)= b

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 63 / 190

Least squares

●●

●●

●●

0 5 10 15

24

68

1012

14

# of Shocks

Mea

n tim

e

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 64 / 190

Least squares + Huber

●●

●●

●●

0 5 10 15

24

68

1012

14

# of Shocks

Mea

n tim

eLSLS minus outliersHuber

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 65 / 190

If Ψ is monotone and Yi is a large outlier with high leverage (‖Xi‖ large) then∥∥∥∥Ψ(Yi − X′iβσ

)Xi

∥∥∥∥ ≈ Ψ(+∞) ‖Xi‖

which can then dominate the equation

n∑i=1

Ψc

(Yi − X′i β

σ

)Xi = 0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 66 / 190

Breakdown of a monotone-Ψ M-estimator with high-leverage outliers

Let (Y1, X1) be such that Y1/‖X1‖ → ∞, while βn remains bounded

Y1 − X′1βn ≥ Y1 − ‖X1‖ ‖βn‖ = ‖X1‖(

Y1/‖X1‖ − ‖βn‖)→∞

thus

0 = Ψc

(Y1 − X′1 βn

σ

)X1 +

∑Ψc

(Yi − X′i βn

σ

)Xi

cannot hold (first term diverging while the second term remains bounded)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 67 / 190

We need a redescending function Ψ (bounded loss function ρ)

(Or we could downweight high-leverage points)

Then loss and score equations are not equivalent

Multiple solutions to the score equations

Need criterium to select a robust solution

Global minimum of loss function

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 68 / 190

We need a redescending function Ψ (bounded loss function ρ)

(Or we could downweight high-leverage points)

Then loss and score equations are not equivalent

Multiple solutions to the score equations

Need criterium to select a robust solution

Global minimum of loss function

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 68 / 190

We need a redescending function Ψ (bounded loss function ρ)

(Or we could downweight high-leverage points)

Then loss and score equations are not equivalent

Multiple solutions to the score equations

Need criterium to select a robust solution

Global minimum of loss function

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 68 / 190

We need a redescending function Ψ (bounded loss function ρ)

(Or we could downweight high-leverage points)

Then loss and score equations are not equivalent

Multiple solutions to the score equations

Need criterium to select a robust solution

Global minimum of loss function

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 68 / 190

We need a redescending function Ψ (bounded loss function ρ)

(Or we could downweight high-leverage points)

Then loss and score equations are not equivalent

Multiple solutions to the score equations

Need criterium to select a robust solution

Global minimum of loss function

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 68 / 190

We need a redescending function Ψ (bounded loss function ρ)

(Or we could downweight high-leverage points)

Then loss and score equations are not equivalent

Multiple solutions to the score equations

Need criterium to select a robust solution

Global minimum of loss function

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 68 / 190

Bi-square loss (Beaton and Tukey, 1974)

ρd (r) =

1−

[1− (r/d)2

]3if |r | ≤ d

1 if |r | > d

Ψd (r) =

6 r[1− (r/d)2

]2/d2 if |r | ≤ d

0 if |r | > d

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 69 / 190

−4 −2 0 2 4

0.0

0.5

1.0

1.5

r

ρρ d((r))

−4 −2 0 2 4

−0.

50.

00.

5

rΨΨ

d((r))

ρ3(r) Ψ3(r)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 70 / 190

βn = arg minβ

n∑i=1

ρd

(Yi − X′iβ

σ

)⇐/ ⇒

n∑i=1

Ψd

(Yi − X′i βn

σ

)Xi = 0

Non-convex problem – existence of a unique global minimumNeed a good initial point

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 71 / 190

●●

●●

●●

●●

●●

●●

● ●

● ●●

●●

●●

●●

●●●

●●

●●●

−2 0 2 4

−6

−4

−2

02

4

x

y

f (β) =∑

i ρd ((Yi − X′iβ) /σ)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 72 / 190

●●

●●

●●

●●

●●

●●

● ●

● ●●

●●

●●

●●

●●●

●●

●●●

−2 0 2 4

−6

−4

−2

02

4

x

y

f (β) = mediani |(Yi − X′iβ)|

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 73 / 190

Algorithms

Data-driven random search (Rousseeuw, 1984; Rupper, 1992)

I Generate random lines using random pairs from the sample

I Find local minima near these random starts βj

I Pick the best

Heuristic – Simulated Annealing - Tabu search

Recent refinements of the random subsampling algorithmI fast-LTS, fast-MCD Rousseeuw and van Driessen, 1999

I fast-S S-B and Yohai, 2006

I fast-tau S-B, Willems, Zamar, 2006 and Zamar, 2006

I no-name-yet Harrington and S-B, 2007

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 74 / 190

The scale estimator σ

I Measures scale of the residuals

I itself needs a regression / location estimator

I A bit of a conundrum (spelling?)...

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 75 / 190

S-estimators

Rousseeuw and Yohai (1984)

Estimators based on minimizing a residual scale

Let σ(r) be a scale estimator, and define

βn = arg minβ

σ(Y1 − X′1β, . . . , Yn − X′nβ)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 76 / 190

σ(r)2 =∑n

i=1r2i /n

I LS

βn = arg minβ

nXi=1

(Yi − X′i β)2

σ(r)2 =∑n

i=1|ri |/n

I L1

βn = arg minβ

nXi=1

|Yi − X′i β|2

σ(r)2 = median(r21 , . . . , r2

n )

I LMS (Hampel Rousseeuw)

βn = arg minβ

median(Yi − X′i β)2

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 77 / 190

σ(r)2 =∑[α n]

i=1 r2(i)

I LTS (Rousseeuw, 1984)

βn = arg minβ

[α n]Xi=1

(Y − X′β)2(i)

σ(r) solves∑n

i=1ρ(ri/σ(r))/n = b

I S-estimators (Rousseeuw and Yohai, 1984)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 78 / 190

LMS are not√

n consistent (Rousseeuw, 1984; Kim and Pollard, 1990)

LTS are less efficient than S-estimators

High-breakdown S-estimators are not very efficient (Hossjer, 1992).

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 79 / 190

S-estimators are M-estimators

βn = arg minβ

σ (β)

1n

n∑i=1

ρ

(Yi − X′iβ

σ(β)

)= b

βn = arg minβ

n∑i=1

ρ

(Yi − X′iβ

σ

)where σ = σ(βn)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 80 / 190

●●

●●

●●

0 5 10 15

24

68

1012

14

# of Shocks

Mea

n tim

eHuberLMSLTSS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 81 / 190

Breakdown point of S-estimators

Tuning of ρ (b) to obtain LMS

Maximum asymptotic bias

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 82 / 190

Breakdown pointβn = arg min

βσ (β)

1n

n∑i=1

ρ

(Yi − X′iβ

σ(β)

)= b

For consistency at the model, we need

b = EF0ρ (r/σ0)

ε∗ = min(

b/ρ (+∞) , 1− b/ρ (+∞))

ρ (+∞) = limr→+∞

ρ (r)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 83 / 190

Consider

ρd (r) =

0 if |r | <= d

1 if |r | > d

Then, for normal errors,

EΦρd (r) = PΦ (|Z | > d) = 2 [1− Φ(d)]

To obtain maximum BP we set

EΦρd (r) = 1/2 ⇒ d = Φ−1 (3/4)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 84 / 190

Consider

ρd (r) =

0 if |r | <= d

1 if |r | > d

Then, for normal errors,

EΦρd (r) = PΦ (|Z | > d) = 2 [1− Φ(d)]

To obtain maximum BP we set

EΦρd (r) = 1/2 ⇒ d = Φ−1 (3/4)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 84 / 190

Thus,

1n

n∑i=1

ρd (ri/σ) = 1/2

# {i : |ri | ≥ d σ} = n/2

# {i : |ri/d | ≥ σ} = n/2

σ = median (|r1|, . . . , |rn|) /Φ−1 (3/4)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 85 / 190

Thus,

1n

n∑i=1

ρd (ri/σ) = 1/2

# {i : |ri | ≥ d σ} = n/2

# {i : |ri/d | ≥ σ} = n/2

σ = median (|r1|, . . . , |rn|) /Φ−1 (3/4)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 85 / 190

Thus,

1n

n∑i=1

ρd (ri/σ) = 1/2

# {i : |ri | ≥ d σ} = n/2

# {i : |ri/d | ≥ σ} = n/2

σ = median (|r1|, . . . , |rn|) /Φ−1 (3/4)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 85 / 190

Thus,

1n

n∑i=1

ρd (ri/σ) = 1/2

# {i : |ri | ≥ d σ} = n/2

# {i : |ri/d | ≥ σ} = n/2

σ = median (|r1|, . . . , |rn|) /Φ−1 (3/4)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 85 / 190

Maximum bias

ε

0.05 0.10 0.15 0.20

LTS 0.63 1.02 1.46 2.02

LMS 0.53 0.83 1.13 1.52

S 0.56 0.88 1.23 1.65

Maximum bias – 50% breakdown point

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 86 / 190

n∑i=1

Ψd

(Yi − X′i βn

σ

)Xi = 0

0 =n∑

i=1

Ψc

(Yi − X′i βn

σ

)Xi =

n∑i=1

Ψc

(Yi − X′iβ0

σ0

)Xi+

n∑i=1

Ψ′c

(Yi − X′iβ0

σ0

)Xi X′i/σ0

(βn − β0

)+

n∑i=1

Ψ′c

(Yi − X′iβ0

σ0

) (Yi − X′iβ0

σ20

)(σ − σ0) Xi + Rn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 87 / 190

√n(βn − β0

)D−−−→

n→∞Np (0,Σ)

Σ = σ20

EF0(Ψ2c(r))

(EF0(Ψ′c(r)))2 EG0 (X X′)−1

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 88 / 190

Efficiencies and Maximum bias

ε Eff

0.05 0.10 0.15 0.20

LTS 0.63 1.02 1.46 2.02 0.07

LMS 0.53 0.83 1.13 1.52 0.00

S 0.56 0.88 1.23 1.65 0.29

Maximum bias & Efficiencies – 50% breakdown point

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 89 / 190

Need to find

βn = arg minβ

n∑i=1

ρd

(Yi − X′iβ

σ

)

Or, at least, a robust solution to

n∑i=1

Ψd

(Yi − X′i βn

σ

)Xi = 0

(and need σ)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 90 / 190

Need to find

βn = arg minβ

n∑i=1

ρd

(Yi − X′iβ

σ

)

Or, at least, a robust solution to

n∑i=1

Ψd

(Yi − X′i βn

σ

)Xi = 0

(and need σ)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 90 / 190

Need to find

βn = arg minβ

n∑i=1

ρd

(Yi − X′iβ

σ

)

Or, at least, a robust solution to

n∑i=1

Ψd

(Yi − X′i βn

σ

)Xi = 0

(and need σ)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 90 / 190

MM-estimators

(Yohai, 1987)

Let βn0 be a consistent, high-BP estimator

Let σ be a high-BP M-scale estimator using βn0

1n

n∑i=1

ρ0

(Yi − X′i βn0

σ

)= 1/2

Find a local minimum βn of f (β) =∑n

i=1ρ1

(Yi−X′

i βσ

)such that

f (βn) ≤ f (βn0)

Needρ1(r) ≤ ρ0(r) ∀ r

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 91 / 190

MM-estimators

(Yohai, 1987)

Let βn0 be a consistent, high-BP estimator

Let σ be a high-BP M-scale estimator using βn0

1n

n∑i=1

ρ0

(Yi − X′i βn0

σ

)= 1/2

Find a local minimum βn of f (β) =∑n

i=1ρ1

(Yi−X′

i βσ

)such that

f (βn) ≤ f (βn0)

Needρ1(r) ≤ ρ0(r) ∀ r

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 91 / 190

Retains the BP of βn0

Has efficiency given by

n∑i=1

Ψ1

(Yi − X′i βn

σ

)Xi = 0

whereΨ1(r) = ρ1

′(r)

(efficiency can be set by the choice of ρ1(r))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 92 / 190

√n(βn − β0

)D−−−→

n→∞Np (0,Σ)

Σ = σ20

EF0(Ψ12(r))

(EF0(Ψ1′(r)))2 EG0 [X X′]−1

= σ20

[EH0(Ψ1

′(r)XX′)]−1 [

EH0(Ψ12(r)XX′)

][EH0(Ψ1

′(r)XX′)]−1

whereH0(r , x) = G0(x) F0(r)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 93 / 190

Example with robustbase

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 94 / 190

> library(robustbase)> toxi <- read.table(’toxicity.txt’, header=FALSE)> names(toxi)[1] <- ’y’> dim(toxi)[1] 38 10> a.lm <- lm(y˜., data=toxi)> plot(a.lm)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 96 / 190

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−0.

4−

0.2

0.0

0.2

0.4

0.6

Fitted values

Res

idua

ls

●●

●●

lm(y ~ .)

Residuals vs Fitted

28

34

38

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 97 / 190

●●

●●

−2 −1 0 1 2

−2

−1

01

23

Theoretical Quantiles

Sta

ndar

dize

d re

sidu

als

lm(y ~ .)

Normal Q−Q

28

34 38

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 98 / 190

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.0

0.5

1.0

1.5

Fitted values

Sta

ndar

dize

d re

sidu

als

●●

●●

●●

● ●

lm(y ~ .)

Scale−Location

28

3438

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 99 / 190

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−3

−2

−1

01

23

Leverage

Sta

ndar

dize

d re

sidu

als

●●

●●

●●

lm(y ~ .)

Cook's distance

1

0.5

0.5

1

Residuals vs Leverage

38

28

32

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 100 / 190

Efficiencies for bi-square score functions

Efficiency: 0.80 0.85 0.90 0.95

Tuning constant (d): 3.14 3.44 3.88 4.68

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 101 / 190

> a.lmrob.85 <- lmrob(y˜., data=toxi,+ control=lmrob.control(nResamp=5000, tuning.psi=3.44, compute.rd=TRUE))>> a.lmrob.90 <- lmrob(y˜., data=toxi,+ control=lmrob.control(nResamp=5000, tuning.psi=3.88, compute.rd=TRUE))>> a.lmrob.95 <- lmrob(y˜., data=toxi,+ control=lmrob.control(nResamp=5000, compute.rd=TRUE))>> plot(a.lmrob.85)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 103 / 190

●●●●

●● ●

●●

● ●● ●●●

●●●

●●●

●●

0 10 20 30 40 50

05

1015

2025

Robust Distances

Rob

ust S

tand

ardi

zed

resi

dual

s

Standardized residuals vs. Robust Distances

lmrob(formula = y ~ ., data = toxi, control = lmrob.control(nResample = 5000, tuning.psi = 3.44, compute.rd = TRUE))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 104 / 190

●●

●●

●●●

●●

● ● ●●● ●

●●●

● ●●

●●

−2 −1 0 1 2

0.0

0.5

1.0

1.5

2.0

Theoretical Quantiles

Res

idua

ls

Normal Q−Q vs. Residuals

lmrob(formula = y ~ ., data = toxi, control = lmrob.control(nResample = 5000, tuning.psi = 3.44, compute.rd = TRUE))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 105 / 190

●●

●●

●●

●●

●●

●●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−2.

0−

1.5

−1.

0−

0.5

0.0

0.5

1.0

Fitted Values

Res

pons

e

Response vs. Fitted Values

lmrob(formula = y ~ ., data = toxi, control = lmrob.control(nResample = 5000, tuning.psi = 3.44, compute.rd = TRUE))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 106 / 190

●●

●●

●●●

●●

●●●● ●●

● ●●

●●●

● ●

−2.0 −1.5 −1.0 −0.5 0.0

0.0

0.5

1.0

1.5

2.0

Fitted Values

Res

idua

ls

Residuals vs. Fitted Values

lmrob(formula = y ~ ., data = toxi, control = lmrob.control(nResample = 5000, tuning.psi = 3.44, compute.rd = TRUE))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 107 / 190

> summary(a.lm)Call:lm(formula = y ˜ ., data = toxi)

Residuals:Min 1Q Median 3Q Max

-0.36704 -0.09072 -0.01605 0.05775 0.50947

Coefficients:Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.973446 6.538420 -1.067 0.29529V2 0.317054 0.136360 2.325 0.02754 *V3 0.059883 0.184185 0.325 0.74751V4 -0.201126 0.057242 -3.514 0.00152 **V5 -0.027091 0.173513 -0.156 0.87705V6 0.012661 0.036188 0.350 0.72906V7 -0.014451 0.017489 -0.826 0.41562V8 5.896792 5.156774 1.144 0.26251V9 -0.014075 0.011667 -1.206 0.23777V10 0.008387 0.013845 0.606 0.54957---Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.184 on 28 degrees of freedomMultiple R-Squared: 0.8463, Adjusted R-squared: 0.7969F-statistic: 17.14 on 9 and 28 DF, p-value: 3.520e-09

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 109 / 190

> summary(a.lmrob.85)

Call:lmrob(formula = y ˜ ., data = toxi, control = lmrob.control(nResample = 5000,

tuning.psi = 3.44, compute.rd = TRUE))

Weighted Residuals:Min 1Q Median 3Q Max

-0.13540 -0.01594 0.01612 0.25659 2.33151

Coefficients:Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.763606 5.022955 -0.948 0.35106V2 0.500946 0.032760 15.291 4.03e-15 ***V3 0.140541 0.060796 2.312 0.02837 *V4 0.495203 0.081339 6.088 1.44e-06 ***V5 0.245450 0.195695 1.254 0.22012V6 -0.028718 0.009201 -3.121 0.00415 **V7 -0.027577 0.005072 -5.437 8.41e-06 ***V8 -1.790614 5.920822 -0.302 0.76456V9 0.023948 0.010537 2.273 0.03091 *V10 -0.036026 0.022852 -1.576 0.12615---Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Robust residual standard error: 0.09632Convergence in 22 IRWLS iterations

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 111 / 190

(...)Robustness weights:9 observations c(12,13,23,28,32,34,35,36,37)

are outliers with |weight| < 2.632e-06;one weight is ˜= 1; the remaining 28 ones are summarized asMin. 1st Qu. Median Mean 3rd Qu. Max.

0.01005 0.95930 0.98950 0.93200 0.99550 0.99990Algorithmic parameters:tuning.chi bb tuning.psi refine.tol rel.tol1.5476400 0.5000000 3.4400000 0.0000001 0.0000001nResample max.it groups n.group best.r.s k.fast.s k.max

5000 50 5 400 2 1 200trace.lev compute.rd

0 1seed : int(0)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 113 / 190

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

0 10 20 30 40 50

−2

02

46

8

Robust Distances

Rob

ust S

tand

ardi

zed

resi

dual

s

Standardized residuals vs. Robust Distances

lmrob(formula = y ~ ., data = toxi, control = lmrob.control(nResample = 5000, compute.rd = TRUE))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 114 / 190

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

−2 −1 0 1 2

−0.

20.

00.

20.

40.

60.

8

Theoretical Quantiles

Res

idua

ls

Normal Q−Q vs. Residuals

lmrob(formula = y ~ ., data = toxi, control = lmrob.control(nResample = 5000, compute.rd = TRUE))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 115 / 190

● ●

● ●

●●

●●

●●

−1.0 −0.5 0.0 0.5

−1.

0−

0.5

0.0

0.5

Fitted Values

Res

pons

e

Response vs. Fitted Values

lmrob(formula = y ~ ., data = toxi, control = lmrob.control(nResample = 5000, compute.rd = TRUE))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 116 / 190

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

−0.

20.

00.

20.

40.

60.

8

Fitted Values

Res

idua

ls

Residuals vs. Fitted Values

lmrob(formula = y ~ ., data = toxi, control = lmrob.control(nResample = 5000, compute.rd = TRUE))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 117 / 190

> library(MASS)> a.lms <- lmsreg(y˜., data=toxi)> a.lmsCall:lqs.formula(formula = y ˜ ., data = toxi, method = "lms")

Coefficients:(Intercept) V2 V3 V4 V5 V6

-4.44985 0.50840 0.15560 0.83908 0.41175 -0.02570V7 V8 V9 V10

-0.03311 -5.02900 0.03002 -0.06489

Scale estimates 0.03314 0.02720

> summary(a.lms)Length Class Mode

crit 1 -none- numericsing 1 -none- charactercoefficients 10 -none- numeric[...]xlevels 0 -none- listmodel 10 data.frame list

> plot(a.lms)Error in plot.window(xlim, ylim, log, asp, ...) :

need finite ’xlim’ valuesIn addition: Warning messages:1: no non-missing arguments to min; returning Inf2: no non-missing arguments to max; returning -Inf3: no non-missing arguments to min; returning Inf4: no non-missing arguments to max; returning -Inf

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 119 / 190

MM-regression estimators combine

I high-breakdown point

I√

n consistent and asymptotically normal

I high-efficiency at the central model

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 120 / 190

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●

●●●●●

−2 0 2 4 6

−4

−2

02

46

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 121 / 190

●●

●●

●●

●●

●●

●●●●

●●●●●

●●●●●●●●●●●

−2 0 2 4 6

−4

−2

02

46

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 122 / 190

●●

●●

●●

●●

●●

●●●

●●●●●●●●●

● ●● ●●●●

−2 0 2 4 6

−4

−2

02

46

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 123 / 190

●●

●●

●●

●●

●●

●●●●●●●●● ●

●●●●●●●●●●

−2 0 2 4 6

−4

−2

02

46

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 124 / 190

●●

●●

●●

●●

●●

●●●●●●

●●●●●●●●

●●●●●●

−2 0 2 4 6

−4

−2

02

46

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 125 / 190

●●

●●

●●

●●

●●

● ●●●●●●●●●●●●●●●●● ●●

−2 0 2 4 6

−4

−2

02

46

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 126 / 190

●●

●●

●●

●●

●●

●●

●●●●●●

● ●●●●

●●●●●

−2 0 2 4 6

−4

−2

02

46

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 127 / 190

ε Eff

0.05 0.10 0.15 0.20

LTS 0.63 1.02 1.46 2.02 0.07

LMS 0.53 0.83 1.13 1.52 0.00

S 0.56 0.88 1.23 1.65 0.29

MM 0.78 1.24 1.77 2.42 0.95

MM+S 0.56 0.88 1.23 1.65 0.95

Maximum bias & Efficiencies – 50% breakdown point

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 128 / 190

● ●

●●

●●

●●

●●●

●●

●●

●●●●●●●●● ●●●●●●●●●●●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 129 / 190

● ●

●●

●●

●●

●●●

●●

●●

●●●●

●●●●●●●●●● ●●●●●●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 130 / 190

● ●

●●

●●

●●

●●●

●●

●●

●●

●●●●●● ●●●●●● ●● ●●●●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 131 / 190

● ●

●●

●●

●●

●●●

●●

●●

●●●●●●●●● ●

●●●●●●●●●●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 132 / 190

● ●

●●

●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●

●●●●●●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 133 / 190

● ●

●●

●●

●●

●●●

●●

●●

● ●●●●●●●●●●●●●●●●● ●●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 134 / 190

● ●

●●

●●

●●

●●●

●●

●●

●●

●●●●●

●●● ●●

●●●●●●● ●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 135 / 190

● ●

●●

●●

●●

●●●

●●

●●

●●●●●●●●●●●

●●●●●●●●●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 136 / 190

● ●

●●

●●

●●

●●●

●●

●●

●●●●●●●●●●●

●●●●●●●●●

−2 0 2 4 6

−6

−4

−2

02

4

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 137 / 190

Asymptotics revisited

the problem of the scale outside the model – (Croux, Dhaene, Hoorelbeke, 2003; S-B, 2000)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 138 / 190

0 =n∑

i=1

Ψc

(Yi − X′i βn

σ

)Xi =

n∑i=1

Ψc

(Yi − X′iβ0

σ0

)Xi+

n∑i=1

Ψ′c

(Yi − X′iβ0

σ0

)Xi X′i/σ0

(βn − β0

)+

n∑i=1

Ψ′c

(Yi − X′iβ0

σ0

) (Yi − X′iβ0

σ20

)(σ − σ0) Xi + Rn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 139 / 190

√n(βn − β0

)D−−−→

n→∞Np (0,Σ)

Σ = σ20

EF0(Ψ2c(r))

(EF0(Ψ′c(r)))2 EG0 [X X′]−1

= σ20

[EH0(Ψ

′c(r)XX′)

]−1 [EH0(Ψ

2c(r)XX′)

][EH0(Ψ

′c(r)XX′)

]−1

whereH0(r , x) = G0(x) F0(r)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 140 / 190

√n(βn − β0

)D−−−→

n→∞Np (0,Σ)

Σ = σ2([

EH(Ψ′c(r)XX′)]−1 [

EH(Ψ2c(r)XX′)

][EH(Ψ′c(r)XX′)

]−1−

a EH(ρ(r)Ψc(r)X′)[EH(Ψ′c(r)XX′)

]−1−[

EH(Ψ′c(r)XX′)]−1

EH(ρ(r)Ψc(r)X) a′ + EH(ρ(r)− b)2 a a′)

where

a =[EH(Ψ′c(r)XX′)

]−1EH(Ψ′c(r) r X)

/EH(ρ′(r) r)

andr = (Y − β0)/σ0 r = (Y − β0)/σ0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 141 / 190

Uniform asymptotic results over contamination neighbourhoods

I location (S-B and Zamar, 2004)

I linear regression (first attempt: Omelka and S-B, 2006)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 142 / 190

Under “certain regularity assumptions”

limn→∞

supF∈Hε

supx∈R

∣∣∣PF{√

n(µn − µ(F ))/V (F ) ≤ x}− Φ(x)

∣∣∣ = 0

Assumptions

Stringent conditions for uniform consistency of S-location estimator

I Uniform unique minimum – uniform “minimal” convexity

Extension to linear regression

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 143 / 190

Under “certain regularity assumptions”

limn→∞

supF∈Hε

supx∈R

∣∣∣PF{√

n(µn − µ(F ))/V (F ) ≤ x}− Φ(x)

∣∣∣ = 0

Assumptions

Stringent conditions for uniform consistency of S-location estimator

I Uniform unique minimum – uniform “minimal” convexity

Extension to linear regression

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 143 / 190

Trade-off between BP and the size of Hε where uniform asymptotics hold

BP ε0.50 0.110.45 0.140.40 0.170.35 0.200.30 0.240.25 0.25

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 144 / 190

Back to confidence intervals

βn j ± 1.96√

Σjj

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 145 / 190

Empirical coverage of 95% CI for µ0

Based on a 95%-efficient MM-estimator with 50% BP

ε p1 2 5 10

0.00 0.93 0.95 0.95 0.93

0.10 0.69 0.67 0.69 0.65

0.20 0.04 0.05 0.03 0.04

500 samples of size n = 100 – outliers concentrated at (x , y) = (4, 3)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 146 / 190

●● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ● ●

●●

● ●

−2 −1 0 1 2 3 4 5

−2

−1

01

23

45

x

y

MM – LS

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 147 / 190

Bootstrap

µn = µ(X1, . . . , Xn) Xi ∼ F

Plug-in principle

Fn ≈ F ⇒ L(µn, F ) ≈ L(µn, Fn)

µ∗n = µ(V1, . . . , Vn) Vi ∼ Fn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 148 / 190

µn =n∑

i=1

Xi/n

µ∗n =n∑

i=1

Vi/n Vi ∼ Fn

P(Vi ≤ t) =n∑

i=1

I(Xi ≤ t)/n

P(Vi = t) =

1/n if t = Xj for some j = 1, . . . , n

0 otherwise

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 149 / 190

E(µ∗n) =n∑

i=1

E(Vi)/n =n∑

i=1

Xn/n = Xn

E(V 2i ) =

n∑i=1

X 2i /n

V (µ∗n) = V (Vi)/n

=

(n∑

i=1

X 2i /n − X 2

n

)/n

=

[(n∑

i=1

(Xi − Xn)2

)/n

]/n

= s2/n ≈ V (Xn) = σ2/n

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 150 / 190

Problem:L(µn, Fn)

generally unknownCan be estimated (simulated) by re-computing µn on a large number ofpseudo-random samples from Fn

for(j in 1:B) {

V1, . . . , Vn ∼ Fn

mu[j]=µ(V1, . . . , Vn)

}

V (µ) =var(mu)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 152 / 190

Without outliers X ∼ N (0, 1.52)

n V (µ∗n) V (Fn) MC50 2.45 2.40 2.27100 2.43 2.42 2.48200 2.38 2.38 2.23500 2.37 2.37 2.45

500 samples – 200 bootstrap samples

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 153 / 190

With 10% outliers distributed as X ∼ Φ((x − 5)/0.5)

n V (µ∗n) V (Fn) MC50 4.57 4.56 3.08100 4.73 4.72 3.22200 4.66 4.67 3.17500 4.70 4.69 3.43

500 samples – 200 bootstrap samples

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 154 / 190

With 20% outliers distributed as X ∼ Φ((x − 5)/0.5)

n V (µ∗n) V (Fn) MC50 9.16 9.46 3.17100 9.34 9.42 3.32200 9.22 9.25 3.05500 9.16 9.24 3.56

500 samples – 200 bootstrap samples

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 155 / 190

With 30% outliers distributed as X ∼ Φ((x − 5)/0.5)

n V (µ∗n) V (Fn) MC50 11.6 11.1 2.25100 11.1 10.8 2.25200 10.7 10.6 2.12500 10.5 10.4 2.29

500 samples – 200 bootstrap samples

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 156 / 190

Timing for n = 2000, p = 30

Average computing time: 35 CPU seconds

2000 bootstrap samples: 20 hours

Bootstrap samples can be highly affected by outliers

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 157 / 190

Fast and Robust Bootstrap (S-B and Zamar, 2002)

I Faster than bootstrapping the estimator

I Able to downweight potential outliers in the bootstrap samples

I may come in larger proportions than in the sample

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 158 / 190

Fast and Robust Bootstrap

n∑i=1

ρ′1 (ri/σn) Xi = 0

1n

n∑i=1

ρ0 (ri/σn) = b

ri = Yi − Xi βn ri = Yi − Xi βn

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 159 / 190

βn =

[n∑

i=1

ωi xi x′i

]−1 n∑i=1

ωi xi yi ,

σn =n∑

i=1

vi (yi − β′nxi) .

ωi = ρ′1 ( ri/ σn)/ ri ,

vi =σn

n bρ0 ( ri/ σn)/ ri ,

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 160 / 190

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

r

ωω==

ψψ((r))

r

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 161 / 190

β∗n =

[n∑

i=1

ω∗i x∗i x∗′i

]−1 n∑i=1

ω∗i x∗i y∗i ,

σ∗n =n∑

i=1

v∗i (y∗i − β′nx∗i )

The Robust Bootstrap βR∗n − βn is given by

βR∗n − βn = Kn (β

∗n − βn) + dn (σ∗n − σn) ,

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 162 / 190

Kn = σn

[n∑

i=1

ρ′′1 ( ri/ σn, xi) xi x′i

]−1 n∑i=1

ωi xi x′i ,

dn = a−1n

[n∑

i=1

ρ′′1 ( ri/ σn, xi) xix′i

]−1 n∑i=1

ρ′′1 ( ri/ σn, xi) ri xi ,

an = σ2n

1n

1b

n∑i=1

[ρ′0 ( ri/ σn) ri/ σn]

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 163 / 190

Without outliers X ∼ N (0, 1.52)

n V (µ∗n) V (Fn) FRB MC50 2.45 2.40 2.27 2.27100 2.43 2.42 2.34 2.48200 2.38 2.38 2.35 2.23500 2.37 2.37 2.36 2.45

500 samples – 200 bootstrap samples

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 164 / 190

With 10% outliers distributed as X ∼ Φ((x − 5)/0.5)

n V (µ∗n) V (Fn) FRB MC50 4.57 4.56 3.88 3.08100 4.73 4.72 3.88 3.22200 4.66 4.67 3.83 3.17500 4.70 4.69 3.81 3.43

500 samples – 200 bootstrap samples

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 165 / 190

Regression (slope) With 10% outliers distributed as X ∼ Φ((x − 5)/0.5)

n V (βn) Σ(Fn) FRB MC50 1.74 0.53 0.56 0.77100 0.68 0.52 0.54 0.52200 0.52 0.51 0.52 0.48500 0.52 0.51 0.52 0.54

500 samples – 200 bootstrap samples – Outliers at (10, 16)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 166 / 190

Regression (slope) With 20% outliers distributed as X ∼ Φ((x − 5)/0.5)

n V (βn) Σ(Fn) FRB MC50 12.5 0.56 0.60 2.34100 8.69 0.57 0.59 0.55200 3.32 0.57 0.58 0.52500 0.60 0.57 0.57 0.57

500 samples – 200 bootstrap samples – Outliers at (10, 16)

Bootstrap provides an estimator of the distribution

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 167 / 190

Theorem – consistency

Theorem(Salibian-Barrera and Zamar 2002) - Let ρ0 and ρ1 satisfy

(R1) ρ is symmetric, twice continuously differentiable and ρ(0) = 0,(R2) ρ is strictly increasing on [0, c] and constant on [c,∞) for some finite

constant c,with continuous third derivatives. Let βn be the MM-regression estimator, σnthe S-scale and βn the associated S-regression estimator and assume thatβn

P−→ β, σnP−→ σ and βn

P−→ β. Then, under certain regularity conditions,√n (β

R∗n − βn) converges weakly, as n goes to infinity, to the same limit

distribution as√

n (βn − β).

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 168 / 190

Theorem – Breakdown point

FR Bootstrap Classical Bootstrapp n q0.005 q0.025 q0.05 q0.005 q0.025 q0.05

10 0.456 0.500 0.500 0.128 0.187 0.2222 20 0.500 0.500 0.500 0.217 0.272 0.302

30 0.500 0.500 0.500 0.265 0.313 0.33910 0.191 0.262 0.304 0.011 0.025 0.036

5 20 0.500 0.500 0.500 0.114 0.154 0.17730 0.500 0.500 0.500 0.185 0.226 0.249100 0.500 0.500 0.500 0.368 0.398 0.41420 0.257 0.315 0.347 0.005 0.012 0.018

10 50 0.500 0.500 0.500 0.180 0.212 0.230100 0.500 0.500 0.500 0.294 0.322 0.336

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 169 / 190

Example

> attach(toxi)

> summary(a.lmrob.85)$coef[,2](Intercept) V2 V3 V4 V5 V65.022954793 0.032760301 0.060795669 0.081339429 0.195694746 0.009200821

V7 V8 V9 V100.005072355 5.920822057 0.010536611 0.022852485

> sqrt(diag(frb(a.lmrob.85)))[1] 6.74805639 0.11360617 0.20158115 0.26692828 0.18190995 0.02291613[7] 0.01246029 6.21339888 0.01485913 0.02480457

> dim(toxi)[1] 38 10

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 171 / 190

Example

> summary(a.lmrob.95)$coef[,2](Intercept) V2 V3 V4 V5 V64.89848024 0.16891448 0.10310144 0.03644448 0.10455605 0.01855623

V7 V8 V9 V100.01190021 3.87072176 0.01061300 0.01624102

>> sqrt(diag(frb(a.lmrob.95)))[1] 8.25505934 0.21430835 0.21686602 0.16039174 0.17656676 0.02965149[7] 0.01866741 6.78063852 0.01904172 0.02571575

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 173 / 190

General approach

Fixed point equations

θn = gn(θn)

Bootstrap the equations at the full-data estimator

θ∗n = g∗n(θn)

Fast (e.g. weighted mean, weighted least squares)

Underestimate variability (weights are not recomputed)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 174 / 190

General approach

θn = gn(θn) = gn (θ) +∇gn (θ)(θn − θ

)+ Rn

√n(θn − θ) = [I−∇gn (θ)]−1 √n (gn(θ)− θ) + op(1)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 175 / 190

√n(

g∗n(θn)− θn

)≈√

n (g∗n(θ)− θ) ≈√

n (gn(θ)− θ)

√n(θn − θ) ≈ [I−∇gn (θ)]−1 √n

(g∗n(θn)− θn

)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 176 / 190

√n(θ

∗n − θn) ≈

√n(θn − θ) ≈ [I−∇gn (θ)]−1 √n

(g∗n(θn)− θn

)

θR∗n − θn =

[I−∇gn(θn)

]−1 (g∗n(θn)− θn

)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 177 / 190

Applications

Linear regression

I Standard errors (S-B and Zamar, 2002)

I Tests of hypotheses (S-B, 2005)

I Model selection (S-B and van Aelst, 2007)

Multivariate location / scatter – PCA (S-B, van Aelst, and Willems, 2006)

Discriminant analysis (S-B, van Aelst, and Willems, 2007)

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 178 / 190

Model selection

Linear regression

(y1, x1), . . . , (yn, xn)

Let α denote a subset of pα indices from {1, 2, . . . , p}

yi = x′αiβα + σα εαi i = 1, . . . , n ,

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 179 / 190

all models α ∈ A are submodels of a “full” model – σn S-scale estimate of“full” model

For each model α ∈ A, the regression estimator βα,n solves

1n

n∑i=1

ρ′1

(yi − xαi

′ βα,n

σn

)xi = 0 .

expected prediction error (conditional on the observed data)

Mpe(α) =σ2

nE

[n∑

i=1

ρ

(zi − x′αi βα

σ

)∣∣∣∣∣ y, X

],

where z = (z1, . . . , zn)′ are future responses at X, independent of y,

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 180 / 190

Goodness of fitσ2

nE

[n∑

i=1

ρ

(yi − x′αi βα

σ

)].

parsimonious models are preferred Muller and Welsh (2005)

Mppe(α) =σ2

n

{E

[n∑

i=1

ρ

(yi − x′αi βα

σ

)]+ δ(n) pα

}+ Mpe(α) ,

where δ(n) →∞ δ(n)/n → 0 (δ(n) = log(n))

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 181 / 190

Criteria

Mpem,n(α) =

σ2n

nE∗

[n∑

i=1

ρ

(yi − x′αi βα,n

σn

)∣∣∣∣∣ y, X

],

Mppem,n(α) =

σ2n

n

{n∑

i=1

ρ

(yi − x′αi βα,n

σn

)+ δ(n) pα

}+ Mpe

m,n(α) ,

E∗ is the bootstrap mean

select α ∈ A such that

αpem, n = arg min

α∈AMpe

m,n(α) ,

αppem, n = arg min

α∈AMppe

m,n(α) .

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 182 / 190

Ac ⊂ A such that βα contain all non-zero components of β

In what follows we will assume that Ac is not empty.

The smallest model in Ac will be “true” model α0

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 183 / 190

TheoremAssume that(A1) n−1 ∑xα ix′α i → Γα > 0, n−1 ∑ωα ixα ix′α i → Γω α > 0, and

n−1 ∑ ‖xα i‖4 < ∞,(A2) δ(n) = o(n/m) and m = o(n);(A3)

∑ni=1ρ

′1(ri(βα,n)/σn)xαi = 0,

(A4) σn − σ = Op(1/√

n), βα,n − βα = Op(1/√

n);(A5) ρ′1 and ρ′′1 are uniformly continuous, var(ρ′1(εα0)) < ∞, var(ρ′′1 (εα0)) < ∞

and E(ρ′′1 (εα0)) > 0; and(A6) for any α /∈ Ac , var(ρ′1(εα)) < ∞ and with probability one

lim infn→∞

1n

n∑i=1

ρ1(ri(βα)/σn) > limn→∞

1n

n∑i=1

ρ1(ri(βα0,n)/σn) .

Thenlim

n→∞P(αppe

m,n = α0) = limn→∞

P(αpem,n = α0) = 1 .

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 184 / 190

Example

Los Angeles Ozone Pollution Data

366 daily observations on 9 variables

Full model includes all second order interactions p = 45

Computational complexity

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 185 / 190

Example

Backward elimination

Starting from the full model

Select the size-(k − 1) model with best selection criteria

Iterate

Reduces search from 2p to p(p + 1)/2 models

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 186 / 190

Using minα∈AMpem,n(α) ⇒ p = 6

Using minα∈AMppem,n(α) ⇒ p = 7

Full model ⇒ p = 45

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 187 / 190

Prediction error

5-fold CV trimmed (γ) prediction error estimators

αpem,n αppe

m,n Full modelp = 10 p = 7 p = 45

γ TMSE ρ TMSE ρ TMSE ρ0.05 11.67 5.36 10.45 5.03 10.78 5.030.10 9.18 8.35 8.33

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 188 / 190

Diagnostic plots

0 10 20 30

−6

−4

−2

02

4

Fitted Values

Sta

ndar

dize

d re

sidu

als

0 10 20 30

−6

−4

−2

02

4

Fitted Values

Sta

ndar

dize

d re

sidu

als

0 10 20 30

−6

−4

−2

02

4

Fitted Values

Sta

ndar

dize

d re

sidu

als

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 189 / 190

Average time (CPU seconds) to bootstrap an MM-regression estimator1000 times on samples of size 200

p FRB CB25 8 195535 28 430045 35 10700

Full model selection analysis on the Ozone dataset (p = 45) is reducedfrom 15 days (360 hours) to 4 hours.

Matias Salibian-Barrera (UBC) Robust inference ECARES - Dec 2007 190 / 190

top related