internal curing in cementitious systems made using saturated lightweight aggregate

Post on 21-Jun-2015

338 Views

Category:

Education

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

This is the presentation for my public defense of my Master's work at Purdue University on November 17th, 2008.

TRANSCRIPT

Internal Curing November 17, 2008 Slide 1 of 46

School of Civil EngineeringPurdue University

Internal Curing in Cementitious Systems Made Using Saturated

Lightweight Aggregate

Master’s DefenseRyan Henkensiefken

November 17th, 2008

Internal Curing November 17, 2008 Slide 2 of 46

Introduction

• Lower w/c to reduce drying shrinkage

• Low w/c increased autogenous shrinkage

• RILEM report 41 on internal curing provides laboratory concepts

• Need to move to field applications

Neville (1995)

Internal Curing November 17, 2008 Slide 3 of 46

Objectives

• Define properties of LWA that make it an effective

internal curing agent

• Monitor water movement from LWA to cement

paste

• Examine the fluid absorption characteristics of

mortars

• Measure the unrestrained and restrained

shrinkage in sealed and unsealed conditions

Internal Curing November 17, 2008 Slide 4 of 46

Outline

• Chemical and autogenous shrinkage• Water demand

– Internal void creation and drying fronts• Water supply

– LWA properties, water movement and water distribution• Powers model

– Influence of ‘internal’ water on hydration• Fluid absorption• Role of the pore size on shrinkage• Shrinkage measurements

– Unrestrained and restrained shrinkage in sealed and unsealed conditions

• Conclusions

Internal Curing November 17, 2008 Slide 5 of 46

Chemical Shrinkage

• Chemical Shrinkage– Total volume reduction due to hydration– Hydration product volume is smaller than cement and

water volume

Cement

WaterHydration products

Chemical shrinkage

1 Vol

1 Vol

1.8 Vol

Internal Curing November 17, 2008 Slide 6 of 46

Autogenous Shrinkage

• Autogenous Shrinkage– External volume change in sealed conditions

0 7 14 21 28Age of Specimen (d)

-400

-350

-300

-250

-200

-150

-100

-50

0

Str

ain

(

)

0 7 14 21 28Age of Specimen (d)

-400

-350

-300

-250

-200

-150

-100

-50

0

Str

ain

(

)

ASTM C157

Sealedw/c = 0.30 Mortar

Internal Curing November 17, 2008 Slide 7 of 46

Chemical and Autogenous Shrinkage

Autogenous Shrinkage

Before Set

Chemical Shrinkage

= Autogenous Shrinkage

After Set

Chemical Shrinkage

>

Autogenous Shrinkage

=

Internal Voids

Vapor-Filled Voids

Autogenous Shrinkage

Internal Curing November 17, 2008 Slide 8 of 46

Outline

• Chemical and autogenous shrinkage• Water demand

– Internal void creation and drying fronts• Water supply

– LWA properties, water movement and water distribution• Powers model

– Influence of ‘internal’ water on hydration• Fluid absorption• Role of the pore size on shrinkage• Shrinkage measurements

– Unrestrained and restrained shrinkage in sealed and unsealed conditions

• Conclusions

Internal Curing November 17, 2008 Slide 9 of 46

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(m

l/g c

eme

nt)

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(m

l/g c

eme

nt)

Water Demand

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(ml/g

cem

en

t)

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(m

l/g c

eme

nt)

Cf × CS × αmax

Bentz, et. al, (1999)

Cf = Cement ContentCS = Chemical Shrinkageαmax = Degree of Hydration

Fin

al S

et

Fro

m V

icat

Chem ical ShrinkageAutogenous Shrinkage

Created Void

Space

Internal Curing November 17, 2008 Slide 10 of 46

Sealed vs. Unsealed Conditions

• Sealed conditions– Internal voids created due to chemical shrinkage

• Unsealed conditions– Internal voids plus moisture front created due to drying

Radlinska, et al., (2008)

Internal Curing November 17, 2008 Slide 11 of 46

Outline

• Chemical and autogenous shrinkage• Water demand

– Internal void creation and drying fronts• Water supply

– LWA properties, water movement and water distribution• Powers model

– Influence of ‘internal’ water on hydration• Fluid absorption• Role of the pore size on shrinkage• Shrinkage measurements

– Unrestrained and restrained shrinkage in sealed and unsealed conditions

• Conclusions

Internal Curing November 17, 2008 Slide 12 of 46

0 1 2 3 4 5 6 7Age of Specimen (Days)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(ml/

gce

m)

0 1 2 3 4 5 6 7Age of Specimen (Days)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(ml/

gce

m)

Water Supply

Chem ical ShrinkageAutogenous Shrinkage

MLWA × S × ϕLWA

Bentz, et. al, (1999)

MLWA = Mass of LWAS = Degree of SaturationϕLWA = Absorption Capacity

• Use LWA to supply additional water• Largest pores will empty first

1 10 100 1000 10000 100000Pore Diameter (nm )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cu

mu

lati

ve V

olu

me

(mL

/g) LW A-K

LW A-H8 h Paste24 h Paste7 d Paste

0 24 48 72 96Age of Specimen (h)

-400

-300

-200

-100

0

100

200

300

Str

ain

(

)

25.3%k25.3%h19.4%CRCA

8 0 8 2 8 4 8 6 8 8 9 0 9 2 9 4 9 6 9 8 1 0 0Relative Humidity (% )

0

10

20

30

40

50

60

70

80

90

100

Per

cen

t o

f A

bso

rbed

Wat

er R

emai

ng

(%

)

LW A-HLW A-K

CRCA

Internal Curing November 17, 2008 Slide 13 of 46

Supply vs. Demand

Must Supply a sufficient volume of LWA (water) to satisfy demand in

sealed conditions

Bentz, et. al, (1999)

LWALWA

f

SM

CSC

Supply

DemandSupplyDemand

max1

LWA

fLWA S

CSCM

max

Internal Curing November 17, 2008 Slide 14 of 46

Monitoring Water Movement using X-ray

• Monitor density change– Volume of water changes,

density changes

• Composite theory model• Timing of water release• Water Travel Distance

– Proper sample orientation

tVVVVII VVWWPastePasteLWALWAMeasured exp0

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

ODD

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

X-Ray BeamSource

Detector

Sample

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

ODD

Internal Curing November 17, 2008 Slide 15 of 46

Timing of water release

• LWA prism cast next to cement paste• Fixed position and macro-water movement

Mounting Screw Hole

LWA Paste

5 mm

Aluminum Tape

25 mm

25 mm

2.5 mm

Internal Curing November 17, 2008 Slide 16 of 46

Timing of water release

• Water remains in the pores of LWA until after set

Counts@i,LWA – Counts@3.5,LWA

0 4 8 12 16 20 24 28Age of Specimen (h)

-5000

-4000

-3000

-2000

-1000

0

Dif

fere

nce

in C

ou

nts

fr

om

In

itia

l Co

un

ts a

t 3.

5 h

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Vo

id V

olu

me

(mL

/gce

m)

0 4 8 12 16 20 24 28Age of Specimen (h)

-5000

-4000

-3000

-2000

-1000

0

Dif

fere

nce

in C

ou

nts

fr

om

In

itia

l Co

un

ts a

t 3.

5 h

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Vo

id V

olu

me

(mL

/gce

m)

0 4 8 12 16 20 24 28Age of Specimen (h)

-5000

-4000

-3000

-2000

-1000

0

Dif

fere

nce

in C

ou

nts

fr

om

In

itia

l Co

un

ts a

t 3.

5 h

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Vo

id V

olu

me

(mL

/gce

m)

Water is lost from LWA

X-Ray Measurements

Initial Set

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(ml/g

cem

en

t)

Internal Curing November 17, 2008 Slide 17 of 46

Water Distribution

• Need paste within close proximity to LWA

• Fine aggregate protects more paste than coarse aggregate

Internal Curing November 17, 2008 Slide 18 of 46

Monitoring Water Movement using X-ray

• Monitor density change– Volume of water changes,

density changes

• Composite theory model• Timing of water release• Water Travel Distance

– Proper sample orientation

tVVVVII VVWWPastePasteLWALWAMeasured exp0

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

ODD

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

X-Ray BeamSource

Detector

Sample

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

X-Ray BeamSource

Detector

Sample

FOD

FDD

UsefulBeam

ODD

Internal Curing November 17, 2008 Slide 19 of 46

Sample Orientation

• Sample was rotated to correct orientation

• Reduce the size of the ‘interface’

• Reduce Uncertainty

Paste Paste

LWA LWA

Interface Interface

0.0 mm 0.5 mm0.0 mm 0.5 mm 0.0 mm 0.5 mm0.0 mm 0.5 mm

Paste Paste

LWA LWA

Interface Interface

0.0 mm 0.5 mm0.0 mm 0.5 mm 0.0 mm 0.5 mm0.0 mm 0.5 mm

X-ray Source

Detector

Cement Paste

LWA

Detector

X-ray Source

Cement Paste

LWA

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0P o s i t i o n ( m m )

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0C

ou

nts

(\s

ec)

Paste LW AInterface

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0P o s i t i o n ( m m )

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0C

ou

nts

(\s

ec)

Paste LW AInterface

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0P o s i t i o n ( m m )

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0C

ou

nts

(\s

ec)

Paste LW AInterface

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0P o s i t i o n ( m m )

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0C

ou

nts

(\s

ec)

Paste LW AInterface

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0P o s i t i o n ( m m )

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0C

ou

nts

(\s

ec)

Paste LW AInterface

Angle of Orientation0.0 Degrees-2.5 Degrees-5.0 Degrees-10.0 Degrees

Internal Curing November 17, 2008 Slide 20 of 46

Water Travel Distance

• Water is able to move approximately 1.8 mm in first 75 hours

Counts@i.Paste – Counts@4.0,Paste

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0Distance from Interface (mm)

-20

-10

0

10

20

30

40

50

60

70

80

Dif

fere

nc

e in

Co

un

ts f

rom

In

itia

l Co

un

ts (

4.0

h)

LW

A

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0Distance from Interface (mm)

-20

-10

0

10

20

30

40

50

60

70

80

Dif

fere

nc

e in

Co

un

ts f

rom

In

itia

l Co

un

ts (

4.0

h)

LW

A

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0Distance from Interface (mm)

-20

-10

0

10

20

30

40

50

60

70

80

Dif

fere

nc

e in

Co

un

ts f

rom

In

itia

l Co

un

ts (

4.0

h)

LW

A

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0Distance from Interface (mm)

-20

-10

0

10

20

30

40

50

60

70

80

Dif

fere

nc

e in

Co

un

ts f

rom

In

itia

l Co

un

ts (

4.0

h)

LW

A

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0Distance from Interface (mm)

-20

-10

0

10

20

30

40

50

60

70

80

Dif

fere

nc

e in

Co

un

ts f

rom

In

itia

l Co

un

ts (

4.0

h)

LW

A

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0Distance from Interface (mm)

-20

-10

0

10

20

30

40

50

60

70

80

Dif

fere

nc

e in

Co

un

ts f

rom

In

itia

l Co

un

ts (

4.0

h)

LW

A

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0Distance from Interface (mm)

-20

-10

0

10

20

30

40

50

60

70

80

Dif

fere

nc

e in

Co

un

ts f

rom

In

itia

l Co

un

ts (

4.0

h)

LW

A

Water is gained in the paste

7.25 h8.00 h9.00 h12.00 h24.00 h75.00 h

Internal Curing November 17, 2008 Slide 21 of 46

Outline

• Chemical and autogenous shrinkage• Water demand

– Internal void creation and drying fronts• Water supply

– LWA properties, water movement and water distribution• Powers model

– Influence of ‘internal’ water on hydration• Fluid absorption• Role of the pore size on shrinkage• Shrinkage measurements

– Unrestrained and restrained shrinkage in sealed and unsealed conditions

• Conclusions

Internal Curing November 17, 2008 Slide 22 of 46

0

20

40

60

80

100

Vo

lum

e P

erce

nt

of

Mat

eria

l

0 10 20 30 40 50Percent Lightweight Aggregate of Total Mixture (%)

55%

23%

51% 48% 44% 41% 37% 30% 26% 22%

LW A

NW A

W ater

Cement

14.3% k11.0%k7.3%k3.8%k 18.3%k

25.3% k/h 29.3% k 33.0%k43.0% h

23% 23% 23% 23% 23% 23% 23% 23% 23%

12%

22% 22% 22% 22% 22% 22% 22% 22% 22% 22%

Mixture Proportions

• Constant w/c of 0.30• Constant volume fraction of fine aggregate

of 55%

Internal Curing November 17, 2008 Slide 23 of 46

Powers Model

0 0.2 0.4 0.6 0.8 1Degree of Hydration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vo

lum

e R

atio

0 0.2 0.4 0.6 0.8 1Degree of Hydration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vo

lum

e R

atio

Capillary W ater

Gel W ater

Gel Solid

Cement

Chemical Shrinkage

w/c of 0.30

0.730 0.2 0.4 0.6 0.8 1

Degree of Hydration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vo

lum

e R

atio

0 0.2 0.4 0.6 0.8 1Degree of Hydration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vo

lum

e R

atio

w/c of 0.30 with 11.0 % LWA

Capillary W ater

Gel W ater

Gel Solid

Cement

Chemical ShrinkageLW A W ater

0.770 0.2 0.4 0.6 0.8 1

Degree of Hydration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vo

lum

e R

atio

w/c of 0.30 with 25.3 % LWA

0 0.2 0.4 0.6 0.8 1Degree of Hydration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vo

lum

e R

atio

Capillary W aterGel W ater

Gel Solid

Cement

0.83

LW A W ater

0 5 10 15 20 25 30 35Percent LW A-K (%)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Deg

ree

of

Hyd

rati

on

(%

)

Maxim um theoretical degree of hydration (w/c = 0.30)

0.73

0.77

0.83 0 25 50 75 100 125 150 175 200 225Age of Specimen (d)

3 0

4 0

5 0

6 0

7 0

8 0

Deg

ree

of

Hyd

rati

on

(%

)

0 25 50 75 100 125 150 175 200 225Age of Specimen (d)

3 0

4 0

5 0

6 0

7 0

8 0

Deg

ree

of

Hyd

rati

on

(%

)

0 25 50 75 100 125 150 175 200 225Age of Specimen (d)

3 0

4 0

5 0

6 0

7 0

8 0

Deg

ree

of

Hyd

rati

on

(%

)

0 25 50 75 100 125 150 175 200 225Age of Specimen (d)

3 0

4 0

5 0

6 0

7 0

8 0

Deg

ree

of

Hyd

rati

on

(%

)

25.3% k11.0% k0.0%

Sealed

Jensen and Hansen, 2001

Internal Curing November 17, 2008 Slide 24 of 46

Outline

• Chemical and autogenous shrinkage• Water demand

– Internal void creation and drying fronts• Water supply

– LWA properties, water movement and water distribution• Powers model

– Influence of ‘internal’ water on hydration• Fluid absorption• Role of the pore size on shrinkage• Shrinkage measurements

– Unrestrained and restrained shrinkage in sealed and unsealed conditions

• Conclusions

Internal Curing November 17, 2008 Slide 25 of 46

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (min 1/2)

0

5

10

15

20

25

30

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

Water Absorption

Average of 3 Samples

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (min 1/2)

0

5

10

15

20

25

30

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (min 1/2)

0

5

10

15

20

25

30

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (min 1/2)

0

5

10

15

20

25

30

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (min 1/2)

0

5

10

15

20

25

30

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (min 1/2)

0

5

10

15

20

25

30

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

55/0.35 - 28 d55/0.30 - 28 d55/0.25 - 28 d11.0% k - 28 d25.3% k - 28 d

Mortar

0.10 0.12 0.14 0.16 0.18 0.20

Total porosity excluding gel porosity

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r / c

m3

of

pas

te)

0.10 0.12 0.14 0.16 0.18 0.20

Total porosity excluding gel porosity

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r / c

m3

of

pas

te)

0.10 0.12 0.14 0.16 0.18 0.20

Total porosity excluding gel porosity

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r / c

m3

of

pa

ste

)0.10 0.12 0.14 0.16 0.18 0.20

Total porosity excluding gel porosity

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r / c

m3

of

pas

te)

0.10 0.12 0.14 0.16 0.18 0.20

Total porosity excluding gel porosity

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r / c

m3

of

pas

te)

55/0.25 - 28 d55/0.30 - 28 d55/0.35 - 28 d11.0%k - 28 d25.3%k - 28 d

0.20 0.25 0.30 0.35 0.40

water - cement ratio

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r /

cm3

of

pas

te)

0.20 0.25 0.30 0.35 0.40

water - cement ratio

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r /

cm3

of

pas

te)

0.20 0.25 0.30 0.35 0.40

water - cement ratio

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r /

cm3

of

pas

te)

0.20 0.25 0.30 0.35 0.40

water - cement ratio

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r /

cm3

of

pas

te)

0.20 0.25 0.30 0.35 0.40

water - cement ratio

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r /

cm3

of

pas

te)

Plain - 28 d11.0%k - 28 d25.3%k - 28 dPaste w/c = 0.30 - 28 d

Internal Curing November 17, 2008 Slide 26 of 46

ITZ Depercolation

Cement PasteNormal Weight AggregateLightweight AggregateITZ

0 5 10 15 20 25 30 35Volume Percent of

Lightweight Aggregate

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Vo

lum

e F

ract

ion

(T

ota

l Vo

lum

e B

asis

)

0 5 10 15 20 25 30 35Volume Percent of

Lightweight Aggregate

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Vo

lum

e F

ract

ion

(T

ota

l Vo

lum

e B

asis

)

Percolated NW A ITZ Paste

0 1 2 3 4 5 6 7 8

Time (d)

0

5

10

15

20

25

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

0 1 2 3 4 5 6 7 8

Time (d)

0

5

10

15

20

25

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

0 1 2 3 4 5 6 7 8

Time (d)

0

5

10

15

20

25

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

0 1 2 3 4 5 6 7 8

Time (d)

0

5

10

15

20

25

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

0 1 2 3 4 5 6 7 8

Time (d)

0

5

10

15

20

25

Ab

sorb

ed w

ater

(10-3

gra

m o

f w

ater

/ c

m3

of

pas

te)

Internal Curing November 17, 2008 Slide 27 of 46

Outline

• Chemical and autogenous shrinkage• Water demand

– Internal void creation and drying fronts• Water supply

– LWA properties, water movement and water distribution• Powers model

– Influence of ‘internal’ water on hydration• Fluid absorption• Role of the pore size on shrinkage• Shrinkage measurements

– Unrestrained and restrained shrinkage in sealed and unsealed conditions

• Conclusions

Internal Curing November 17, 2008 Slide 28 of 46

Measuring Pore Size

0 1 2 3 4 5 6 7Age of Specim en (d)

8 0

8 2

8 4

8 6

8 8

9 0

9 2

9 4

9 6

9 8

1 0 0

Rel

ativ

e H

um

idit

y (%

)

0 1 2 3 4 5 6 7Age of Specim en (d)

8 0

8 2

8 4

8 6

8 8

9 0

9 2

9 4

9 6

9 8

1 0 0

Rel

ativ

e H

um

idit

y (%

)

RT

V

RHr m

ln

2

25.3% k14.3% k7.3%k0.0%

LWA

MAXfLWA S

CSC

Supply

DemandM

Internal Curing November 17, 2008 Slide 29 of 46

Role of Pore Size on Shrinkage

1 10 100Pore Radius (nm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Po

re V

olu

me

(ml/

gce

m)

1 10 100Pore Radius (nm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Po

re V

olu

me

(ml/

gce

m)

1 10 100Pore Radius (nm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Po

re V

olu

me

(ml/

gce

m)

1 10 100Pore Radius (nm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Po

re V

olu

me

(ml/

gce

m)

Pore Solution

Empty Pores

Water from 7.3%k

(.016 ml/gcem)Water from 14.3%k

(.032 ml/gcem)Water from 25.3%k

(.053 ml/gcem)

spp KKr

S 112

3

spp KKr

S 112

3

1 10 100 1000 10000 100000 1000000Pore Radius (nm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Po

re V

olu

me

(ml/

gce

m)

Affected Pore Region Unaffected PoresMixture

From Pore Size Distribution

From RH Measurements

From RH Measurements (corrected)

% Reduction of Shrinkage Predicted

0.0% 7.0 5.3 7.0 0%7.3%k 9.6 6.5 8.4 27%

14.3%k 11.0 7.4 9.7 36%25.3%k 19.0 10.8 16.5 63%

RT

V

RHr m

ln

2

spp KKr

S 112

3

Bentz, 1998

Kelvin Radius

Internal Curing November 17, 2008 Slide 30 of 46

Outline

• Chemical and autogenous shrinkage• Water demand

– Internal void creation and drying fronts• Water supply

– LWA properties, water movement and water distribution• Powers model

– Influence of ‘internal’ water on hydration• Fluid absorption• Role of the pore size on shrinkage• Shrinkage measurements

– Unrestrained and restrained shrinkage in sealed and unsealed conditions

• Conclusions

Internal Curing November 17, 2008 Slide 31 of 46

Unrestrained Shrinkage Procedure

• Measured using corrugated tube protocol for first 24 hrs

• Measured using ASTM C157 after 24 hrsData Conditioning

and AcquisitionCorrugated

TubeThreaded Adjustment Screw

Sample Holder

LVDT

Sant, et al., (2006)

Internal Curing November 17, 2008 Slide 32 of 46

Unrestrained Shrinkage in Sealed Conditions

0 7 14 21 28Age of Specim en (d)

-400

-300

-200

-100

0

100

200

300

400

Str

ain

(

)

0 7 14 21 28Age of Specim en (d)

-400

-300

-200

-100

0

100

200

300

400

Str

ain

(

)

0 7 14 21 28Age of Specim en (d)

-400

-300

-200

-100

0

100

200

300

400

Str

ain

(

)

0 7 14 21 28Age of Specim en (d)

-400

-300

-200

-100

0

100

200

300

400

Str

ain

(

)

Sealed33.0%k29.3%k25.3%k18.3%k14.3%k11.0%k7.3%k0.0%

Average of 3 Samples

LWA

MAXfLWA S

CSC

Supply

DemandM

Demand > Supply

Supply > Demand

0 5 10 15 20 25 30 35Percent LW A-K (%)

0

1

2

3

4

5

6

7

Ag

e o

f S

pec

imen

(d

)

Tim e to onset of shrinkage

Mixtures do notshrink

Internal Curing November 17, 2008 Slide 33 of 46

Water Demand

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(m

l/g c

eme

nt)

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(m

l/g c

eme

nt)

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(ml/g

cem

en

t)

0 1 2 3 4 5 6 7Age of Specimen (d)

0

0.01

0.02

0.03

0.04

0.05

Sh

rin

kag

e V

olu

me

(m

l/g c

eme

nt)

Fin

al S

et

Fro

m V

icat

Chem ical ShrinkageAutogenous Shrinkage

Created Void

Space

0 1 2 3 4 5 6 7Age of Specim en (d)

0

0.01

0.02

0.03

0.04

0.05

Vo

id V

olu

me

(ml/g

cem

ent)

0

2

4

6

8

10

12

14

16

18

20

22

Pe

rcen

t L

WA

-K (

%)

Voids Created

7.3%k

11.0%k

14.3% k

3.8%k

0 5 10 15 20 25 30 35Percent LW A-K (%)

0

1

2

3

4

5

6

7

Ag

e o

f S

pec

imen

(d

)

Mixtures do notshrink

Tim e to water depletionTim e to onset of shrinkage

0 5 10 15 20 25 30 35Percent LW A-K (%)

0

1

2

3

4

5

6

7

Ag

e o

f S

pec

imen

(d

)

Mixtures do notshrink

Internal Curing November 17, 2008 Slide 34 of 46

Unrestrained Shrinkage in Unsealed Conditions

Average of 3 Samples

0 7 14 21 28Age of Specim en (d)

-800

-600

-400

-200

0

200

400

Str

ain

(

)

0 7 14 21 28Age of Specim en (d)

-800

-600

-400

-200

0

200

400

Str

ain

(

)

0 7 14 21 28Age of Specim en (d)

-800

-600

-400

-200

0

200

400

Str

ain

(

)

0 7 14 21 28Age of Specim en (d)

-800

-600

-400

-200

0

200

400

Str

ain

(

)

U nsealed33.0%k29.3%k25.3%k18.3%k14.3%k11.0%k7.3%k0.0%

U nsealed33.0%k29.3%k25.3%k11.0%k7.3%k0.0%

U nsealed25.3% k11.0% k7.3% k0.0%

U nsealed25.3%k0.0%

LWA

MAXfLWA S

CSC

Supply

DemandM

Demand > Supply

0 7 14 21 28Age of Specimen (d)

-800

-700

-600

-500

-400

-300

-200

-100

0

Str

ain

(

)

0.0% Unsealed0.0% Sealed

Internal Curing November 17, 2008 Slide 35 of 46

Effects of Drying

0 5 10 15 20 25 30 35Percent Lightweight Aggregate (%)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Str

ain

(

)

7 day free shrinkage (sealed)7 day free shrinkage (unsealed)

Internal Curing November 17, 2008 Slide 36 of 46

Restrained Shrinkage Procedure

• Measure the cracking potential

Internal Curing November 17, 2008 Slide 37 of 46

0 2 4 6 8 10 12 14 16 18 20Age of Specim en (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

Restrained Shrinkage in Sealed Conditions

Typical Response of 3 Samples

0 2 4 6 8 10 12 14 16 18 20Age of Specim en (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

0 2 4 6 8 10 12 14 16 18 20Age of Specim en (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

0 2 4 6 8 10 12 14 16 18 20Age of Specim en (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

LWA

MAXfLWA S

CSC

Supply

DemandM

Sealed25.3% k14.3% k11.0% k7.3% k3.8% k0.0%

Sealed25.3% k11.0% k7.3% k3.8% k0.0%

Sealed25.3% k3.8% k0.0%

Sealed25.3% k0.0%

0 5 10 15 20 25 30 35Percent LW A-K (%)

0

5

10

15

20

25

30

Ag

e o

f S

pec

imen

(d

)

Tim e of cracking (sealed) Mixtures did not crack

Internal Curing November 17, 2008 Slide 38 of 46

Restrained Shrinkage in Unsealed Conditions

0 2 4 6 8 10 12 14Age of Specimen (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

0 2 4 6 8 10 12 14Age of Specimen (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

0 2 4 6 8 10 12 14Age of Specimen (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

Unsealed33.0% k29.3% k25.3% k14.3% k11.0% k7.3% k0.0%

Unsealed25.3% k14.3% k11.0% k7.3% k0.0%

Unsealed25.3% k0.0%

Typical Response of 3 Samples

LWA

MAXfLWA S

CSC

Supply

DemandM

0 5 10 15 20 25 30 35Percent LW A-K (%)

0

5

10

15

20

25

30A

ge

of

Sp

ecim

en (

d)

Tim e of cracking (unsealed) Mixtures did not crack

0 5 10 15 20 25 30 35Percent LW A-K (%)

0

5

10

15

20

25

30A

ge

of

Sp

ecim

en (

d)

Tim e of cracking (sealed)Tim e of cracking (unsealed)

Mixtures did not crack

Internal Curing November 17, 2008 Slide 39 of 46

0 7 14 21 28Age of Specimen (d)

-400

-200

0

200

400

600

800

Str

ain

(

)

Sealed43%h25.3%k0.0%

0 2 4 6 8 10Age of Specimen (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

Unsealed43% h25.3% k0.0%

Spatial Considerations

Same Volume of Water, Different Spacing

Average of 3 Samples

Same Volume of Water, Different Spacing

Typical Response of 3 Samples

LWA-H LWA-K

Internal Curing November 17, 2008 Slide 40 of 46

0 7 14 21 28Age of Specimen (d)

-400

-200

0

200

400

600

800

Str

ain

(

)

Sealed25.3%k25.3%h0.0%

Volume of Water Considerations

Average of 3 SamplesTypical Response of 3 Samples

Same Volume of Aggregate, Different Volume of Water

0 2 4 6 8 10Age of Specimen (d)

-60

-50

-40

-30

-20

-10

0

10

Str

ain

(

)

Unsealed25.3% k25.3% h0.0%

Same Volume of Aggregate, Different Volume of Water

LWA-H LWA-K

Internal Curing November 17, 2008 Slide 41 of 46

Conclusions

• Define properties of LWA that make it an effective

internal curing agent– High absorption and needs to desorb (give up) water– Pores larger than pores of cement paste

Internal Curing November 17, 2008 Slide 42 of 46

Conclusions

• Monitor water movement from LWA to

cement paste– Water does not leave until after set– Water can travel up to 1.8 mm in first 75 hours

0 4 8 12 16 20 24 28Age of Specimen (h)

-5000

-4000

-3000

-2000

-1000

0

Dif

fere

nc

e i

n C

ou

nts

fr

om

In

itia

l C

ou

nts

at

3.5

h

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Vo

id V

olu

me

(mL

/gce

m)

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0Distance from Interface (mm)

-20

-10

0

10

20

30

40

50

60

70

80

Dif

fere

nce

in C

ou

nts

fro

m

Init

ial C

ou

nts

(4.

0 h

)

LW

A

Internal Curing November 17, 2008 Slide 43 of 46

Conclusions

• Examine the fluid absorption characteristics– Reduce water absorption due to continued

hydration or depercolate of NWA ITZ– Mixtures with LWA perform like mixtures with

lower w/c

0.20 0.25 0.30 0.35 0.40

water - cement ratio

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r / c

m3

of

pas

te)

0.10 0.12 0.14 0.16 0.18 0.20

Total porosity excluding gel porosity

0

5

10

15

20

25

30

35

40

45

Ab

sorb

ed w

ate

r at

8 d

ays

(10-3

gra

m o

f w

ate

r / c

m3

of

pas

te)

Internal Curing November 17, 2008 Slide 44 of 46

Conclusions

• Measure the unrestrained and restrained shrinkage in sealed and unsealed conditions– Supply sufficient water to satisfy demand from

chemical shrinkage and drying– Reduce shrinkage cracking with sufficient supply of

water

0 5 10 15 20 25 30 35Percent LW A-K (%)

0

5

10

15

20

25

30

Ag

e o

f S

pec

imen

(d

)

Tim e of cracking (sealed)Tim e of cracking (unsealed)

Mixtures did not crack

0 5 10 15 20 25 30 35Percent Lightweight Aggregate (%)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Str

ain

(

)

7 day free shrinkage (sealed)7 day free shrinkage (unsealed)

Internal Curing November 17, 2008 Slide 45 of 46

Acknowledgements

Professor Jason Weiss

Professor John Haddock

Dr. Tommy Nantung

Dale Bentz

Jack Spaulding

John Roberts

Mark Baker

Janet Lovell

Gaurav Sant

Scott Kobs

Bill Wilson

Dan Matson

Katie Funk

Peter Briatka

Gary Filbert

Erin Cutler

Aleksandra Radlinska

Arnd Eberhardt

Brooks Bucher

Kevin Coates

Kevin Gerst

Mohammad Pour-Ghaz

Javier Castro

Kambiz Raoufi

Mike Norfleet

Mukul Dehadrai

Chadi El Mohtar

Internal Curing November 17, 2008 Slide 46 of 46

Questions

Internal Curing in Cementitious Systems Made Using Saturated

Lightweight Aggregate

Master’s DefenseRyan Henkensiefken

November 17th, 2008

Internal Curing November 17, 2008 Slide 47 of 46

References

• Bentz, D.P., Garboczi, E.J. and D.A. Quenard (1998). “Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass,” Modelling Simulation Material Science Engineering 6: 211-236.

• Bentz, D. P. and K. A. Snyder (1999). "Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate." Cement and Concrete Research 29(11): 1863

• Jensen, O.M. and P.F. Hansen (2001). “Autogenous deformation and RH-change in perspective,” Cement and Concrete Research 31(12): 1859.

• Neville, A.M., Properties of Concrete, Pearson Education, p. 411.• Radlinska, A., F. Rajabipour, B. Bucher, R. Henkensiefken, G. Sant,

and J. Weiss, Shrinkage mitigation strategies in cementitious systems: A closer look at sealed and unsealed material behavior, in Accepted for publication in the Transportation Research Record. 2008.

top related