interpolation in numerical methods

Post on 04-Jun-2018

237 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • 8/13/2019 Interpolation in numerical methods

    1/51

    NUMERICAL METHODS

    INTERPOLATION

  • 8/13/2019 Interpolation in numerical methods

    2/51

    INTRODUCTION TO INTERPOLATION

    IntroductionPolynomial Forms

    Linear and Quadratic interpolationInterpolation problemExistence and uniquenessLagrange interpolation polynomialNewtons Divided Difference method Properties of Divided Differences

  • 8/13/2019 Interpolation in numerical methods

    3/51

    INTERPOL TION

    DEFINITION

    3

    LET BE A CONTINEOUS FUNCTION DEFINED INTHE INTERVAL CONTAINING THE POINTS

    THE INTERPOLATION IS USED TO FINDTHE VALUE OF THE FUNCTION AT ANY PONIT INTHE INTERVAL OR

    INTERPOLATION MEANS TO FIND (APPROXIMATE)VALUES OF A FUNCTION FOR AN x BETWEENDIFFERENT x VALUES AT WHICH THE

    VALUES OFf(x)

    ARE GIVEN

  • 8/13/2019 Interpolation in numerical methods

    4/51

    INTERPOL TION

    EX MPLE

    4

    x 0 1 2

    f(x) 1 0 -1

    FIND:

    THE PROCESS OF CONSTRUCTION OFTO FIT A TABLE OF DATA POINTS IS

    CALLED CURVE FITTING

  • 8/13/2019 Interpolation in numerical methods

    5/51

    POLYNOMIAL FORMS

    POWER FORM

    SHIFT POWER FORM

    NEWTON FORM

    5

    n

    i

    n

    i j j

    jinn x xb x f x P 0 0

    )()()(

  • 8/13/2019 Interpolation in numerical methods

    6/51

    Examples of Polynomial InterpolationLinear Interpolation

    Given any two points,there is one polynomial oforder 1 that passesthrough the two points.

    Quadratic Interpolation

    Given any three points thereis one polynomial of order 2 that passes through thethree points.

  • 8/13/2019 Interpolation in numerical methods

    7/51

    LINEAR INTERPOLATIONGiven any two points,

    The line that interpolates the two points is

    Example :find a polynomial that interpolates (1,2) and (2,4)

    )(,,)(, 1100 x f x x f x

    x x x f 211224

    2)(1

    475

  • 8/13/2019 Interpolation in numerical methods

    8/51

    ExampleAn experiment is used to determinethe viscosity of water as afunction of temperature. Thefollowing table is generated

    Problem: Estimate the viscositywhen the temperature is 8 degrees.

    Temperature(degree)

    Viscosity

    0 1.792

    5 1.519

    10 1.308

    15 1.140

  • 8/13/2019 Interpolation in numerical methods

    9/51

    ExampleFind a polynomial that fit the data points

    exactly.

    tscoefficien

    polynomial:

    eTemperatur :

    viscosity:

    k a

    T

    V

    Linear Interpolation V(T)= 1.73 0.0422 TV(8)= 1.3924

  • 8/13/2019 Interpolation in numerical methods

    10/51

    Example

    10

    THE TABLE BELOW GIVES SQUARE ROOT FOR NTEGERS

    x 1 2 3 4 5f(x) 1 1.4142 1.7321 2 2.2361

    DETERMINE, THE SQUARE ROOT OF 2.5

  • 8/13/2019 Interpolation in numerical methods

    11/51

    The interpolation ProblemGiven a set of n+1 points,

    find an n th order polynomialthat passes through all points

    )(,....,,)(,,)(, 1100 nn x f x x f x x f x

    )( x f n

    ni for x f x f iin ,...,2,1,0)()(

  • 8/13/2019 Interpolation in numerical methods

    12/51

    Existence and UniquenessGiven a set of n+1 points

    Assumption are distinct real nos

    Theorem:

    There is a unique polynomial f n (x) oforder n

    such that

    ni for x f x f iin ,...,1,0)()(

    n x x x ,...,, 10

    )(,....,,)(,,)(, 1100 nn x f x x f x x f x

  • 8/13/2019 Interpolation in numerical methods

    13/51

    Quadratic InterpolationGiven any three points ,The polynomial that interpolates the three points is

    )(,)(,,)(, 221100 x f xand x f x x f x

    202

    01

    01

    12

    12

    2

    101

    011

    00

    1020102

    )()()()(

    )()(

    )(

    )(

    x xat x x

    x x x f x f

    x x x f x f

    b

    x xat x x

    x f x f b

    x xat x f b

    where

    x x x xb x xbb x f

    477

  • 8/13/2019 Interpolation in numerical methods

    14/51

    LAGRANGE INTERPOLATION

    Lagrange Interpolation Formula

    n

    i j j ji

    ji

    n

    iiin

    x x

    x x x

    x x f x f

    ,0

    0

    )(

    )()(

    486

    Let, denote distinct real nos and let bearbitrary real nos. The pts can be imagined to bedata values connected by a curve. Any fn satisfying the conditions:

    is called an interpolation fn. An interpolation fn is, therefore, a curvethat passes through the data pts.

  • 8/13/2019 Interpolation in numerical methods

    15/51

    Lagrange Interpolation

    ji

    ji x

    x

    ji

    i

    1

    0)(

    s polynomialordern tharecardinalsThe

    cardinalsthecalledare)(

  • 8/13/2019 Interpolation in numerical methods

    16/51

    EXAMPLE

    x 1/3 1/4 1y 2 -1 7

    )4/1)(3/1(27

    )1)(3/1(161)1)(4/1(182)(

    4/114/1

    3/113/1

    )(

    14/11

    3/14/13/1

    )(

    13/11

    4/13/14/1

    )(

    )()()()()()()(

    2

    12

    1

    02

    02

    21

    2

    01

    01

    20

    2

    10

    10

    2211002

    x x

    x x x x x P

    x x x x x x

    x x x x

    x

    x x x x x x

    x x x x

    x

    x x x x x x

    x x x x

    x

    x x f x x f x x f x P

  • 8/13/2019 Interpolation in numerical methods

    17/51

    EXAMPLE

    17

    , Where,

    EXAMPLE

    THE TABLE BELOW GIVES SQUARE ROOT FOR NTEGERS

    x 1 2 3 4 5f(x) 1 1.4142 1.7321 2 2.2361

    DETERMINE, THE SQUARE ROOT OF 2.5

  • 8/13/2019 Interpolation in numerical methods

    18/51

    NEWTONs INTERPOLATION POLYNOMIAL

    Given any n+1 points ,The polynomial that interpolates all points is

    )(,,...,)(,,)(, 1100 nn x f x x f x x f x

    .

    )()()()(

    )()()(

    ......)(

    202

    01

    01

    12

    12

    2

    101

    011

    00

    10102010

    on soand x xat x x x x

    x f x f x x

    x f x f

    a

    x xat x x

    x f x f a

    x xat x f a

    x x x xa x x x xa x xaa x f nnn

  • 8/13/2019 Interpolation in numerical methods

    19/51

    Divided Differences

    0

    1102110

    02

    1021210

    01

    0110

    ],...,,[],...,,[],...,,[

    ............

    DDorderSecond],[],[],,[

    DDorderfirst][][

    ],[

    DDorderzeroth)(][

    x x x x x f x x x f

    x x x f

    x x x x f x x f x x x f

    x x x f x f

    x x f

    x f x f

    k

    k k k

    k k

  • 8/13/2019 Interpolation in numerical methods

    20/51

    NEWTONs INTERPOLATION POLYNOMIAL

    Now

    ],...,,[

    ....

    ],,[

    )()()()(

    ],[)()(

    ][)(

    .. ....)(

    10

    2102

    01

    01

    12

    12

    2

    1001

    01

    1

    00

    10102010

    nn

    nnn

    x x x f b

    x x x f x x

    x x x f x f

    x x x f x f

    b

    x x f x x x f x f

    b

    x f x f b

    x x x xb x x x xb x xbb x f

  • 8/13/2019 Interpolation in numerical methods

    21/51

    NEWTONs INTERPOLATION POLYNOMIAL

    polynomial al erpolation

    differencedivided s Newtonasknown

    x x x x x f x f

    n

    i

    i

    j jin

    int

    '

    ],...,,[)( 0

    1

    010

  • 8/13/2019 Interpolation in numerical methods

    22/51

    EX MPLE

    22

    CONSTRUCT A POLYNOMIAL OF DEGREE TWO WHICHINTERPOLATES THE FOLLOWING SET OF POINTS.

    x 1 2 3

    f(x) 0 2 6

    ALSO, FIND THE VALUE OF F(2.5)

    f(2.5)=3.75

  • 8/13/2019 Interpolation in numerical methods

    23/51

    Divided Difference Tablex F[ ] F[ , ] F[ , , ] F[ , , ,]

    x 0 F[x0] F[x 0 ,x 1] F[x 0 ,x 1, x 2 ] F[x 0 ,x 1 ,x 2 ,x 3 ]

    x 1 F[x 1 ] F[x 1 ,x 2] F[x 1 ,x 2 ,x 3 ]

    x 2 F[x 2 ] F[x 2 ,x 3]

    x 3 F[x 3 ]

  • 8/13/2019 Interpolation in numerical methods

    24/51

    Divided Difference Tablef(x i )

    0 -5

    1 -3-1 -15

    i xx F[ ] F[ , ] F[ , , ]

    0 -5 2 -4

    1 -3 6

    -1 -15

    Entries of the divided differencetable are obtained from the datatable using simple operations

  • 8/13/2019 Interpolation in numerical methods

    25/51

    Divided Difference Tablef(x i )

    0 -51 -3

    -1 -15

    i xx F[ ] F[ , ] F[ , , ]

    0 -5 2 -4

    1 -3 6

    -1 -15

    The first two column of the

    table are the data columns

    Third column : first order differences

    Fourth column: Second order differences

  • 8/13/2019 Interpolation in numerical methods

    26/51

    Divided Difference Table

    0 -5

    1 -3-1 -15

    i yi xx F[ ] F[ , ] F[ , , ]0 -5 2 -4

    1 -3 6

    -1 -15

    201

    )5(3

    01

    0110

    ][][],[

    x x x f x f

    x x f

  • 8/13/2019 Interpolation in numerical methods

    27/51

    Divided Difference Table

    0 -5

    1 -3-1 -15

    i yi xx F[ ] F[ , ] F[ , , ]0 -5 2 -4

    1 -3 6

    -1 -15

    611

    )3(15

    12

    1221

    ][][],[

    x x x f x f

    x x f

  • 8/13/2019 Interpolation in numerical methods

    28/51

    Divided Difference Table

    0 -5

    1 -3-1 -15

    i yi xx F[ ] F[ , ] F[ , , ]0 -5 2 -4

    1 -3 6

    -1 -15

    4)0(1

    )2(6

    02

    1021210

    ],[],[],,[

    x x x x f x x f

    x x x f

  • 8/13/2019 Interpolation in numerical methods

    29/51

    Divided Difference Table

    0 -5

    1 -3-1 -15

    i yi xx F[ ] F[ , ] F[ , , ]0 -5 2 -4

    1 -3 6

    -1 -15

    )1)(0(4)0(25)(2 x x x x f

    f 2 (x)= f[x 0 ]+ f[x 0 ,x 1 ] (x-x 0 )+ f[x 0 ,x 1 ,x 2 ] (x-x 0 )(x-x 1 )

  • 8/13/2019 Interpolation in numerical methods

    30/51

    Two Examples

    x y

    1 0

    2 3

    3 8

    Obtain the interpolating polynomials for the two examples

    x y

    2 3

    1 0

    3 8

    What do you observe?

  • 8/13/2019 Interpolation in numerical methods

    31/51

    Two Examples

    1

    )2)(1(1)1(30)(2

    2

    x

    x x x x P

    x Y

    1 0 3 1

    2 3 53 8

    x Y

    2 3 3 1

    1 0 43 8

    1

    )1)(2(1)2(33)(2

    2

    x

    x x x x P

    Ordering the points should not affect the interpolating polynomial

  • 8/13/2019 Interpolation in numerical methods

    32/51

    Properties of divided Difference

    ],,[],,[],,[ 012021210 x x x f x x x f x x x f

    Ordering the points should not affect the divided difference

  • 8/13/2019 Interpolation in numerical methods

    33/51

    ExampleFind a polynomial tointerpolate the data.

    x f(x)

    2 3

    4 5

    5 1

    6 6

    7 9

  • 8/13/2019 Interpolation in numerical methods

    34/51

    Example

    x f(x) f[ , ] f[ , , ] f[ , , , ] f[ , , , , ]2 3 1 -1.6667 1.5417 -0.6750

    4 5 -4 4.5 -1.83335 1 5 -16 6 37 9

    )6)(5)(4)(2(6750.0

    )5)(4)(2(5417.1)4)(2(6667.1)2(134 x x x x

    x x x x x x f

  • 8/13/2019 Interpolation in numerical methods

    35/51

    Examplefind a polynomial to interpolate

    both Newtons

    interpolation methodand Lagrangeinterpolation method

    must give the sameanswer

    x y

    0 1

    1 3

    2 2

    3 5

    4 4

  • 8/13/2019 Interpolation in numerical methods

    36/51

    Example 0 1 2 -3/2 1/6 -9/24

    1 3 -1 2 -4/3

    2 2 3 -2

    3 5 -1

    4 4

  • 8/13/2019 Interpolation in numerical methods

    37/51

    Interpolating Polynomial

    )3)(2)(1(249

    )2)(1(61

    )1(23

    )(21)(4

    x x x x

    x x x x x x x f

  • 8/13/2019 Interpolation in numerical methods

    38/51

    Interpolating Polynomial UsingLagrange Interpolation method

    343

    242

    141

    040

    434

    232

    131

    030

    424

    323

    121

    020

    414

    313

    212

    010

    404

    303

    202

    101

    4523)()(

    4

    3

    2

    1

    0

    43210

    4

    04

    x x x x

    x x x x

    x x x x

    x x x x

    x x x x

    x f x f i

    ii

    491

  • 8/13/2019 Interpolation in numerical methods

    39/51

    Inverse Interpolation

    g g g

    g

    y x f x

    y

    )(such thatFind

    andtableGiven the

    :Problem 0 x . .

    1 x n x

    0 y 1 y n yi x

    i y

    One approach :

    Use polynomial interpolation to obtain f n(x) to interpolate thedata then use Newtons method to find a solution to

    g g n y x f )(

  • 8/13/2019 Interpolation in numerical methods

    40/51

    Inverse Interpolation Alternative Approach

    0 x .

    .

    1 x n x

    0 y 1 y n y

    i x

    i y

    Inverse interpolation:

    1. Exchange the roles

    of x and y

    2. Perform polynomial

    Interpolation on the

    new table.

    3. Evaluate

    )( g n y f

    . .

    i y 0 y 1 y n y

    i x 0 x 1 x n x

  • 8/13/2019 Interpolation in numerical methods

    41/51

  • 8/13/2019 Interpolation in numerical methods

    42/51

  • 8/13/2019 Interpolation in numerical methods

    43/51

    Inverse InterpolationExample

    5.2)(such thatFind table.Given the

    :Problem

    g g x f x

    x 1 2 3y 3.2 2.0 1.6

    3.2 1 -.8333 1.04162.0 2 -2.5

    1.6 3

    2187.1)5.0)(7.0(0416.1)7.0(8333.01)5.2(

    )2)(2.3(0416.1)2.3(8333.01)(

    2

    2

    f

    y y y y f

  • 8/13/2019 Interpolation in numerical methods

    44/51

    -5 -4 -3 -2 -1 0 1 2 3 4 5-0.5

    0

    0.5

    1

    1.5

    2

    true function

    10 th order interpolating polynomial

    10 th order Polynomial Interpolation

  • 8/13/2019 Interpolation in numerical methods

    45/51

  • 8/13/2019 Interpolation in numerical methods

    46/51

    Errors in polynomial Interpolation Theorem

    1

    )1(1)(n

    )1(4P(x)-f(x)

    Then points).endthe(including b][a,in

    pointsspacedequally1natf esinterpolatthatndegreeof polynomialany beP(x)Let

    b],[a,oncontinuousis(x)f

    such thatfunctiona bef(x)Let

    n

    n

    nab

    n M

    M f

  • 8/13/2019 Interpolation in numerical methods

    47/51

    Example 1

    910

    1

    )1(

    1034.19

    6875.1)10(4

    1P(x)-f(x)

    )1(4P(x)-f(x)

    9,1

    01

    [0,1.6875]intervalin the points)spacedequally01(using

    f(x)einterpolatto polynomialorderth9usewant toWe sin(x)f(x)

    n

    n

    nab

    n M

    n M

    n for f

  • 8/13/2019 Interpolation in numerical methods

    48/51

    Interpolation Error

    n

    iinn

    n

    n

    x x x x x x f x f f (x)

    x x x

    f

    010

    10

    ],,...,,[)(nodeanot

    any xforthen,...,,nodesat thef(x)functionthe

    esinterpolatn thatdegreeof polynomialtheis(x)If

    Not useful. Why?

  • 8/13/2019 Interpolation in numerical methods

    49/51

    Approximation of the Interpolation Error

    n

    iinnn

    nn

    n

    n

    x x x x x x f x f f (x)

    be x f x Let

    x x x f

    0110

    11

    10

    ],,...,,[)(

    byedapproximatiserrorioninterpolatThe

    pointadditionalan))(,(

    ,...,,nodesat thef(x)functiontheesinterpolatn thatdegreeof polynomialtheis(x)If

  • 8/13/2019 Interpolation in numerical methods

    50/51

    Divided Difference Theorem

    )(10

    10)(

    !

    1],...,,[

    b][a,someforthen b][a,in pointsdistinct1nanyare,...,,if and b][a,oncontinuousis

    nn

    nn

    f n

    x x x f

    x x x f If

    10],...,,[then

    norderof polynomialas)(

    10 ni x x x f

    i x f If

    i

    1 4 1 0 02 5 1 03 6 14 7

    x x f 3)(

  • 8/13/2019 Interpolation in numerical methods

    51/51

    SummaryThe interpolating polynomial is uniqueDifferent methods can be used to obtain it

    Newtons Divided difference

    Lagrange interpolationothers

    Polynomial interpolation can be sensitiveto data.BE CAREFUL when high orderpolynomials are used

top related