introduction to deligne-lusztig theory

Post on 20-Jun-2022

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Introduction to Deligne-Lusztig Theory

Cedric Bonnafe

CNRS (UMR 6623) - Universite de Franche-Comte (Besancon)

Berkeley (MSRI), Feb. 2008

Γ group acting on X :

set

poset

...

Γ group acting on X :

set

poset

...

Γ group acting on X :

set

poset

...

Γ group acting on X :

set

poset

K -vector space

...

Γ group acting on X :

set

poset

K -vector space

variety

...

Γ group acting on X :

set

poset

K -vector space

variety

...

Γ group acting on X :

set

poset

K -vector space

variety

...

Γ group acting on X :

set K [X ]

poset

K -vector space

variety

...

Γ group acting on X :

set K [X ]

poset complex of chains

K -vector space

variety

...

Γ group acting on X :

set K [X ]

poset complex of chains cohomology groups

K -vector space

variety

...

Γ group acting on X :

set K [X ]

poset complex of chains cohomology groups

K -vector space

variety etale, `-adic cohomology

...

Γ group acting on X :

set K [X ]

poset complex of chains cohomology groups

K -vector space

variety etale, `-adic cohomology

...

Deligne (SGA 412, 1976). “Les exposes I a VI de SGA 4 donnent

la theorie generale des topologies de Grothendieck. Tres detailles, ilspeuvent etre precieux lors de l’etude de topologies exotiques, telle cellequi donne naissance a la topologie cristalline. Pour la topologie etale,si proche de l’intuition classique, un garde-fou si imposant n’est pasnecessaire : il suffit de connaıtre (par exemple), le livre de Godement,et d’avoir un peu de foi. (...)”

“Chapters I-VI of SGA 4 develop the general theory of Grothendiecktopologies. Very detailed, they may be a valuable tool for studyingexotic topologies, such as the one yielding the crystalline topology.For etale topology, so close to classical intuition, such imposingsafetynet is not necessary : it is sufficient to know (for instance),Godement’s book, and to have some faith. (...)”

Deligne (SGA 412, 1976). “Les exposes I a VI de SGA 4 donnent

la theorie generale des topologies de Grothendieck. Tres detailles, ilspeuvent etre precieux lors de l’etude de topologies exotiques, telle cellequi donne naissance a la topologie cristalline. Pour la topologie etale,si proche de l’intuition classique, un garde-fou si imposant n’est pasnecessaire : il suffit de connaıtre (par exemple), le livre de Godement,et d’avoir un peu de foi. (...)”

“Chapters I-VI of SGA 4 develop the general theory of Grothendiecktopologies. Very detailed, they may be a valuable tool for studyingexotic topologies, such as the one yielding the crystalline topology.For etale topology, so close to classical intuition, such imposingsafetynet is not necessary : it is sufficient to know (for instance),Godement’s book, and to have some faith. (...)”

Let p be a prime number, F = Fp

Let V be an algebraic variety over FLet Γ be a group acting on V

Let ` be a prime number 6= p

To this datum is associated a family of finite dimensionalQ -vector spaces H i

c(V), which are acted on by Γ .

We denote by H∗c (V) the element of the Grothendieck group of the

category of finite dimensional Q Γ -modules equal to

H∗c (V) =

∑i

(−1)i [H ic(V)]

Let p be a prime number, F = Fp

Let V be an algebraic variety over F

Let Γ be a group acting on V

Let ` be a prime number 6= p

To this datum is associated a family of finite dimensionalQ -vector spaces H i

c(V), which are acted on by Γ .

We denote by H∗c (V) the element of the Grothendieck group of the

category of finite dimensional Q Γ -modules equal to

H∗c (V) =

∑i

(−1)i [H ic(V)]

Let p be a prime number, F = Fp

Let V be an algebraic variety over FLet Γ be a group acting on V

Let ` be a prime number 6= p

To this datum is associated a family of finite dimensionalQ -vector spaces H i

c(V), which are acted on by Γ .

We denote by H∗c (V) the element of the Grothendieck group of the

category of finite dimensional Q Γ -modules equal to

H∗c (V) =

∑i

(−1)i [H ic(V)]

Let p be a prime number, F = Fp

Let V be an algebraic variety over FLet Γ be a group acting on V

Let ` be a prime number 6= p

To this datum is associated a family of finite dimensionalQ -vector spaces H i

c(V), which are acted on by Γ .

We denote by H∗c (V) the element of the Grothendieck group of the

category of finite dimensional Q Γ -modules equal to

H∗c (V) =

∑i

(−1)i [H ic(V)]

Let p be a prime number, F = Fp

Let V be an algebraic variety over FLet Γ be a group acting on V

Let ` be a prime number 6= p

To this datum is associated a family of finite dimensionalQ -vector spaces H i

c(V), which are acted on by Γ .

We denote by H∗c (V) the element of the Grothendieck group of the

category of finite dimensional Q Γ -modules equal to

H∗c (V) =

∑i

(−1)i [H ic(V)]

Let p be a prime number, F = Fp

Let V be an algebraic variety over FLet Γ be a group acting on V

Let ` be a prime number 6= p

To this datum is associated a family of finite dimensionalQ -vector spaces H i

c(V), which are acted on by Γ .

We denote by H∗c (V) the element of the Grothendieck group of the

category of finite dimensional Q Γ -modules equal to

H∗c (V) =

∑i

(−1)i [H ic(V)]

Hic(P

1) ?

P1 = A1 ∪ {∞}: rule (3) ⇒

Hic(P

1) ?

P1 = A1 ∪ {∞}:

rule (3) ⇒

Hic(P

1) ?

P1 = A1 ∪ {∞}: rule (3) ⇒0 // H0

c (A1) // H0c (P1) // H0

c ({∞})

// H1c (A1) // H1

c (P1) // H1c ({∞})

// H2c (A1) // H2

c (P1) // H2c ({∞}) // 0

Hic(P

1) ?

P1 = A1 ∪ {∞}: rule (3) ⇒0 // 0 // H0

c (P1) // H0c ({∞})

// 0 // H1c (P1) // H1

c ({∞})

// Q // H2c (P1) // H2

c ({∞}) // 0

Hic(P

1) ?

P1 = A1 ∪ {∞}: rule (3) ⇒0 // 0 // H0

c (P1) // Q

// 0 // H1c (P1) // 0

// Q // H2c (P1) // 0 // 0

Hic(P

1) ?

P1 = A1 ∪ {∞}: rule (3) ⇒0 // 0 // H0

c (P1) // Q

// 0 // H1c (P1) // 0

// Q // H2c (P1) // 0 // 0

H ic(P

1) =

{Q if i = 0, 2

0 otherwise

Hic(P

1) ?

P1 = A1 ∪ {∞}: rule (3) ⇒0 // 0 // H0

c (P1) // Q

// 0 // H1c (P1) // 0

// Q // H2c (P1) // 0 // 0

H ic(P

1) =

{Q if i = 0, 2

0 otherwiseas G -modules! (rule (7))

The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G(aij) 7−→ (aq

ij),

GF = GLn(Fq).

The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G(aij) 7−→ (aq

ij),

GF = GLn(Fq).

The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G(aij) 7−→ (aq

ij),

GF = GLn(Fq).

The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G(aij) 7−→ (aq

ij),

GF = GLn(Fq).

The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G(aij) 7−→ (aq

ij),

GF = GLn(Fq).

The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G(aij) 7−→ (aq

ij),

GF = GLn(Fq).

LetL : G −→ G

g 7−→ g−1F (g)

be the Lang map.

Then L is surjective and

L (g) = L (g ′) ⇐⇒ ∃ x ∈ GF , g ′ = xg .

Let Z a subvariety of G (locally closed): then GF acts (on the left)on L −1(Z).

LetL : G −→ G

g 7−→ g−1F (g)

be the Lang map.Then L is surjective and

L (g) = L (g ′) ⇐⇒ ∃ x ∈ GF , g ′ = xg .

Let Z a subvariety of G (locally closed): then GF acts (on the left)on L −1(Z).

LetL : G −→ G

g 7−→ g−1F (g)

be the Lang map.Then L is surjective and

L (g) = L (g ′) ⇐⇒ ∃ x ∈ GF , g ′ = xg .

Let Z a subvariety of G (locally closed): then GF acts (on the left)on L −1(Z).

Deligne-Lusztig (1976) - Construction of a class of “interesting”varieties

Lusztig (1976-77-78-79-80-81-82-83-84) -I Parametrization of irreducible charactersI Computation of their degreesI Algorithm for values at a semisimple elementI ...

Deligne-Lusztig (1976) - Construction of a class of “interesting”varieties

Lusztig (1976-77-78-79-80-81-82-83-84) -I Parametrization of irreducible characters

I Computation of their degreesI Algorithm for values at a semisimple elementI ...

Deligne-Lusztig (1976) - Construction of a class of “interesting”varieties

Lusztig (1976-77-78-79-80-81-82-83-84) -I Parametrization of irreducible charactersI Computation of their degrees

I Algorithm for values at a semisimple elementI ...

Deligne-Lusztig (1976) - Construction of a class of “interesting”varieties

Lusztig (1976-77-78-79-80-81-82-83-84) -I Parametrization of irreducible charactersI Computation of their degreesI Algorithm for values at a semisimple element

I ...

Deligne-Lusztig (1976) - Construction of a class of “interesting”varieties

Lusztig (1976-77-78-79-80-81-82-83-84) -I Parametrization of irreducible charactersI Computation of their degreesI Algorithm for values at a semisimple elementI ...

Drinfeld (1974) - Starting example: SL2(Fq) actson {(x , y) ∈ F2 | xyq − yxq = 1}

Deligne-Lusztig (1976) - Construction of a class of “interesting”varieties

Lusztig (1976-77-78-79-80-81-82-83-84) -I Parametrization of irreducible charactersI Computation of their degreesI Algorithm for values at a semisimple elementI ...

Drinfeld (1974) - Starting example: SL2(Fq) actson {(x , y) ∈ F2 | xyq − yxq = 1}

Deligne-Lusztig (1976) - Construction of a class of “interesting”varieties

Lusztig (1976-77-78-79-80-81-82-83-84) -I Parametrization of irreducible charactersI Computation of their degreesI Algorithm for values at a semisimple elementI ...

The group G × (µq+1 o 〈F 〉) acts on A2 and stabilizes

Y = {(x , y) ∈ A2 | xyq − yxq = 1}

If θ ∈ (µq+1)∧, let H i

c(Y)θ denote the θ-isotypic component ofH i

c(Y): it is a Q G -module.

Let R ′θ = −[H∗

c (Y)θ] = [H1c (Y)θ] − [H2

c (Y)θ]

This is Deligne-Lusztig induction.

The group G × (µq+1 o 〈F 〉) acts on A2 and stabilizes

Y = {(x , y) ∈ A2 | xyq − yxq = 1}

If θ ∈ (µq+1)∧, let H i

c(Y)θ denote the θ-isotypic component ofH i

c(Y)

: it is a Q G -module.

Let R ′θ = −[H∗

c (Y)θ] = [H1c (Y)θ] − [H2

c (Y)θ]

This is Deligne-Lusztig induction.

The group G × (µq+1 o 〈F 〉) acts on A2 and stabilizes

Y = {(x , y) ∈ A2 | xyq − yxq = 1}

If θ ∈ (µq+1)∧, let H i

c(Y)θ denote the θ-isotypic component ofH i

c(Y): it is a Q G -module.

Let R ′θ = −[H∗

c (Y)θ] = [H1c (Y)θ] − [H2

c (Y)θ]

This is Deligne-Lusztig induction.

The group G × (µq+1 o 〈F 〉) acts on A2 and stabilizes

Y = {(x , y) ∈ A2 | xyq − yxq = 1}

If θ ∈ (µq+1)∧, let H i

c(Y)θ denote the θ-isotypic component ofH i

c(Y): it is a Q G -module.

Let R ′θ = −[H∗

c (Y)θ] = [H1c (Y)θ] − [H2

c (Y)θ]

This is Deligne-Lusztig induction.

The group G × (µq+1 o 〈F 〉) acts on A2 and stabilizes

Y = {(x , y) ∈ A2 | xyq − yxq = 1}

If θ ∈ (µq+1)∧, let H i

c(Y)θ denote the θ-isotypic component ofH i

c(Y): it is a Q G -module.

Let R ′θ = −[H∗

c (Y)θ] = [H1c (Y)θ] − [H2

c (Y)θ]

This is Deligne-Lusztig induction.

Quotient by µq+1.

The mapπ : Y −→ P1

(x , y) 7−→ [x : y ]

is G -equivariant.

The image of π is P1 \ P1(Fq).

π(x , y) = π(x ′, y ′) ⇐⇒ ∃ ξ ∈ µq+1, (x ′, y ′) = ξ(x , y).

Y

π

%%JJJJJJJJJJJJJJJJJJJJJ

��Y/µq+1 P1 \ P1(Fq)

Quotient by µq+1.

The mapπ : Y −→ P1

(x , y) 7−→ [x : y ]

is G -equivariant.

The image of π is P1 \ P1(Fq).

π(x , y) = π(x ′, y ′) ⇐⇒ ∃ ξ ∈ µq+1, (x ′, y ′) = ξ(x , y).

Y

π

%%JJJJJJJJJJJJJJJJJJJJJ

��Y/µq+1 P1 \ P1(Fq)

Quotient by µq+1.

The mapπ : Y −→ P1

(x , y) 7−→ [x : y ]

is G -equivariant.

The image of π is P1 \ P1(Fq).

π(x , y) = π(x ′, y ′) ⇐⇒ ∃ ξ ∈ µq+1, (x ′, y ′) = ξ(x , y).

Y

π

%%JJJJJJJJJJJJJJJJJJJJJ

��Y/µq+1 P1 \ P1(Fq)

Quotient by µq+1.

The mapπ : Y −→ P1

(x , y) 7−→ [x : y ]

is G -equivariant.

The image of π is P1 \ P1(Fq).

π(x , y) = π(x ′, y ′) ⇐⇒ ∃ ξ ∈ µq+1, (x ′, y ′) = ξ(x , y).

Y

π

%%JJJJJJJJJJJJJJJJJJJJJ

��Y/µq+1 P1 \ P1(Fq)

Quotient by µq+1.

The mapπ : Y −→ P1

(x , y) 7−→ [x : y ]

is G -equivariant.

The image of π is P1 \ P1(Fq).

π(x , y) = π(x ′, y ′) ⇐⇒ ∃ ξ ∈ µq+1, (x ′, y ′) = ξ(x , y).

Y

π

%%JJJJJJJJJJJJJJJJJJJJJ

��Y/µq+1 P1 \ P1(Fq)

Quotient by µq+1.

The mapπ : Y −→ P1

(x , y) 7−→ [x : y ]

is G -equivariant.

The image of π is P1 \ P1(Fq).

π(x , y) = π(x ′, y ′) ⇐⇒ ∃ ξ ∈ µq+1, (x ′, y ′) = ξ(x , y).

Y

π

%%JJJJJJJJJJJJJJJJJJJJJ

��Y/µq+1

//______ P1 \ P1(Fq)

Quotient by µq+1.

The mapπ : Y −→ P1

(x , y) 7−→ [x : y ]

is G -equivariant.

The image of π is P1 \ P1(Fq).

π(x , y) = π(x ′, y ′) ⇐⇒ ∃ ξ ∈ µq+1, (x ′, y ′) = ξ(x , y).

Y

π

%%JJJJJJJJJJJJJJJJJJJJJ

��Y/µq+1

∼ //______ P1 \ P1(Fq)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq))

=︸︷︷︸rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

First decomposition of H∗c (Y)

H ic(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗c (Y)1 =︸︷︷︸

rule (5∗)

H∗c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸rule(20)

= 1G − StG

⇒ H1c (Y)1 = StG .

F (H1c (Y))θ = H1

c (Y)θ−1 (as G -modules)

Quotient by U.

The mapυ : Y −→ A1 \ {0}

(x , y) 7−→ y

is µq+1-equivariant.

υ is surjective.

υ(x , y) = υ(x ′, y ′) ⇐⇒ ∃ u ∈ U , (x ′, y ′) = u · (x , y).

Y

υ

##GGGGGGGGGGGGGGGGGGG

��Y/U A1 \ {0}

Quotient by U.

The mapυ : Y −→ A1 \ {0}

(x , y) 7−→ y

is µq+1-equivariant.

υ is surjective.

υ(x , y) = υ(x ′, y ′) ⇐⇒ ∃ u ∈ U , (x ′, y ′) = u · (x , y).

Y

υ

##GGGGGGGGGGGGGGGGGGG

��Y/U A1 \ {0}

Quotient by U.

The mapυ : Y −→ A1 \ {0}

(x , y) 7−→ y

is µq+1-equivariant.

υ is surjective.

υ(x , y) = υ(x ′, y ′) ⇐⇒ ∃ u ∈ U , (x ′, y ′) = u · (x , y).

Y

υ

##GGGGGGGGGGGGGGGGGGG

��Y/U A1 \ {0}

Quotient by U.

The mapυ : Y −→ A1 \ {0}

(x , y) 7−→ y

is µq+1-equivariant.

υ is surjective.

υ(x , y) = υ(x ′, y ′) ⇐⇒ ∃ u ∈ U , (x ′, y ′) = u · (x , y).

Y

υ

##GGGGGGGGGGGGGGGGGGG

��Y/U A1 \ {0}

Quotient by U.

The mapυ : Y −→ A1 \ {0}

(x , y) 7−→ y

is µq+1-equivariant.

υ is surjective.

υ(x , y) = υ(x ′, y ′) ⇐⇒ ∃ u ∈ U , (x ′, y ′) = u · (x , y).

Y

υ

##GGGGGGGGGGGGGGGGGGG

��Y/U A1 \ {0}

Quotient by U.

The mapυ : Y −→ A1 \ {0}

(x , y) 7−→ y

is µq+1-equivariant.

υ is surjective.

υ(x , y) = υ(x ′, y ′) ⇐⇒ ∃ u ∈ U , (x ′, y ′) = u · (x , y).

Y

υ

##GGGGGGGGGGGGGGGGGGG

��Y/U //______ A1 \ {0}

Quotient by U.

The mapυ : Y −→ A1 \ {0}

(x , y) 7−→ y

is µq+1-equivariant.

υ is surjective.

υ(x , y) = υ(x ′, y ′) ⇐⇒ ∃ u ∈ U , (x ′, y ′) = u · (x , y).

Y

υ

##GGGGGGGGGGGGGGGGGGG

��Y/U ∼ //______ A1 \ {0}

dim H1c (Y)θ?

Rule (6) ⇒ if ξ ∈ µq+1, ξ 6= 1, then

Tr(ξ, H∗c (Y)) = Tr(1, H∗

c (Yξ)).

But Yξ = ∅. So Tr(ξ, H∗c (Y)) = 0.

Therefore, as a µq+1-module, H∗c (Y) is a multiple of the regular

representation Q µq+1.So

dim R ′θ = dim R ′

1 = q − 1.

dim H1c (Y)θ?

Rule (6) ⇒ if ξ ∈ µq+1, ξ 6= 1, then

Tr(ξ, H∗c (Y)) = Tr(1, H∗

c (Yξ)).

But Yξ = ∅. So Tr(ξ, H∗c (Y)) = 0.

Therefore, as a µq+1-module, H∗c (Y) is a multiple of the regular

representation Q µq+1.So

dim R ′θ = dim R ′

1 = q − 1.

dim H1c (Y)θ?

Rule (6) ⇒ if ξ ∈ µq+1, ξ 6= 1, then

Tr(ξ, H∗c (Y)) = Tr(1, H∗

c (Yξ)).

But Yξ = ∅. So Tr(ξ, H∗c (Y)) = 0.

Therefore, as a µq+1-module, H∗c (Y) is a multiple of the regular

representation Q µq+1.So

dim R ′θ = dim R ′

1 = q − 1.

dim H1c (Y)θ?

Rule (6) ⇒ if ξ ∈ µq+1, ξ 6= 1, then

Tr(ξ, H∗c (Y)) = Tr(1, H∗

c (Yξ)).

But Yξ = ∅. So Tr(ξ, H∗c (Y)) = 0.

Therefore, as a µq+1-module, H∗c (Y) is a multiple of the regular

representation Q µq+1.

So

dim R ′θ = dim R ′

1 = q − 1.

dim H1c (Y)θ?

Rule (6) ⇒ if ξ ∈ µq+1, ξ 6= 1, then

Tr(ξ, H∗c (Y)) = Tr(1, H∗

c (Yξ)).

But Yξ = ∅. So Tr(ξ, H∗c (Y)) = 0.

Therefore, as a µq+1-module, H∗c (Y) is a multiple of the regular

representation Q µq+1.So

dim R ′θ = dim R ′

1 = q − 1.

Quotient by G .

The mapγ : Y −→ A1

(x , y) 7−→ xyq2− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CCCC

CCCC

CCCC

CCCC

C

��Y/G A1

Quotient by G .

The mapγ : Y −→ A1

(x , y) 7−→ xyq2− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CCCC

CCCC

CCCC

CCCC

C

��Y/G A1

Quotient by G .

The mapγ : Y −→ A1

(x , y) 7−→ xyq2− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CCCC

CCCC

CCCC

CCCC

C

��Y/G A1

Quotient by G .

The mapγ : Y −→ A1

(x , y) 7−→ xyq2− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CCCC

CCCC

CCCC

CCCC

C

��Y/G A1

Quotient by G .

The mapγ : Y −→ A1

(x , y) 7−→ xyq2− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CCCC

CCCC

CCCC

CCCC

C

��Y/G A1

Quotient by G .

The mapγ : Y −→ A1

(x , y) 7−→ xyq2− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CCCC

CCCC

CCCC

CCCC

C

��Y/G //______ A1

Quotient by G .

The mapγ : Y −→ A1

(x , y) 7−→ xyq2− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CCCC

CCCC

CCCC

CCCC

C

��Y/G ∼ //______ A1

All irreducibles characters?

1G : degree 1

StG : degree q

Rα, α2 6= 1: degree q + 1 (there are (q − 3)/2 such characters)

R±α0

: degree (q + 1)/2

R ′θ, θ2 6= 1: degree q − 1 (there are (q − 1)/2 such characters)

R ′±θ0

: degree d±

So d+ + d− = q − 1 and

d2+ + d2

− 6 |G | − (sum of squares of others) =(q − 1)2

2.

So d+ = d− =q − 1

2and

Irr G = {1G , StG , Rα, R±α0

, R ′θ, R

′±θ0

}

All irreducibles characters?

1G : degree 1

StG : degree q

Rα, α2 6= 1: degree q + 1 (there are (q − 3)/2 such characters)

R±α0

: degree (q + 1)/2

R ′θ, θ2 6= 1: degree q − 1 (there are (q − 1)/2 such characters)

R ′±θ0

: degree d±

So d+ + d− = q − 1 and

d2+ + d2

− 6 |G | − (sum of squares of others) =(q − 1)2

2.

So d+ = d− =q − 1

2and

Irr G = {1G , StG , Rα, R±α0

, R ′θ, R

′±θ0

}

All irreducibles characters?

1G : degree 1

StG : degree q

Rα, α2 6= 1: degree q + 1 (there are (q − 3)/2 such characters)

R±α0

: degree (q + 1)/2

R ′θ, θ2 6= 1: degree q − 1 (there are (q − 1)/2 such characters)

R ′±θ0

: degree d±

So d+ + d− = q − 1 and

d2+ + d2

− 6 |G | − (sum of squares of others) =(q − 1)2

2.

So d+ = d− =q − 1

2and

Irr G = {1G , StG , Rα, R±α0

, R ′θ, R

′±θ0

}

All irreducibles characters?

1G : degree 1

StG : degree q

Rα, α2 6= 1: degree q + 1 (there are (q − 3)/2 such characters)

R±α0

: degree (q + 1)/2

R ′θ, θ2 6= 1: degree q − 1 (there are (q − 1)/2 such characters)

R ′±θ0

: degree d±

So d+ + d− = q − 1 and

d2+ + d2

− 6 |G | − (sum of squares of others) =(q − 1)2

2.

So d+ = d− =q − 1

2and

Irr G = {1G , StG , Rα, R±α0

, R ′θ, R

′±θ0

}

All irreducibles characters?

1G : degree 1

StG : degree q

Rα, α2 6= 1: degree q + 1 (there are (q − 3)/2 such characters)

R±α0

: degree (q + 1)/2

R ′θ, θ2 6= 1: degree q − 1 (there are (q − 1)/2 such characters)

R ′±θ0

: degree d±

So d+ + d− = q − 1 and

d2+ + d2

− 6 |G | − (sum of squares of others)

=(q − 1)2

2.

So d+ = d− =q − 1

2and

Irr G = {1G , StG , Rα, R±α0

, R ′θ, R

′±θ0

}

All irreducibles characters?

1G : degree 1

StG : degree q

Rα, α2 6= 1: degree q + 1 (there are (q − 3)/2 such characters)

R±α0

: degree (q + 1)/2

R ′θ, θ2 6= 1: degree q − 1 (there are (q − 1)/2 such characters)

R ′±θ0

: degree d±

So d+ + d− = q − 1 and

d2+ + d2

− 6 |G | − (sum of squares of others) =(q − 1)2

2.

So d+ = d− =q − 1

2and

Irr G = {1G , StG , Rα, R±α0

, R ′θ, R

′±θ0

}

All irreducibles characters?

1G : degree 1

StG : degree q

Rα, α2 6= 1: degree q + 1 (there are (q − 3)/2 such characters)

R±α0

: degree (q + 1)/2

R ′θ, θ2 6= 1: degree q − 1 (there are (q − 1)/2 such characters)

R ′±θ0

: degree d±

So d+ + d− = q − 1 and

d2+ + d2

− 6 |G | − (sum of squares of others) =(q − 1)2

2.

So d+ = d− =q − 1

2and

Irr G = {1G , StG , Rα, R±α0

, R ′θ, R

′±θ0

}

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG

(in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori

(ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number ofunipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (ingeneral, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to“non-split” tori

What has been hidden?

Etale topology...• •N

^

Character values

Weyl groups

Some references

Deligne-Lusztig, Representations of finite reductive groups,Ann. of Math. 103 (1976), 103-161

Lusztig, Representations of finite Chevalley groups, CBMSProc. Conf. (1977)

Lusztig’s orange book, Characters of finite reductivegroups, Ann. of Math. Studies (1984)

Cedric Bonnafe (CNRS, Besancon, France) Deligne-Lusztig theory Berkeley (MSRI), Feb. 2008 17 / 17

top related