ion-beam induced surface chemical effects metal oxides & nitrides 1989-2001

Post on 10-Jan-2016

33 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Ion-beam Induced Surface Chemical Effects Metal Oxides & Nitrides 1989-2001. Imre Bertóti Institute of Materials and Environmental Chemistry Chemical Research Center, Hungarian Academy of Sciences bertoti@chemres.hu 2003. september. MTA KK AKI – Nanoréteg Kémiai Laboratórium Tóth András * - PowerPoint PPT Presentation

TRANSCRIPT

Ion-beam Induced Surface Chemical Effects

Metal Oxides & Nitrides 1989-2001

Imre Bertóti Institute of Materials and Environmental Chemistry

Chemical Research Center, Hungarian Academy of Sciencesbertoti@chemres.hu

2003. september

RÉSZTVEVŐK - EGYÜTTMŰKÖDŐK

MTA KK AKI – Nanoréteg Kémiai Laboratórium

• Tóth András*• Mohai Miklós Gulyás László techn.• Ujvári Tamás• Kereszturi Klára

Hazai partnereink: Külföldi együttműködők:

• Gyulai József T. Bell Prof. † • Menyhárd Miklós R. Kelly• Radnóczi György G. Marletta Prof. • Sulyok Attila J. Sullivan Prof.• Sáfrán György• Geszti Olga• Szedlacsek Katalin• Ferenc Kárpát• Szörényi Tamás >65 közlemény• Sokan Mások ... >300 hivatkozás

• 1. Tárgya és eszköze a tudományos kutatásnak

• 1.1. A kutatás tárgya• Porlasztás, nem-egyensúlyi rendszerek • Ionsugarak okozta kémiai változások• 1.2. A kutatás eszköze• Szekunder-ion tömegspektroszkópia (SIMS)• Ion-porlasztásos mélységi analizis (XPS, AES, SNMS)• Ion-reflexiós felületanalizis (ISS)• 2. Eszköze technológiai feladatok

megodásának• 2.1. Ion-porlasztásos rétegnövesztés• Mikroelektronika, Napelemek, Optika, Tribológia• 2.2. Ionimplantáció• Mikroelektronika, Kopásállóság, Korrózióállóság • 2.3. Ionsugaras felületkezelés• Elektromos tulajdonságok, Adhézió, Nedvesedés

Gyorsított ionok kölcsönhatása szilárdtestekkel

MaterialsAl2O3 single crystal (0112) B2O3 fused sheet

TiO2 single crystal (100) SiO2 s. cryst., glass

ZrO2 single crystal (100) GeO2 pelleted powder

V2O5 single crystal (010) Nb2O5 pelleted powder

Cr-O-Si cermet film, Si-O-Si-org. polymer

TiN, ZrN, CrN single/poly cryst. films

Ion BombardmentKratos MacroBeam ion gun1-5 keV Ar, He, N2, O2, N2O, H2

typical current density: ~10-6 A/cm2

fluence for steady state: ~1017 ions/cm2

XPS AnalysisKratos XSAM 800 spectrometerMg K radiation (1253.6 eV)Kratos Vision and XPS MultiQuant software

Experimental

Primary ion

Secondary ions/neutrals

0

5

5D

ep

th

(Å)

-Surface

-Contamination

Ion

bombardment:

Ar+, He+, N2+, O2

+, N2O+

Ep = 1.0 - 5 keV

Id = 1 - 10 μA/cm2

Collision cascade (˜10-16 s)

B.E.

I

Ion gun

Electron energy analyzer

X-ray gun

UHV system

Sample lock

Data acquisition and processing

Electron detector

X-ray Photoelectr

on Spectromet

er

TiO2 single crystal Ar+-O2+-N2

+

V2O5 single crystal Ar+-N2+

Nb2O5 bombarded by Ar+

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80

Ion bombardment time (min)

Ato

mic

rat

ioO Si N O+N

SiO2 (glass) Ar+-N2+-Ar+

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

Ion Bombadrment Time (min)

Ato

mic

Ra

tio

O

N

B

N+O

B2O3 Ar+-N2+-Ar+

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Ion Bombadrment Time (min)

Ato

mic

Ra

tio

O

Ti

N

N+O

TiO2 single cryst. Ar+-O2+-N2

+-O2+

N1s peak shape recorded

on different oxides after N2

+ bombardment

(1989-90)

410 405 400 395

N2

+ 5.0 KeV

N2

+ 3.5 KeV

N2

+ 2.0 KeV

N2

+ 1.0 KeV

N2

+ 0.5 KeV

403.4 eV 396.35 eV

N1sIn

tensity (

a.u

.)

85 80 75 70 65

N2

+ 5.0 KeV

N2

+ 3.5 KeV

N2

+ 2.0 KeV

N2

+ 1.0 KeV

N2

+ 0.5 KeV

original

Al2p

Inte

nsity (

a.u

.)

Binding Energy (eV)

545 540 535 530 525

N2

+ 5.0 KeV

N2

+ 3.5 KeV

N2

+ 2.0 KeV

N2

+ 1.0 KeV

N2

+ 0.5 KeV

original

O1s

Inte

nsity (

a.u

.)

Al2O3 single crystal bombarded by N2

+

0 1 2 3 4 50,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

Inte

nsi

ty R

atio

(XP

S)

ion energy (keV)

O/Al N/Al

Al2O3 single crystal bombarded by N2

+

540 535 530 525 520

0

10000

20000

30000

40000

50000

Energy reference: O1s at 531.0Normalizado al area del Al2p

O1s sph49, O2+ 2 kV 45 min

sph50, N2+ 0.5 kV 30 min

sph51, N2+ 1 kV 30 min

sph52, N2+ 2 kV 30 min

sph54, N2+ 3.5 kV 30 min

sph55, N2+ 5 kV 30 min

Inte

nsity

(a.

u.)

Binding Energy (eV)

Al2O3 single crystal bombarded by N2

+

85 80 75 70 65

0

2000

4000

6000

8000

Energy reference: O1s at 531.0

Normalizado al area del Al2p

Al2p sph49, O2+ 2 kV 45 min

sph50, N2+ 0.5 kV 30 min

sph51, N

Inte

nsity

(a.

u.)

Binding Energy (eV)

Al2O3 single crystal bombarded by N2

+

415 410 405 400 395 390 385

2000

3000

4000

5000

6000

7000

8000

9000

10000

402.9 eV 395.85 eV

Energy reference: O1s at 531.0

Normalizado al area del Al2poriginal treatment: O2

+ 2 kV, 45 min

N1s sph50,N2

+ 0.5 kV, 30 min sph51,N2

+ 1 kV, 30 min sph52,N2

+ 2 kV, 30 min sph54,N2

+ 3.5 kV, 30 min sph55,N2

+ 5 kV, 30 min

Inte

nsity

(a.

u.)

Binding Energy (eV)

Al2O3 single crystal bombarded by N2

+

0 100 200 300 400 500 600 7000,2

0,4

1,2

1,4

1,6

Heating under vacuum Temperature (ºC)

O/Al N/Al

Inte

nsity

Rat

Al2O3 single crystal

Heat treatmentafter 5 keV N2

+

bombardment

410 405 400 395 390

Vacuum at 650ºC

Vacuum at 550ºC

Vacuum at 450ºC

N2

+ 5 kV

Binding Energy (eV)

N1s

Al2O3 single crystal heat treated after N2

+

TRIM calculation of the ranges and energy deposition parameters at N bombardment of Al2O3

*Taken as a sum of the mean projected range and the longitudinal straggling

r{O2-} = 1.32 Å - 2/3 octahedral sites occupied by Al, 1/3 is empty

Kérdések• Mitől függ a redukció mértéke Ar+ esetén

• Miért nagyobb az oxigén-hiány N2+ esetén

• Miért alakul ki 1:1 arányu N – O helyettesítés

SiO2 Si—O—Si

Si

Si3N4 Si—N—Si

O loss at N2+ bombardment

0

10

20

30

40

50

60

0.00 0.50 1.00 1.50 2.00 2.50ΔHoxid-ΔHnitrid eV

O l

os

s %

Loss of oxygen in % of stoichiometric state

Cr-Si-O thin film Ar+-He+-Ar+-N2+ bombardment

Cr:Si:O=0.9:1:1.1 (RBS) Heat treated at 400 0C

Si-O compounds bombarded by Ar+

SiO2

SiO1.3

Cr-O-SiSi2p

Si4+

Si3+

Si1+

Si0

SiO1.3

Si2+

Cr-O-Si

Si-O compounds bombarded by Ar+

(CrOSi) → SiOx + CrSiy

PVTMS

PMSSO

Auger parameter plot of Si compounds

0

1

2

3

4

0 5 10 15 20

Fluence (x1016 ion/cm2)

Ato

mic

ra

tio

O/Si

Cr/Si

1

2

34

56

7

8

He+ He+Ar+ Ar+

Cr-O-Si cermet layer bombarded by He+ and Ar+

Cr - O - Si =0.9 : 1.1 : 1

The maximum energy transferred from the projectile to the Cr:O:Si target

Etmax / Ep = 4 Mp Mt / (Mp+Mt)2

─────────────────────────────────────

Ion O Cr Si────────────────────────────────

─────

He+ 0.64 0.26 0.44Ar+ 0.82 0.98 0.97

─────────────────────────────────────

Results of TRIM calculation and average energy-deposition to

Cr:Si:O=1:1:1

Konkluziók Ar+ ionbombázás hatására az oxigén bizonyos hányada preferáltan távozik

minden (vizsgált) oxidból. A metastabilis oxigén-hiányos állapot kb. 1017 ions/cm2 dózisnál alakul ki és nem csökken tovább a dózis növelésével. O2

+ bombázással az eredeti O/M arány megközelítőleg visszaállítható.

N2+ bombázás hatására az O/M arány tovább csökkethető és nitrogén építhető

be, a megfelelő nitridekre jellemző N-M kötések kialakulásával, annak ellenére, hogy az oxidok TD stabilitása a nitridekénél nagyobb.

Ar+ ionbombázás hatására létrejött O/M arány megegyezik a N2+ bombázás

hatására kialakuló O+N/M aránnyal.

Nitrid típusu nitrogén beépülése az oxid rácsba csak ‘további’ oxigén eltávolításakor lehetséges (második oxigén vakancia helyére). Minnél kevésbé gátolt termodinamikailag az oxid-nitrid átalakulás (ΔHoxid-ΔHnitrid), annál nagyobb a beépülő nitrogén mennyisége.

A relaxáció folyamatának kémiai meghatározottságát a Cr-Si-O esetében a N2

+ bombázáskor is észleltük, amikor kimutattuk, hogy az Ar+ ionokkal keltett Cr-Cr, Si-Si és Cr-Si kötéseknél stabilisabb Cr-N és Si-N kötések alakulnak ki.

Ion bombardment of metal and carbon nitrides

TiN, ZrN, CrN, CNx

TiN single cryst.film Ar+ and N2+ bombardment

Ti2p

Ion bombardment of titanium nitride

N1s

Ar+

N2+

Difference

5.8 eV

TiN-1

TiN-1

Ar+ N2+

Difference

Subsequent Ar+ and N2+ bombardment

ZrN bombarded by Ar+-N2+- Ar+

ZrN

Difference

Ar+

N2+

Effect of subsequent Ar+ and N2+

bombardment

N1s line-shape of various nitrides

Conclusions

XPS can be applied as a simple tool for complex characterization of nitride coatings

In addition to determination of composition, chemical state identification is straightforward (CrN, Cr2N)

Minor compositional and chemical state changes can be detected and unambiguously interpreted also for nano- and amorphous phases

Data obtained on Ti N1+x and ZrN1+x coatings, besides of supporting earlier results, evidencing the existence of new compounds (Ti3N4, Zr3N4) with ionic Ti-N and Zr-N bonds

Delineation of stoichiometry changes may help to develop optimum deposition conditions of coatings with pre-determined composition and structure

top related