j. mauricio lópez r. centro nacional de metrología, cenam

Post on 14-Dec-2015

216 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

J. Mauricio López R.

Centro Nacional de Metrología, CENAM

62s1/2

F = 3

F = 4

9.2 GHz

62p3/2

F’ = 5

F’ = 4

F’ = 3

F’ = 2

251 MHz

201 MHz

151 MHzD2

852 nm

62s1/2

F = 3

F = 4

9.2 GHz

62p3/2

F’ = 5

F’ = 4

F’ = 3

F’ = 2

251 MHz

201 MHz

151 MHzD2

852 nm

Cs 133

The use of the atomic transitions as references to built atomic clocks was first proposed by I. Isaac Rabi from the Universidad of Columbia during

the 1930s decaade.

The Nobel Prize in Physics 1944

Isidore Isaac Rabi

Nuclear magnetic resonance

Magnetic moment

JμJ

Classic approximation

kH0 0HStatic magnetic field

Larmour frequency

J

H

0

02 0

0

z

Interaction between H and

0HμE

Angular momentum evolution

dtdL

Hμ 0

z z

kH0 0HStatic magnetic field

Larmour frequency

J

H

0

02 0

0

)cos(sin11 jiH ttH

Rotating magnetic field perpendicular to H0

Classic approximation

The Nobel Prize in Physics 1989

                         

      

                         

      

Norman F. Ramsey

An improvement of the Rabi method was proposed by Norman Ramsey. His method is now used to built atomic

clocks

Nuclear magnetic resonance

z

kH0 0HStatic magnetic field

Larmour frequency

J

H

0

02 0

0

)cos(sin11 jiH ttH

Rotating magnetic field perpendicular to H0

Applied in pulses!

Classic approximation

Ramsey method

Ramsey method

Rabi method

Definition of the unit of time

Electric

85

0nm

Electron-nucleus

9192631770 Hz

F’=5

F’=4

F’=3

F’=2

F’=4

F’=3

F’=4

F’=3

251MHz

200MHz

150MHz

1167MHz

+ Zeeman effect

11 subniveles

9 subniveles

7 subniveles

5 subniveles

9 subniveles

7 subniveles

9 subniveles

7 subniveles

+

INTERACTION

EN

ER

GY

Spin-orbit

62P3/2

62P1/2

62S1/2

10

0GH

z

894n

m

+

Not

a s

cale

CampoMagnético Constante (Campo C)

Contenedor con Cesio 133

Cavidad de Ramsey

Campo Magnético Inhomogéneo

(Campo B)

Campo Magnético Inhomogéneo

(Campo A)

FilamentoIncandescente

(Ionizador)

Detector

Generador deMicroondas

Lazo deamarre

Vacío

Ramsey Method

                               

Alfred Kastler France

École Normale Supérieure, Université de Paris Paris, France b.1902d.1984

The Nobel Prize in Physics 1966

The descovery of the optical methods for the study of radio resonance in atoms was made by Alfred

Kastler.

Optical pumping

a

b

aE

bE

c cE

Optical pumping

baa EEE

h

EE ac

ac

Cerca del visible

h

EE ab

ab

Radiofrecuencia

Optical pumping in Cesio-133

Eléctrica

85

0nm

Electrón Núcleo

9192631770 Hz

F’=5

F’=4

F’=3

F’=2

F’=4

F’=3

F’=4

F’=3

251MHz

200MHz

150MHz

1167MHz

+ Efecto Zeeman

11 subniveles

9 subniveles

7 subniveles

5 subniveles

9 subniveles

7 subniveles

9 subniveles

7 subniveles

+

INTERACCION

EN

ER

GIA

Espín-órbita

62P3/2

62P1/2

62S1/2

10

0GH

z

894n

m

+

No

a es

cala

CampoMagnético Constante (Campo C)

Contenedor con Cesio 133

Cavidad de Ramsey

Generador deMicroondas

Lazo deamarre

Láser de bombeo

Láser de detección

FotodetectorVacío

Ramsey method + optical pumping

                         

      

                         

      

                         

      Steven Chu Claude Cohen-

Tannoudji William D. Phillips

USA France USA

Stanford University Stanford, CA, USA

Collège de France; École Normale Supérieure Paris, France

National Institute of Standards and Technology

Gaithersburg, MD, USA b.1948 b.1933 b.1948

The Nobel Prize in Physics 1997

During the 90´s decade Stephen Chu, Claude Cohen-Tannoudji y William Phyllips, among others, developed the techniques for the manipulation of atoms with ligth.

Cold atoms

Doppler cooling

Ene

rgy E2

E1

012 hEEE

Laboratory reference frame

F=0- F=0-0

v

R = F + k·v + … 0

L= F - k·v + …<< 0

Atom´s reference frame

0

Doppler cooling

...22

12

20

2

00

Mch

cv

abs

vk

kpF2

dtd Fuerza sobre el átomo como resultado del proceso

de absorción/emisión de un fotón

Doppler cooling

Fue

rza

2kv/-1 1

Total force on the atom

20

2

12

kv

II

kF

v

III

IkF 2

0

0

2

2´1

2

4

20

2/1

2

kv

II

kF

Friction type force

vF )(I

Lowest temperature achieved by eDoppler cooling

Doppler cooling

2

BDopplerkT

Cesium-133K124

Sodium K240h 6,610-34

Js kB 1,310-23 J/K

Phys. Rev. Lett. 61, 169–172 (1988)[Issue 2 – 11 July 1988 ]

 

Observation of atoms laser cooled below the Doppler limit

Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, and William D. Phillips Electricity Division, National Bureau of Standards, Gaithersburg, Maryland 20899

Phillip L. Gould Department of Physics, University of Connecticut, Storrs, Connecticut 06268

Harold J. Metcalf Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794

 

Received 18 April 1988  We have measured the temperature of a gas of sodium atoms released from ``optical molasses'' to be as low as 43±20 µK. Surprisingly, this strongly violates the generally accepted theory of Doppler cooling which predicts a limit of 240 µK. To determine the temperature we used several complementary measurements of the ballistic motion of atoms released from the molasses.

©1988 The American Physical Society 

Doppler cooling assumes quantum systems of two energy levels. However, atoms have are multi energetic systems

The model of two energy levels for alkaline atoms (like Cesium) are not valid if a magnetic field is not zero. The Zeeman effect brakes the degeneration of

states rising up the multi energetic behavior of atoms.

Firts energy levels of the Cs-133 atom

Eléctrica

85

0nm

Electrón Núcleo

9192631770 Hz

F’=5

F’=4

F’=3

F’=2

F’=4

F’=3

F’=4

F’=3

251MHz

200MHz

150MHz

1167MHz

+ Efecto Zeeman

11 subniveles

9 subniveles

7 subniveles

5 subniveles

9 subniveles

7 subniveles

9 subniveles

7 subniveles

+

INTERACCION

EN

ER

GIA

Espín-órbita

62P3/2

62P1/2

62S1/2

10

0GH

z

894n

m

+

No

a es

cala

0122Bmg

I

hE FBI

HFS

2022

22

012

41

2

1B

h

ggB

h

gg

I

mh

HFS

JIB

HFS

JIBFHFS

Magnetic field/

Teslas

En

ergy

/ J

oule

s

10h H

FS

Region of interest

F=4

F´=5

m = +4

m = -4

m = 0

m = -5

m = +5

m = 0

852

nm

0 1B / Gauss

No

a es

cala

GaussHzB

hE/10

/ 7

GaussHzB

hE/10

/ 6

E

nerg

í a

Temperatures below the Doppler limit

x

0 4 2

lineal - + -lineal lineal

z

ym = -3/2 m = -1/2 m = +1/2 m = +3/2

m = -1/2 m = +1/2J = 1/2

J = 3/2

Stark effect

g-½

g+½

0

lineal - + -lineal lineal

Ene

rgy

Position

8

z0 4 38 2 58

z

Ene

rgía

8 4 38 2 58

g-½ g+½

Sisyphus effect

However, atom´s velocity interval for capture is proportional to the light intensity

“Fricción” type force is independent of the laser intensity

Force

2kv / 0.1 0.2-0.1-0.2

I1>I2>I3>I4

I1

I2

I3 I4

m1

0

-1

m1

0

-1

mF = -1

mF = 1

h0

hL

hL

z0

Ene

rgía

B(z) = Az

z2 z1z3z4

J=0

J=1

Posición

~1 mmF = -v - kzF = -v - kz

Frecuencia

E • t h/4

• t 1/4

1Hz

01010Hz

/ 10-15

Prob

abil

idad

de

tran

sici

ón

0

Ramsey Method + ultracold Cs atoms

Thermal beam clocks Cold atoms clocks

Ramsey pattern for Cs-133

Ramsey Method + Optical Pumping

Ramsey fringe

Frequency that defines the duration of the unit of time

1 kHz

Tra

nsit

ion

prob

abil

ity

(central line of the Ramsey spectrum)

Optical set up for a magneto-optical trap

E

E

/4

/4 E

DHP

L

AOM

L

DHPL

/4

LAOM

E

80 MHz

85 MHz

Láser maestro

Electrónica lazo de amarre

Filtro pasa-bajas

Amplificador

Multiplicador

AO Cesio

EDH

L

DH

100 Hz

E

Láser Esclavo

L/2

DH/2

E

/2

DHP

/2

DHP

/4

/4

/4/4

E

E

/4 M

O

T

E

FDFD

Mechanical part of a magneto-optical trap (MOT)

Optical set up for a MOT

Mauricio López R.

mauricio.lopez@cenam.mx

+ 52 (442) 211 0543

top related